
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

SuperLoRA: Parameter-Efficient Unified Adaptation for
Large Vision Models

Chen, Xiangyu; Liu, Jing; Wang, Ye; Wang, Pu; Brand, Matthew; Wang, Guanghui; Koike-Akino,
Toshiaki

TR2024-062 June 01, 2024

Abstract
Low-rank adaptation (LoRA) and its variants are widely employed in fine-tuning large models,
including large language models for natural language processing and diffusion models for
computer vision. This paper proposes a generalized framework called SuperLoRA that unifies
and extends different LoRA variants, which can be realized under different hyper-parameter
settings. Introducing new options with grouping, folding, shuffling, projection, and tensor de-
composition, SuperLoRA offers high flexibility and demonstrates superior performance, with
up to 10-fold gain in parameter efficiency for transfer learning tasks.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2024

c© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

SuperLoRA: Parameter-Efficient Unified Adaptation for Large Vision Models

Xiangyu Chen1,2, Jing Liu2, Ye Wang2, Pu (Perry) Wang2,
Matthew Brand2, Guanghui Wang3, Toshiaki Koike-Akino2

1 University of Kansas, Lawrence, KS 66045, USA
2 Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA 02139, USA

3 Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada

xychen@ku.edu, {xiachen, jiliu, yewang, pwang, brand, koike}@merl.com, wangcs@torontomu.ca

Abstract

Low-rank adaptation (LoRA) and its variants are widely
employed in fine-tuning large models, including large lan-
guage models for natural language processing and diffusion
models for computer vision. This paper proposes a general-
ized framework called SuperLoRA that unifies and extends
different LoRA variants, which can be realized under dif-
ferent hyper-parameter settings. Introducing new options
with grouping, folding, shuffling, projection, and tensor de-
composition, SuperLoRA offers high flexibility and demon-
strates superior performance, with up to 10-fold gain in pa-
rameter efficiency for transfer learning tasks.

1. Introduction

Large neural network models are dominating machine
learning recently with the emergence of exceptional mod-
els, such as large vision models (LVMs) including Vi-
sion Transformer (ViT) [10], ConvNeXt [33] and Stable
Diffusion [19] for vision tasks, and large language mod-
els (LLMs) including GPT [1], PALM2 [4], Gemini [3]
and LLaMA2 [39] for natural language processing (NLP).
However, the increased resource consumption and data re-
quirement along with model size limits its generalization
on downstream tasks. To solve this, Parameter-Efficient
Fine-Tuning (PEFT) has been widely explored to fine-
tune less parameters while retaining high performance.
Among this, adapter-based technique like LoRA (Low-
Rank Adaptation) [21] demonstrates advantages and flex-
ible convenience.

LoRA [21] approximates the weight updates of the base
model by approximating the change ∆W of each weight
matrix as the product of two low-rank matrices. This de-
creases the required parameters from d2 to 2rd when r ≪ d,
where d and r are weight size and the rank, respectively.
Most LoRA variants work on solving the inherent low-rank

constraint of matrix factorization, including LoHA (Low-
rank Hadamard) [42], LoKr (Low-rank Kronecker) [42],
and LoTR (Low Tensor Rank) [5]. We discuss more related
work in Appendix A. However, we find these variants can
be nicely unified within our framework—SuperLoRA—
with different hyper-parameters as shown in Table 1. Our
proposed SuperLoRA framework is depicted in Figure 1,
which also yields to some new variants: LoNKr (Low-
rank N-split Kronecker) and LoRTA (Low-Rank Tensor
Adaptation). Additionally, we introduce three extended op-
tions: 1) reshaping ∆W to any arbitrary multi-dimensional
tensor arrays before applying LoRA variants; 2) splitting
all ∆W into an arbitrary number of groups, which breaks
the boundaries for ∆W across different weights; and 3)
projecting fewer number of trainable parameters into larger
weights through a projection layer F(·) with fixed param-
eters. Accordingly, SuperLoRA provides more flexibility
and extended functionality, controlled by a set of hyper-
parameters listed in Table 2. Our contributions include:

• We propose a new PEFT framework SuperLoRA which
gracefully unifies and extends most LoRA variants.

• With projected tensor rank decomposition, SuperLoRA
can adapt all weights across layers jointly with a wide
range of adjustable parameter amount.

• We investigate the effect of tensor reshaping, grouping,
random projection, and shuffling.

• We demonstrate high parameter efficiency for large ViT
and diffusion models in two transfer learning tasks: image
classification and image generation.

• Significant parameter reduction by up to 10 folds can be
achieved.

2. SuperLoRA

Figure 1 shows the overview of SuperLoRA, which is a gen-
eralization of LoRA variants to allow high flexibility in the

num_param

fixed
projection factorization

𝐵 ∈ ℝ!!×#

… 𝐴 ∈ ℝ!!×#

𝐴1
𝐶 𝐴2

𝐴3

folding
decompose
each unit

num_param
num_groups

𝑑 =
" num_param
num_groups×ratio_proj

num_param
num_groups×ratio_proj

d

d

𝑈$

𝑑!

𝑑!×𝑟

𝑑!×𝑟

𝑑!×𝑟

𝑟×𝑟×𝑟

Δ𝑊"#$%&'Δ𝑊('&)*% Δ𝑊+'&,

d

d

d

𝑈&

SuperLoRA gradient flow

Δ𝑊-.. generation flow

SuperLoRA Unit𝑈'

Kronecker product

…
…

𝑊($

𝑊)$

𝑊(*

𝑊('

𝑊)'

𝑊(+

𝑊)+

…
…

Δ𝑊($

Δ𝑊(*

Δ𝑊)'

Δ𝑊)+

Δ𝑊)$

Δ𝑊('

Δ𝑊(+

Δ𝑊-..

vectorize
grouping

base module
weights

adaptor
weights

d
1D

2D

3D

dense

LoRA

LoRTA

LoNKr

Figure 1. Schematic of SuperLoRA to fine-tune multi-layer attention modules at once with grouping, projection, folding, and factorization.

Table 1. Hyper-parameter settings in SuperLoRA and the resultant LoRA variant

hyper-parameters settings method
F = I , weight-wise, K = 1, Cg1 = I , M = 1 dense FT
F = I , weight-wise, K = 1, Cg1 = I , M = 2 LoRA [21]
F = I , weight-wise, K = 2, Cgk = I , M = 2 LoKr [42]
F = I , group-wise, G = 1, M > 2 LoTR [5]
F = I , group-wise, K > 2, Cgk = I , M = 2 LoNKr
F = I , group-wise, K = 1, M > 2 LoRTA

Table 2. Hyperparameters and notation.

notation description
r rank of factorization
F mapping function
ρ compression ratio
G number of groups
M order of tensor modes
K number of splits

weight update ∆W . SuperLoRA can be formulated as:

∆Wgroupg
= F

(K⊗
k=1

(
Cgk ×1 Agk1 ×2 · · · ×M AgkM

))
,

where F(·) is a simple projection function applied on the
results of SuperLoRA modules. We denote ×m as mode-m
tensor product, and ⊗ as Kronecker product. Here, M rep-
resents the order of the reshaped weight tensor modes, and
high-order Tucker decomposition [41] is employed to for-
mulate this high-order tensor, where Cgk ∈ Rr1×r2×···×rM

is M -D core tensor and Agkm ∈ Rdm×rm are 2D plane fac-
tors. SuperLoRA units in Figure 1 are combined with Kro-
necker product across K splits in a proper shape. Depend-
ing on reshaping, each split has multiple choices including
a combination of dense fine-tuning (FT: 1D), LoRA (2D),
and high-order Tucker decomposition (3D, 4D, etc.).

For SuperLoRA as depicted in Figure 1, we first con-
catenate all ∆W ∈ Rdi×di across multiple layers to get the
total correction of ∆Wall ∈ R

∑
i d

2
i . Then, ∆Wall is di-

vided into g groups: {∆Wgroupg
} for g ∈ {1, 2, . . . , G}.

Each LoRA module will then produce ∆Wgroupg
. Finally,

stretch ∆Wgroupg
to one dimension, fetch corresponding

size of ∆W from those ∆Wgroupg
and add it to candidate

weight matrix, e.g., query and value projection weights for
attention modules across layers. Figure 2 shows the group-
ing mechanism which provides various options, including
weight-wise, layer-wise, and general grouping. Reshaping
in Figure 2(c) can solve unbalanced fan-in/fan-out issue in
Figure 2(b) when stacking multiple weights.

SuperLoRA can further modify the tensor arrays through
a simple mapping F(·): e.g., we can project much smaller
∆Wlorag into larger final ∆Wgroupg

to improve the param-
eter efficiency. We use the fastfood projection [2, 28] as
shown in Figure 3, which is written as follows:

∆Wgroupg
= F(∆Wlorag)

= vec[∆Wlorag]H′ diag[G]ΠH diag[B],

where vec[·] is a vectorization operator, diag[·] denotes
a diagonalization operator, H is left-truncated Walsh–
Hadamard matrix, H′ is its right-truncated version, G is a
random vector drawn from normal distribution, Π is a ran-
dom permutation matrix, and B is a random vector drawn
from Rademacher distribution. The compression ratio for
the projection F(·) is ρ = |∆Wlorag |/|∆Wgroupg

|, where
| · | denotes the total number of elements of the tensor. It
is a fast Johnson–Lindenstrauss transform with log-linear

∆𝑊!" ∆𝑊#" ∆𝑊!$ ∆𝑊#$

(a) Weight-wise grouping (LoRA)

A1

B1

𝑑%&'

A2

B2

A3

B3

A4

B4

group1 group2 group3 group4

∆𝑊!" ∆𝑊#" ∆𝑊!$ ∆𝑊#$

(b) Layer-wise grouping (2D)

A1

B1

group1 group2

A2

B2

∆𝑊!" ∆𝑊#" ∆𝑊!$ ∆𝑊#$

(c) Layer-wise grouping (2D, reshape)
2𝑑()𝑑%&'

𝑟
A1

B1

group1 group2

B1

2𝑑()𝑑%&'

A2

B2
𝑟𝑟

𝑑()

2𝑑%&'

𝑑()

𝑑%&'

𝑑()

𝑑%&'

𝑑()

𝑑%&'

𝑑()

∆𝑊!" ∆𝑊#" ∆𝑊!$ ∆𝑊#$

(d) General grouping (2D, reshape)

𝑟
A1

B1

group1 group2

B1

𝑑

A2

B2

𝑑%&'

𝑑()

𝑑

𝑑$-element 𝑑$-element

∆𝑊!" ∆𝑊#" ∆𝑊!$ ∆𝑊#$

(f) General grouping (3D, reshape)

𝑟 B1

group1 group2

𝑑

𝑑%&'

𝑑()

𝑑*-element 𝑑*-element

C1A1

𝑟

A2

A3
B1

C2

∆𝑊!" ∆𝑊#" ∆𝑊!$ ∆𝑊#$

(e) General grouping (2D, reshape, shuffling)

𝑟
A1

B1

group1 group2
B1

𝑑

A2

B2

𝑑%&'

𝑑()

𝑑

ℱ = Π

Shuffling
Projection

Figure 2. Examples of grouping mechanism.

2D
vectorize padding Hadamard

transform
𝓖

Hadamard
transform

Hadamard
transform

𝓑

truncation reshaping

: random vector from normal distribution
 : random vector from Rademacher distribution (v1)
 : random vector from normal distribution (v2)

2#

route for shuffling

𝑁in

𝑁out

∆𝑊$%&'(!

MD

∆𝑊)&%*! ℋ+
⨂#

diagonal
product

diagonal
product

permutation
𝚷

tanhshrink

route for nonlinear

identity

𝓖
𝓑

ℋ+
⨂#

𝓖’

v2
diagonal
product

𝓖’route for v2 projection

Figure 3. Illustration of fastfood projection and its variants.

complexity due to the fast Walsh–Hadamard transform, and
no additional parameters are required when the random
seed is predetermined. The projection also includes a shuf-
fling variant as in Figure 2(e). More details of SuperLoRA
framework are found in Appendix A.2, and its different
variants are discussed in Appendix A.10.

3. Transfer Learning Experiments
Transfer learning for image classification is conducted be-
tween ImageNet21k [9] and CIFAR100 [26] based on a
ViT-base [10] model. More details of the ViT model are
described in Appendix A.3. The query and value projec-
tion layers in the attention modules are fine-tuned with Su-
perLoRA. The model is trained for 5,000 steps with the
stochastic gradient descent (SGD) optimizer, with a batch
size of 128 and a learning rate of 0.05. The OneCy-
cleLR [38] scheduler is used.

We evaluated SuperLoRA with grouping with/without
reshaping to square-like for 2D ∆Wgroupg

, reshaping ver-
sion for higher-order ∆Wgroupg

including 3D, 4D and 5D.
The fixed projection layers are inserted to SuperLoRA with

reshaping (2D version) and also dense. Original weight-
wise LoRA is also examined for comparison by setting
the number of groups to the number of query and value
weights (24 for 12-layer ViT-base) as all projection weights
for ViT-base are equal size. Each correction weight is of
size 768× 768 as the projection weight for query/value, re-
sulting in 14M parameters. Except for most cases, more
ranks are needed to span the parameter axis well, includ-
ing larger ranks from 34 to 128 and smaller ranks below
8 for LoRTA. Projection compression ratio is from ρ ∈
{0.5, 0.25, 0.1, 0.01}, and the fixed projection parameters
are shared across all groups in our experiments.

Classification results versus the number of parameters
are shown in Figure 4 with Pareto frontier lines. Com-
paring group-wise SuperLoRA (2D with/without reshape)
with weight-wise LoRA, we can find that SuperLoRA ver-
sions show better performance in terms of the trade-off be-
tween classification accuracy and the number of parame-
ters. Noticeably, we observe three to four times advantage
in terms of parameter efficiency for the same accuracy. As
the largest number of groups is set to 24 (i.e. LoRA), it in-
dicates smaller number of groups are superior. This may be
because ViT model is excessively large for the CIFAR100
dataset, with much more redundant weights. Grouping
weights and layers together can reduce noise brought by the
redundancy. With reshaping ∆Wgroupg

to a square matrix,
classification accuracy further increases in the lower param-
eter regime and the range of parameters the model can cover
becomes wider as higher rank can be used while maintain-
ing a smaller number of parameters.

To examine the effect of higher-order tensor folding, the
order M is set to be 3, 4 and 5 for SuperLoRA (i.e. LoRTA)
as well as 2. For M = 2 cases with 2D tensor, we use

10-Fold Efficient

+1% Accurate

Figure 4. Transfer learning from ImageNet21K to CIFAR100, pa-
rameters in classifier head excluded.

10-Fold Efficient

+1% Accurate

Figure 5. Transfer learning from ImageNet1K to CIFAR10, with
frozen classifier head after manual label matching.

identity core tensor like typical LoRA. With the increase of
order from 2 to 5, higher order takes place lower-order at
fewer-parameter regimes. Moreover, data points for high-
order LoRTA show a hill-like trend with the increase of pa-
rameters. This may be caused by the inefficient core tensor,
which increases parameters rapidly without benefiting the
accuracy. When comparing the lowest rank LoRA (which
achieves around 0.9 accuracy with about 4 × 104 parame-
ters), our LoRTA (3D) significantly improves the accuracy
by about 1% at the comparable number of parameters, and
more significantly reduces the number of parameters by 10
folds to keep the comparable accuracy of 0.9.

Finally, we address the impact of the projection layer
F(·). Fixed fastfoood projection as in Figure 3 is applied
on SuperLoRA. For 1D dense, the plot for a projection ra-
tio of {1, 0.5, 0.25, 0.1, 0.01} is placed from right to left in
Figure 4. The classification accuracy dropped less than 1%
from projection ratio 1 to 0.1 (i.e. 90% less parameters), but
it is worse than LoRA. To get some results of projection for
the number of parameters around 104 and 105, we select a
few settings for SuperLoRA (2D, reshape) with G = 1 as
shown in the figure with a marker of dark stars. Most pro-
jection results demonstrate better accuracy compared with
other SuperLoRA settings without projection in the same
number of parameters level. This result shows a smaller
adapter with fixed projection layer is a strong functionality
to improve the parameter efficiency of SuperLoRA.

We also examined another transfer learning task from
ImageNet1k to CIFAR10. Most settings are same as Fig-
ure 4 for transfer learning from ImageNet21k to CIFAR100.
The classifier head is frozen after selecting most relevant la-
bels in ImageNet1k. Details are found in Appendix A.3.2.
Classification results can be found in Figure 5. Even though
only attention modules are adapted, overall performance is
excellent, reaching an accuracy close to 0.99. Besides, Su-
perLoRA significantly outperforms original LoRA in terms

of both classification accuracy and the parameter range it
covers as the transfer learning. SuperLoRA (2D, reshape)
shows at least 3-fold reduction in the required number of pa-
rameters compared to LoRA. Noticeably, when comparing
the lowest-rank LoRA with around 0.97 accuracy, Super-
LoRA (2D, reshape, w/ projection) improves the accuracy
by about 1%, and moreover the required number of param-
eters can be greatly reduced by 10 folds with SuperLoRA
(LoRTA: 3D, reshape) to maintain the comparable accuracy.

We confirmed the remarkable gain of our SuperLoRA
on a transfer learning task for image classification with
ViT models. In Appendix A.6, we further discussed the
geometric analysis of SuperLoRA, and grouping impacts
in Appendix A.7. In addition, We evaluated the advan-
tage in another transfer learning task for image generation
with diffusion models in Appendix A.8, Appendix A.9, Ap-
pendix A.11, and Appendix A.12.

4. Conclusion
We proposed a new unified framework called SuperLoRA,
which generalizes and extends LoRA variants including
LoKr and LoTR. SuperLoRA provides some extended vari-
ants, which we refer to as LoNKr and LoRTA. It offers
a rich and flexible set of hyper-parameters, including the
rank of factorization, the choice of projection function,
projection ratio, the number of groups, the order of ten-
sor, and the number of Kronecker splits. Through trans-
fer learning experiments, we demonstrated that SuperLoRA
achieves promising results in parameter efficiency for fine-
tuning at low-parameter regimes. We could reduce the re-
quired number of parameters by 3 to 10 folds compared
to LoRA. Future work includes studying the projection
functions to further improve the efficiency in extremely-
low-parameter regimes, and applications to various trans-
fer learning tasks along with different large models such as
LLMs.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. GPT-4 technical report, 2023. 1

[2] Armen Aghajanyan, Luke Zettlemoyer, and Sonal
Gupta. Intrinsic dimensionality explains the effective-
ness of language model fine-tuning. arXiv preprint
arXiv:2012.13255, 2020. 2, 1

[3] Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gem-
ini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023. 1

[4] Rohan Anil, Andrew M. Dai, and Orhan Firat et al.
PaLM 2 technical report, 2023. 1

[5] Daniel Bershatsky, Daria Cherniuk, Talgat Daulbaev,
and Ivan Oseledets. LoTR: Low tensor rank weight
adaptation. arXiv preprint arXiv:2402.01376, 2024.
1, 2

[6] Mikołaj Bińkowski, Danica J Sutherland, Michael Ar-
bel, and Arthur Gretton. Demystifying MMD GANs.
arXiv preprint arXiv:1801.01401, 2018. 6

[7] Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu
Wang, Yibing Song, Jue Wang, and Ping Luo. Adapt-
Former: Adapting vision transformers for scalable vi-
sual recognition. Advances in Neural Information Pro-
cessing Systems, 35:16664–16678, 2022. 1

[8] Wei Chen, Zichen Miao, and Qiang Qiu. Parameter-
efficient tuning of large convolutional models. arXiv
preprint arXiv:2403.00269, 2024. 1

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. ImageNet: A large-scale hierar-
chical image database. In 2009 IEEE conference on
computer vision and pattern recognition, pages 248–
255. Ieee, 2009. 3

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on
Learning Representations, 2020. 1, 3

[11] Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Par-
tovi Nia, James J Clark, and Mehdi Rezagholizadeh.
Krona: Parameter efficient tuning with Kronecker
adapter. arXiv preprint arXiv:2212.10650, 2022. 1

[12] Demi Guo, Alexander M Rush, and Yoon Kim.
Parameter-efficient transfer learning with diff pruning.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language

Processing (Volume 1: Long Papers), pages 4884–
4896, 2021. 1

[13] Tianxiang Hao, Hui Chen, Yuchen Guo, and Guiguang
Ding. Consolidator: Mergable adapter with group
connections for visual adaptation. In The Eleventh In-
ternational Conference on Learning Representations,
2022. 1

[14] Soufiane Hayou, Nikhil Ghosh, and Bin Yu. LoRA+:
Efficient low rank adaptation of large models. arXiv
preprint arXiv:2402.12354, 2024. 1

[15] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. Towards a unified
view of parameter-efficient transfer learning. In In-
ternational Conference on Learning Representations,
2021. 1

[16] Xuehai He, Chunyuan Li, Pengchuan Zhang, Jianwei
Yang, and Xin Eric Wang. Parameter-efficient model
adaptation for vision transformers. In Proceedings of
the AAAI Conference on Artificial Intelligence, pages
817–825, 2023. 1

[17] Martin Heusel, Hubert Ramsauer, Thomas Un-
terthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule con-
verge to a local Nash equilibrium. Advances in neural
information processing systems, 30, 2017. 6

[18] Jonathan Ho and Tim Salimans. Classifier-free dif-
fusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applica-
tions, 2021. 3, 6

[19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
diffusion probabilistic models. Advances in neural in-
formation processing systems, 33:6840–6851, 2020. 1

[20] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzeb-
ski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly.
Parameter-efficient transfer learning for NLP. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR, 2019. 1

[21] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. LoRA: Low-rank adaptation of large language
models. In International Conference on Learning
Representations, 2021. 1, 2

[22] Shibo Jie and Zhi-Hong Deng. Fact: Factor-tuning
for lightweight adaptation on vision transformer. In
Proceedings of the AAAI Conference on Artificial In-
telligence, pages 1060–1068, 2023. 1

[23] Shibo Jie, Haoqing Wang, and Zhi-Hong Deng. Re-
visiting the parameter efficiency of adapters from the
perspective of precision redundancy. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision, pages 17217–17226, 2023. 1

[24] Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. Compacter: Efficient low-rank hyper-
complex adapter layers. Advances in Neural Informa-
tion Processing Systems, 34:1022–1035, 2021. 1

[25] Oscar Key, Jean Kaddour, and Pasquale Minervini.
Local LoRA: Memory-efficient fine-tuning of large
language models. In Workshop on Advancing Neural
Network Training: Computational Efficiency, Scala-
bility, and Resource Optimization (WANT@ NeurIPS
2023), 2023. 1

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning
multiple layers of features from tiny images. 2009.
3

[27] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Improved precision
and recall metric for assessing generative models. Ad-
vances in Neural Information Processing Systems, 32,
2019. 6

[28] Quoc Le, Tamás Sarlós, Alex Smola, et al. Fastfood-
approximating kernel expansions in loglinear time. In
Proceedings of the international conference on ma-
chine learning, page 8, 2013. 2, 1

[29] Yann LeCun, Léon Bottou, Yoshua Bengio, and
Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86
(11):2278–2324, 1998. 6

[30] Brian Lester, Rami Al-Rfou, and Noah Constant. The
power of scale for parameter-efficient prompt tuning.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3045–3059, 2021. 1

[31] Xiang Lisa Li and Percy Liang. Prefix-tuning: Op-
timizing continuous prompts for generation. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 4582–4597,
2021. 1

[32] Jing Liu, Toshiaki Koike-Akino, Pu Wang, Matthew
Brand, Ye Wang, and Kieran Parsons. LoDA: Low-
dimensional adaptation of large language models.
NeurIPS’23 Workshop on on Efficient Natural Lan-
guage and Speech Processing, 2023. 1

[33] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph
Feichtenhofer, Trevor Darrell, and Saining Xie. A
ConvNet for the 2020s. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 11976–11986, 2022. 1

[34] Yuval Netzer, Tao Wang, Adam Coates, Alessandro
Bissacco, Baolin Wu, Andrew Y Ng, et al. Read-
ing digits in natural images with unsupervised fea-
ture learning. In NIPS workshop on deep learning

and unsupervised feature learning, number 5, page 7.
Granada, Spain, 2011. 6

[35] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. AdapterFu-
sion: Non-destructive task composition for transfer
learning. In 16th Conference of the European Chap-
ter of the Associationfor Computational Linguistics,
EACL 2021, pages 487–503. Association for Compu-
tational Linguistics (ACL), 2021. 1

[36] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-Net: Convolutional networks for biomedical im-
age segmentation. In Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October
5-9, 2015, Proceedings, Part III 18, pages 234–241.
Springer, 2015. 6

[37] Tim Salimans, Ian Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training GANs. Advances in neural in-
formation processing systems, 29, 2016. 6

[38] Leslie N Smith and Nicholay Topin. Super-
convergence: Very fast training of neural networks us-
ing large learning rates. In Artificial intelligence and
machine learning for multi-domain operations appli-
cations, pages 369–386. SPIE, 2019. 3

[39] Hugo Touvron, Louis Martin, and Kevin Stone et al.
Llama 2: Open foundation and fine-tuned chat mod-
els, 2023. 1

[40] Anton Tsitsulin, Marina Munkhoeva, Davide Mottin,
Panagiotis Karras, Alex Bronstein, Ivan Oseledets,
and Emmanuel Mueller. The shape of data: Intrinsic
distance for data distributions. In International Con-
ference on Learning Representations, 2019. 6

[41] Ledyard R Tucker. Some mathematical notes on three-
mode factor analysis. Psychometrika, 31(3):279–311,
1966. 2

[42] Shin-Ying Yeh, Yu-Guan Hsieh, Zhidong Gao,
Bernard B W Yang, Giyeong Oh, and Yanmin Gong.
Navigating text-to-image customization: From ly-
CORIS fine-tuning to model evaluation. In The
Twelfth International Conference on Learning Repre-
sentations, 2024. 1, 2

[43] Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi,
Haitz Sáez de Ocáriz Borde, Rickard Brüel Gabriels-
son, Leshem Choshen, Marzyeh Ghassemi, Mikhail
Yurochkin, and Justin Solomon. Asymmetry in low-
rank adapters of foundation models. arXiv preprint
arXiv:2402.16842, 2024. 1

SuperLoRA: Parameter-Efficient Unified Adaptation for Large Vision Models

Supplementary Material

A. Related Work

PEFT algorithms are widely explored in transfer learn-
ing tasks in both computer vision [16, 22, 23] and NLP
fields [12, 15, 24, 30, 31] as it not only saves memory
and time at fine-tuning, but also requires much less data
to fine-tune, making it feasible to borrow the capacity
from large models in few-data tasks. Adapter-based meth-
ods [7, 13, 20, 35], that freeze the base model weights and
fine-tune only the additional adapter parameters, stand out
since their plug-and-play nature enables many downstream
tasks to share the same large model, leaving the adapter to
hold only the task-specific information. The widely used
method LoRA [21] and its extension [14, 43] assume that
the weight correction term can be estimated by low-rank de-
composition under the low-dimensional manifold hypothe-
sis.

Addressing the inherent low-rank constraint of matrix
factorization in LoRA, LoHA [42] divides ∆W into two
splits and combines them with Hadamard product, and
KronA [11] combines the two splits with a Kronecker prod-
uct to enlarge the overall rank. LoKr [42] further extended
KronA to convolutional layers. LoDA (Low-Dimensional
Adaptation) [32] extended LoRA by introducing nonlinear-
ity. Our SuperLoRA can nicely generalize and extend such
variants.

Instead of approximating weight-wise updates, LoTR [5]
jointly approximates all ∆W across the model with a care-
ful handling to preserve the geometric meaning of each
weight. Differently, SuperLoRA relaxes the geometrically
meaningful boundaries by caring the total number of pa-
rameters and splitting it to any number of groups. For high-
order tensor decomposition, LoTR employs more stringent
Tensor Train Decomposition to deal with the core tensor ex-
plosion, while SuperLoRA coupled Tucker Decomposition
with a fixed projection layer. Besides, their proposed meth-
ods are restricted to context when ∆W is the same high-
order tensor, while with reshaping, SuperLoRA (LoRTA)
can be applied to any weight shape.

Most recent work [8] decomposes each convolution ker-
nel into a learnable filter atom and its non-learnable counter-
parts. The concept of filter atom is similar to the projection
layer of SuperLoRA. However, it works on each convolu-
tional kernels separately, resulting in a waste of parameters,
while SuperLoRA considers the entire model jointly. Be-
sides, the atom coefficients are obtained from matrix factor-
ization, while SuperLoRA uses a fastfood projection [28],
which is faster, simpler and more theoretically justifiable
to exploit intrinsic dimensionality [2]. In addition, Super-

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Rank

103

104

105

106

Nu
m

be
r o

f P
ar

am
et

er
s

Parameters of adapter vs. rank

LoRA
SuperLoRA (group1)
SuperLoRA (group1, reshape)
SuperLoRA (LoRTA: 3D, reshape)
SuperLoRA (LoRTA: 4D, reshape)
SuperLoRA (LoRTA: 5D, reshape)

Figure 6. Required number of parameters.

LoRA can control the size of atoms directly while atoms in
their method are restricted in factorization.

Local LoRA [25] aims to reduce memory consumption
at fine-tuning by splitting large model into groups and then
fine-tune group-by-group sequentially, but no adjustment
on the LoRA structure was proposed. Instead, SuperLoRA
focuses on how to split and assign LoRA for each group,
which is a viable extension of Local LoRA.

A.1. Low-Rank Adaptation (LoRA)

LoRA [21] assumes the update ∆W of each weight ma-
trix W for fine-tuning can be approximated by low-rank
mapping as ∆W = AB⊤ ([·]⊤ denotes matrix transpose),
which is added to the frozen weight matrix as shown in Fig-
ure 7a:

W ′ = W +∆W = W +AB⊤, (1)

where A ∈ Rd1×r, B ∈ Rd2×r, and the rank r. With a
smaller r compared with the matrix dimensions, it only re-
quires (d1 + d2)r parameters for each weight matrix, while
full fine-tuning (FT) for dense ∆W ∈ Rd1×d2 results in
d1d2 parameters. LoRA has been widely used in fine-tuning
large models as much less trainable parameters save mem-
ory usage at training while retaining performance, making it
easily adapted to downstream tasks with limited resources.

A.2. SuperLoRA

SuperLoRA and LoTR: While LoRA estimates ∆W in
a weight-wise independent way, SuperLoRA considers the
whole weights ∆Wall jointly. It can relax the restriction
of the weight shape and geometric meaning of weight axis
unlike LoTR. Here, the number of groups can be adjusted
to balance between parameter amount and fine-tuning per-
formance. When the number of groups is the number of

weights and the group boundary matches the weight bound-
ary, it corresponds to weight-wise LoRA. When the number
of groups is G = 1, SuperLoRA corresponds to LoTR [5],
but with an additional projection mapping F .

Reshaping to regular tensor: Grouping multiple lay-
ers together by concatenating ∆W along one axis results
in skew ∆Wgroupg

, limiting the choice of ranks in LoRA
modules and leading to worse approximation. For example,
stacking query and value weight updates as [∆Wq,∆Wv]
will be of size d1 × 2d2, which is less efficient for LoRA
as A and B matrices have unbalanced sizes. To solve this,
we propose to reshape ∆Wgroupg

to a regular tensor: i.e.,
square-like 2D matrix, cubic-like 3D tensor, or high-order
hyper-cubic tensors having same dimension size across all
axes. This reshaping can reduce the dimension per axis in
the order of O[N1/M] for N being the number of stack-
ing weights, that in return can allow higher rank size per
plane factors. Several examples of grouping and reshaping
are discussed in Appendix A.5, and its geometric analysis
in Appendix A.6.

SuperLoRA and LoKr/LoNKr: LoKr is depicted in
Figure 7b, which can be extended as shown in Figure 7c.
We call it LoNKr, which combines K splits composed of
sub LoRA units through Kronecker products: i.e., K > 2.
When K = 2, it reduces to LoKr but with an additional
flexibility. For example, LoNKr can still adapt multiple at-
tention modules at once with an adjustable group size G,
unlike weight-wise adaptation of LoKr.

LoRTA: Folding a matrix ∆Wgroupg
into high-order

tensor (e.g., 3D, 4D, 5D) can decrease parameters with ten-
sor rank decomposition, like Tucker decomposition, where
∆Wgroupg

is represented by M 2D plane factors and one
MD core tensor. We refer to this variant of SuperLoRA us-
ing Tucker decomposition as LoRTA. For example, when
M = 3 and K = 1, we have 3D tensor rank decomposition
for ∆Wgroupg

∈ Rd1×d2×d3 as follows:

∆Wgroupg
= CgK ×1 AgK1 ×2 AgK2 ×3 AgK3, (2)

where CgK ∈ Rr1×r2×r3 is a reshaped 3D core tensor,
AgKm ∈ Rdm×r is a mode-m 2D plane factor, and ×m

denotes mode-m tensor product. For simplicity, we set a
rank r = rm for any mode m ∈ {1, 2, . . . ,M}.

The core tensor may cause the explosion of parameters
with larger rank as the number of parameters is exponential
as rM . It may be resolved by restricting the core tensor to
be strongly diagonal or identity. For instance, M = 2 with
identity core tensor CgK = I corresponds to the original
LoRA, and M = r = 1 identity core tensor corresponds to
the dense FT. When using diagonal core tensor, it reduces to
Candecomp-Parafac (CP) decomposition. Figure 6 shows
the number of required parameters with CP decomposition.
One can see that higher-order tensor decomposition can sig-
nificantly reduce the total number of trainable parameters at

a certain rank. We provide another solution without limit-
ing the core tensor by coupling with the projection layer F
below.

Projection: Most LoRA variants assume the resultant
∆Wlorag from LoRA modules is the final ∆W added to
W directly. However, we can further modify the ∆Wlorag

through a simple mapping: e.g., we can project much
smaller ∆Wlorag into larger final ∆Wgroupg

to improve
the parameter efficiency. We consider a random projection
layer based on the fastfood projection [28] to map ∆Wlorag

to ∆Wgroupg
.

Specifically, the fastfood projection is performed as fol-
lows:

∆Wgroupg
= F(∆Wlorag)

= vec[∆Wlorag]H′ diag[G]ΠH diag[B], (3)

where vec[·] is a vectorization operator, diag[·] denotes a di-
agonalization operator, H is Walsh–Hadamard matrix, H′

is its truncated version, G is a random vector drawn from
normal distribution, Π is a random permutation matrix for
shuffling, and B is a random vector drawn from Rademacher
distribution. It is a fast Johnson–Lindenstrauss transform
with log-linear complexity due to the fast Walsh–Hadamard
transform, and no additional parameters are required when
the random seed is predetermined. Further, a nonlinear
function such as tanhshrink can be added to make this layer
nonlinear. To avoid introducing extra parameters for the
projection layer, weights of this projection layer is repro-
duced on the fly with a known random seed and fixed during
training and inference.

Shuffling: Another simple projection is to use a shuf-
fling function without compression. It can be achieved by
simplifying the fastfood projection without H, H′, G, and
B but with the random permutation Π and projection ra-
tio ρ = 1. As SuperLoRA updates all weights at once, we
have a flexibility in a way to distribute ∆Wgroupg

towards
which element of W . To understand how the weight assign-
ment method impacts, we consider a random shuffling case
for the projection function F . Several projection variants
including shuffling are discussed in Appendix A.10.

A.3. Illustration of ViT model in detail

The ViT model that we used for the classification task is
adapted from a public codebase1. The detailed structure of
the ViT is depicted in Figure 9, where we only fine-tune the
projection layers for query and value in the Self-Attention
modules. In ViT-base, depth (L in Figure 9) is set to be 12
and dimension is 768. The total number of parameters of
the ViT base model is 86.6M.

1https://github.com/bwconrad/vit-finetune

https://github.com/bwconrad/vit-finetune

x

𝐵 ∈ ℝ!!×#

x’

𝑊! ∈ ℝ"!×"" C ∈ ℝ!#×!$×

𝐴 ∈ ℝ!"×#

(a) LoRA

x

𝐵 ∈ ℝ!!×#

x’

𝑊! ∈ ℝ"!×"" C ∈ ℝ"#×"$ ×

𝐴 ∈ ℝ!$×#

(b) LoKr

x

𝐵 ∈ ℝ!!×#

x’

𝑊! ∈ ℝ"!×"" C ∈ ℝ"#×"$ ×

𝐴 ∈ ℝ!$×#

𝐵 ∈ ℝ!!×#

×

𝐴 ∈ ℝ!$×#

(c) LoNKr (weight-wise)

Figure 7. Overview of (a) LoRA; (b) LoKr; (c) LoNKr (weight-wise).

A.3.1 ImageNet21k to CIFAR-100 transfer

Firstly, we used a ViT model2 pretrained on ImageNet21k
for CIFAR-100 transfer. A new classifier head to match the
number of classes from 21k to 100 is added for classifing
CIFAR100 dataset. All layers of the pretrained ViT model
are frozen except the SuperLoRA parameters and the new
classifier head. The result of SuperLoRA for CIFAR-10 is
shown in Figure 4, achieving a significant reduction by 3 to
10 folds in the required number of parameters over LoRA.

To exclude extra fine-tuning budget introduced in the
classifier head, automatic label matching is used for ViT
model pretrained on ImageNet1k. Specifically, ViT-base
model pretrained on ImageNet1k is loaded along with the
pretrained classifier head. Then, feed all training data from
CIFAR-100 into this pretrained model, and corresponding
labels of CIFAR-100 in ImageNet1k are obtained by vot-
ing. When there is a tie, the label that has larger gap with
the second voting label wins the label. If one label is token,
the label with second voting is assigned. In this way, all
100 classes in CIFAR-100 get their corresponding labels in
ImageNet1k, and the classifier head can be frozen. Other
settings are same as experiments above. The results can be
found in Figure 8. Compared with Figure 4, 768× 100 less
parameters are fine-tuned, while most conclusions still hold
true.

A.3.2 ImageNet1k to CIFAR-10 transfer

For transfer learning from ImageNet1k to CIFAR-10, we
used a ViT base model3 which is pretrained for Ima-
geNet1k. The classifier head is frozen after selecting most
relevant labels in ImageNet1k, i.e. [404, 436, 94, 284, 345,
32, 340, 510, 867], corresponding to [airliner, humming
bird, siamese cat, ox, golden retriever, tailed frog, zebra,
container ship, trailer truck]. It fine-tunes with 3000 steps

2https : / / huggingface . co / google / vit - base -
patch16-224-in21k

3https : / / huggingface . co / google / vit - base -
patch16-224

at most and the best accuracy is reported.
Detailed ranks we tested are as follows:

• LoRA (2D): ranks: 1, 2, 4, 6, 8, . . . , 64, 128
• SuperLoRA (2D): groups: 1, 4, 8, 12; ranks: 1, 2, 4, 6, 8,

. . . , 64, 128
• SuperLoRA (2D, reshape):

– groups: 1, 4, 12, ranks: 1, 2, 4, 6, 8, . . . , 64, 128;
– group 8, ranks: 1, 2, 4, 6, 8, . . . , 24, 28, 32, 36, . . . , 64

• SuperLoRA (LoRTA: 3D, reshape): groups: 1, 4, 8, 12;
ranks: 1–6, 8, 10, 12, . . . , 24

• SuperLoRA (LoRTA: 4D, reshape):
– group 1; ranks: 1–6, 8, 10, 12, . . . , 22
– group 4; ranks: 1–6, 8, 10, 12, . . . , 16
– group 8; ranks: 1–6, 8, 10, 12, . . . , 18
– group 12; ranks: 1–6, 8, 10, 12

• SuperLoRA (LoRTA: 5D, reshape):
– groups 1, 4, 8; ranks: 1–6, 8
– group 12; ranks: 1–6

The result of SuperLoRA for CIFAR-10 is shown in Fig-
ure 5, achieving a significant reduction by 3 to 10 folds in
the required number of parameters over LoRA.

A.4. Illustration of diffusion model in detail

The classifier-free diffusion model [18] that we used for im-
age generation is adapted from a public codebase4. Its U-
Net structure is illustrated in Figure 10, which contains 21
attention modules, where the number of input/output chan-
nels of the attention modules is either 64 or 128. We only
fine-tune the query and value projection layers of those at-
tention modules. The total number of parameters of the U-
Net base model is 10.42M, including 300 parameters for the
class embedding.

A.5. Illustration of grouping mechanism

Figure 2 illustrates several different cases of the grouping
mechanism. Figure 2(a) is the conventional weight-wise
grouping, used for typical LoRA. Each weight correction,

4https://github.com/coderpiaobozhe/classifier-
free-diffusion-guidance-Pytorch

https://huggingface.co/google/vit-base-patch16-224-in21k
https://huggingface.co/google/vit-base-patch16-224-in21k
https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/google/vit-base-patch16-224
https://github.com/coderpiaobozhe/classifier-free-diffusion-guidance-Pytorch
https://github.com/coderpiaobozhe/classifier-free-diffusion-guidance-Pytorch

103 104 105 106 107

params
0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Accuracy vs # of params on CIFAR100

SuperLoRA (dense, 1D, w/ projection)
LoRA (2D)
SuperLoRA (2D)
SuperLoRA (2D, reshape)
SuperLoRA (LoRTA: 3D, reshape)
SuperLoRA (LoRTA: 4D, reshape)
SuperLoRA (LoRTA: 5D, reshape)
SuperLoRA (2D, reshape, w/ projection)

Figure 8. ImageNet1k to CIFAR100 transfer learning with frozen classifier head by automatic label matching.

Linear Projection of Flattened Patches

MLP head

Transformer Encoder

Patch + position
embedding

Image patches

Self-Attention

Norm

Norm

MLP

q v k

L x

Transformer Encoder

Embedded patches

… …

… …

Figure 9. ViT model structure.

i.e. ∆Wvℓ and ∆Wqℓ for value and query projections at
layer ℓ, is individually represented by a rank-r decompo-
sition: AgB

⊤
g for group g. Figure 2(b) shows layer-wise

grouping, where the LoRA unit in each group jointly adapts
both value and query projections in each layer. When we

stack multiple weight matrices in a naı̈ve way, the 2D ar-
ray will have unbalanced fan-in/fan-out shape, leading to
inefficient low-rank decomposition. Figure 2(c) can solve
this issue by reshaping the 2D array into a regular square
shape before low-rank decomposition. As the reshaping is

Time embedding

Class embedding

Noisy latent Predicted noise

ResNet

Attention

64 channel 64 channel

128 channel 128 channel

128 channel 128 channel

128 channel 128 channel

128 channel

Figure 10. Classifier-free diffusion model structure.

already breaking the geometric meaning of the original 2D
weights, the grouping need not necessarily aligned with the
weight boundary as shown in a general grouping case of
Figure 2(d). Further, applying a projection function F(·) as
shown in Figure 2(e), the element distribution can be shuf-
fled and mixed-up to relax the geometric restriction of orig-
inal LoRA. LoRTA can further generalize the reshaping by
folding the 2D array to any arbitrary M -dimensional ten-
sor array by using the Tucker decomposition as shown in
Figure 2(f). Relaxing the geometric constraint can improve
the parameter efficiency as shown in this paper. We further
make a geometric analysis of our grouping methods.

A.6. Geometric analysis

SuperLoRA adapts multiple attention modules at once, and
relaxes the underlying geometric restrictions inherent to the
2D weights for each attention module, by employing group-
ing, reshaping, and projection (including shuffling). To
better understand how SuperLoRA works differently from
LoRA, geometric analysis is conducted for the classifica-
tion task. Specifically, we pick 4 different methods with a
comparable number of parameters around 100,000:
• LoRA (2D): #param 147,456, accuracy 0.9113;
• SuperLoRA (2D): #param 115,200, accuracy 0.9170;
• SuperLoRA (2D, reshape): #param 165,572, accuracy
0.9218;

• SuperLoRA (2D, reshape, w/ projection): #param
138,372, accuracy 0.9213.

The weight correction term ∆W is compared to the full
dense FT case, which involves 14M parameters achieving
an accuracy of 0.9290. We analyze three different geomet-
ric measures with respective to the FT weight ∆Wdense: i)

left-singular similarity; ii) right-singular similarity; and iii)
Euclidean distance. Letting U and V denote the left- and
right-singular vectors of ∆W for each variant listed above,
these metrics are defined as follows:

dL =
1√
k
∥Udense[:, : k]

⊤Uvariant[:, : k]∥2, (4)

dR =
1√
k
∥Vdense[: k, :]Vvariant[: k, :]

⊤∥2, (5)

dE =
∥∆Wdense −∆Wvariant∥2

∥∆Wdense∥2
. (6)

Note that dE approaches to 0 when ∆W converges to the
dense FT case, while dL and dR converge to 1.

The top k = 5 principal singular vectors are analyzed
as shown in Figure 11. The ViT model has 12 attention
modules, and we plot the total of 24 points for the query
and value projection weights. The first row shows the query
weights for dL vs. dR, dE vs. dR, and dE vs. dL from left
to right across the columns. The second and third rows are
for the value weights, and both query and value weights,
respectively.

We see that the Euclidean distance dE is significantly de-
creased for SuperLoRA, especially with reshaping applied.
It explains the improved accuracy with reshaping. Although
grouping, reshaping, and projection can break the geometric
meaning of the original 2D weights, the subspace similarity
is not completely lost. Especially for query weights, Super-
LoRA shows higher right-singular similarity than LoRA.
As the embedding vector passes through right-hand side
of the weight, principal right-singular vectors perform as
a low-rank subspace mapping of the input vector while the
left-singular vectors work as mapping the subspace towards

the output vector. While SuperLoRA with reshaping tends
to preserve higher right-singular similarity, LoRA tends to
preserve higher left-singular similarity. Further, it is found
that the corrections for query and value weights behave dif-
ferently with reshaping, i.e., right-singular similarities for
the value weights are much larger than for query weights.

A.7. Grouping effect on SuperLoRA (1D, dense,
with projection)

As the fixed projection matrix is shared across all groups,
the number of groups will affect the size of the projec-
tion matrix directly. To explore this influence, dense FT
with projection is tested for different splitting, from 1 to 12
groups. According to Figure 12, using 1 group achieves
the best overall accuracy and using 4 or 8 groups are com-
parable to a smaller projection ratio. When the projection
matrix is too small, e.g., with 12 groups, accuracy drops
greatly. This confirms that jointly updating multiple atten-
tion modules is beneficial.

A.8. Image generation transfer task

A.8.1 Settings:

For the image generation task, SuperLoRA is evaluated
by transfer learning between SVHN [34] and MNIST
datasets [29]. Both datasets have 10 classes correspond-
ing to images of the digits 0 to 9, where the SVHN im-
ages have a more complicated color background, while the
MNIST images are nearly black-and-white with a plane
black background. We mainly work on the transfer learn-
ing from SVHN to MNIST. The reverse transfer learning
from MNIST to SVHN is discussed in Appendix A.12.

The model we worked on is a classifier-free diffusion
model [18] and the correction weights from LoRA vari-
ants are added to query and value projection matrices in
the attention modules of U-Net backbone [36]. Note that
the size of projection weights differs across layers for this
U-Net structure, which allows us to examine the perfor-
mance of SuperLoRA after breaking the boundaries of dif-
ferent weight matrices. More details of the diffusion model
are described in Appendix A.4. For comparison, the orig-
inal weight-wise LoRA and dense FT are also evaluated.
For SuperLoRA variant, LoRA, LoNKr and LoRTA con-
sider three versions: weight-wise, group-wise and group-
reshaped. The scaling factor α of LoRA is fixed to 2.0
for all variants unless specified. 40 epochs with a batch
size of 32 are carried out and results plotted are mainly
from epoch 20 noticing convergence becomes stable around
epoch 20. The maximum rank is set to 32 by default and
a constraint r < min(d1, d2) is imposed. To evaluate
the quality of images generated by the fine-tuned diffu-
sion model, we consider several metrics including Incep-
tion Score (IS) [37], Fréchet Inception Distance (FID) [17],

Multi-Scale Intrinsic Distance (MSID) [40], Kernel Incep-
tion Distance (KID) [6], Recall and Precision [27]. Except
for the recall and precision metrics, all metrics should be
lower for higher-quality image generations. As we found
ℓ1-distance based IS is more consistent to the perceptual vi-
sual quality, we mainly focus on IS metric results in the
main content, while the results for other metrics can be
found in Appendix A.11. For following figures, Pareto fron-
tier lines/dots are mainly shown to provide the limit of each
method, while Appendix provides more complete figures
with all data points.

A.8.2 Grouping effect:

First, we evaluated how splitting all ∆Wall into multiple
groups affects the performance. Figure 13 shows the results
of dense, original weight-wise LoRA and group-wise Su-
perLoRA with different number of groups. Sweeping the
rank and the number of groups, we plot the image quality
metrics in y-axis and the required number of trainable pa-
rameters in x-axis. Pareto frontier lines/data points are also
shown in the figure.

Figure 13 shows that the dense FT for ∆W presents the
best IS, while requiring most parameters. Original weight-
wise LoRA is closest to dense, in terms of both IS and pa-
rameter amount. However, in low-parameter regimes, Su-
perLoRA (2D, group1) shows the best results compared
with other grouping. While in the middle of parameter
amount axis, other splittings including groups G = 8 and 12
show slightly better IS compared with LoRA. Besides, split-
ting ∆Wall shows much more data points compared with
both LoRA and dense, providing us higher flexibility to ad-
just the trade-off between quality and parameter efficiency
especially when the memory resource is limited.

A.8.3 Reshaping effect:

To evaluate the importance of reshaping, we compare
group-wise SuperLoRA with and without reshaping in Fig-
ure 14. For weight-wise LoRA, most weight matrices cor-
rected are square already. For all splitting with groups G =
1, 4 and 8, we confirmed that reshaping shows smaller num-
ber of parameters and better IS compared with their corre-
sponding non-reshaping counterparts. This indicates that
reshaping ∆W to regular tensor array (square, cube, and
hyper-cube) is vital for SuperLoRA fine-tuning to prevent
unbalanced skew tensors when adapting multiple weights
at once.

A.8.4 LoKr vs. LoNKr:

In 2D ∆W , we also compared LoKr with our proposed
extension LoNKr, a variant of SuperLoRA. We evaluated
LoNKr when the number of splits is K ∈ {2, 3, 4}, where

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Right singular similarity

0.1

0.2

0.3

0.4

0.5

Le
ft

sin
gu

la
r s

im
ila

rit
y

dL/dR (query)
LoRA (2D)
SuperLoRA (2D)
SuperLoRA (2D, reshape)
SuperLoRA (2D, reshape, w/ projection)

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Right singular similarity

2

4

6

8

10

Eu
cli

de
an

 d
ist

an
ce

dE/dR (query)
LoRA (2D)
SuperLoRA (2D)
SuperLoRA (2D, reshape)
SuperLoRA (2D, reshape, w/ projection)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Left singular similarity

2

4

6

8

10

Eu
cli

de
an

 d
ist

an
ce

dE/dL (query)

LoRA (2D)
SuperLoRA (2D)
SuperLoRA (2D, reshape)
SuperLoRA (2D, reshape, w/ projection)

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Right singular similarity

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Le
ft

sin
gu

la
r s

im
ila

rit
y

dL/dR (value)
LoRA (2D)
SuperLoRA (2D)
SuperLoRA (2D, reshape)
SuperLoRA (2D, reshape, w/ projection)

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Right singular similarity

2

4

6

8

10

Eu
cli

de
an

 d
ist

an
ce

dE/dR (value)
LoRA (2D)
SuperLoRA (2D)
SuperLoRA (2D, reshape)
SuperLoRA (2D, reshape, w/ projection)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Left singular similarity

2

4

6

8

10

Eu
cli

de
an

 d
ist

an
ce

dE/dL (value)
LoRA (2D)
SuperLoRA (2D)
SuperLoRA (2D, reshape)
SuperLoRA (2D, reshape, w/ projection)

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Right singular similarity

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Le
ft

sin
gu

la
r s

im
ila

rit
y

dL/dR (query & value)
LoRA (2D)
SuperLoRA (2D)
SuperLoRA (2D, reshape)
SuperLoRA (2D, reshape, w/ projection)

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Right singular similarity

2

4

6

8

10

Eu
cli

de
an

 d
ist

an
ce

dE/dR (query & value)
LoRA (2D)
SuperLoRA (2D)
SuperLoRA (2D, reshape)
SuperLoRA (2D, reshape, w/ projection)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Left singular similarity

2

4

6

8

10

Eu
cli

de
an

 d
ist

an
ce

dE/dL (query & value)
LoRA (2D)
SuperLoRA (2D)
SuperLoRA (2D, reshape)
SuperLoRA (2D, reshape, w/ projection)

Singular Similarity Analysis (top 5 singular vectors)

Figure 11. Geometric similarity analysis (top 5 principal singular vectors).

K = 2 corresponds to the original LoKr. For the dense fac-
tor on the left in LoNKr/LoKr as shown in Figure 7c, dimen-
sion is fixed to 6, 8 or 10. Figure 15 shows that more splits
provide us more choices in low-parameter regimes, espe-
cially for group-wise LoNKr. LoNKr shows much more
data points and better IS when the number of parameters
is less than 5,000. And the least parameter for LoKr and
LoNKr dropped greatly from 500 to 150.

A.8.5 LoRTA:

LoRTA reshapes ∆Wall to high-order tensor. We evaluated
3D, 4D and 5D, as data points become much less when the
dimension is too small for all planes when order is larger
than 5D. From Figure 16, the higher the order of tensor fold-
ing, the less data points we have. In both weight-wise and
group-wise version, 5D LoRTA reduces the least parameter
it requires. Especially for group-wise LoRTA, 5D LoRTA
requires less than 80 parameters to produce a result com-
pared with beyond 1000 for 2D LoRTA and beyond 200 for
3D LoRTA, while original LoRA needs about 104 parame-
ters, about 120-fold more parameters. To achieve a compa-
rable IS of LoRA having 104 parameters, LoRTA (3D) just
needs 2× 103 parameters, i.e. 5-fold reduction.

A.8.6 Projection effect:

SuperLoRA can use a projection layer F which is randomly
initialized but fixed at both finetuning and inference. Lin-
ear fastfood projection and nonlinear projection with tan-
shrink applied after the linear projection matrix are eval-
uated. Besides, a modified version of fastfood projection
with random Gaussian instead of random binary B is also
tested for both linear and nonlinear versions, denoted as
linearv2 and nonlinearv2 respectively. The projection ma-
trix is shared across all groups. We evaluated number of
groups G ∈ {1, 4}, rank r ∈ {1, 4, 8} and projection ra-
tio ρ ∈ {0.01, 0.1, 0.5} on SuperLoRA (2D, reshape) and
SuperLoRA (LoRTA, reshape) for 3D, 4D and 5D tensor.

Figure 17 demonstrates with smaller projection ratio, re-
quired parameters for both SuperLoRA (2D, reshape) and
SuperLoRA (LoRTA, group-wise) are pushed to extremely
low-parameter regimes. The least parameter required be-
comes only about 30, compared with 10,000 for origi-
nal LoRA. Surprisingly, linear version for both methods
shows better performance than nonlinear version which are
attached in Appendix A.10. Besides, in extremely low-
parameter regimes, higher rank with projection layer for
SuperLoRA (LoRTA, group-wise) works better than small
ranks itself, showing promising direction to explore pro-

102 103 104 105 106 107

params

0.88

0.89

0.90

0.91

0.92

0.93

Ac
cu

ra
cy

Accuracy vs # of params on CIFAR100
SuperLoRA (dense, 1D, w/ projection, group1)
SuperLoRA (dense, 1D, w/ projection, group4)
SuperLoRA (dense, 1D, w/ projection, group8)
SuperLoRA (dense, 1D, w/ projection, group12)
LoRA (2D)
SuperLoRA (2D)
SuperLoRA (2D, reshape)
SuperLoRA (LoRTA: 3D, reshape)
SuperLoRA (LoRTA: 4D, reshape)
SuperLoRA (LoRTA: 5D, reshape)
SuperLoRA (2D, reshape, w/ projection)

Figure 12. More groups (i.e. less fixed projection parameters) on SuperLoRA (1D, dense, w/ projection).

104 105

params

0.02

0.03

0.04

0.05

0.06

0.07

IS

The effect of # of groups: IS distance vs # of params (SVHN->MNIST, Pareto frontier only)
dense (1D)
LoRA (2D, weight-wise)
SuperLoRA (2D, group1, group-wise)
SuperLoRA (2D, group4, group-wise)
SuperLoRA (2D, group8, group-wise)
SuperLoRA (2D, group12, group-wise)

Figure 13. weight-wise vs. group-wise

jection layer in extremely low-parameter regime. In terms
of linear vs. linearv2, linearv2 shows better performance in
higher-parameter area while linear works better in lower-
parameter area, even better than SuperLoRA (LoRTA) with-
out projection.

A.8.7 Shuffling effect:

As another simple projection, we studied a random shuffling
to distribute ∆Wgroup before adding it to corresponding W .

104 105

params

0.02

0.03

0.04

0.05

0.06

0.07

IS

The effect of reshaping: IS distance vs # of params (SVHN->MNIST, Pareto frontier only)
dense (1D)
LoRA (2D)
SuperLoRA (2D, group1)
SuperLoRA (2D, group4)
SuperLoRA (2D, group8)
SuperLoRA (2D, group1, reshape)
SuperLoRA (2D, group4, reshape)
SuperLoRA (2D, group8, reshape)

Figure 14. reshaping vs. non-reshaping

We evaluated SuperLoRA (2D) and SuperLoRA (2D, re-
shape) with/without shuffling for groups G ∈ {1, 4, 8, 16]}
and ranks r ∈ {1, 4, 8}, where the shuffled indexes are
shared across all groups. The shuffling corresponds to one
of fastfood projection modes by setting projection ratio to
ρ = 1 with only permutation matrix Π . As shown in Fig-
ure 18, shuffling inside groups had no harm on IS. It even
improved IS for SuperLoRA (2D) in most cases.

102 103 104 105

params

0.02

0.04

0.06

0.08

0.10

IS

Extension of LoKr: IS vs # params (SVHN->MNIST, Pareto frontier shown only)
dense (1D)
LoRA (2D)
LoKr (2D, K=2)
SuperLoRA (LoNKr: 2D, K>2, weight-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise)
SuperLoRA (LoNKr: 2D, K>2, group-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise, reshape)
SuperLoRA (LoNKr: 2D, K>2, group-wise, reshape)

Figure 15. SuperLoRA (LoNKr)

102 103 104 105

params

0.02

0.04

0.06

0.08

0.10

IS

The effect of higher-order dW: IS distance vs # params (SVHN->MNIST, Pareto frontier only)
dense (1D)
LoRA (SuperLoRA: 2D/reshape/weight-wise)
SuperLoRA (LoRTA: 3D, reshape, weight-wise)
SuperLoRA (LoRTA: 4D, reshape, weight-wise)
SuperLoRA (LoRTA: 5D, reshape, weight-wise)
SuperLoRA (2D, reshape, group-wise)
SuperLoRA (LoRTA: 3D, reshape, group-wise)
SuperLoRA (LoRTA: 4D, reshape, group-wise)
SuperLoRA (LoRTA: 5D, reshape, group-wise)

Figure 16. SuperLoRA (LoRTA)

102 103 104 105

params

0.02

0.04

0.06

0.08

0.10

IS

The effect of projection layer: IS vs # of params (SVHN->MNIST, Pareto frontier shown only)
dense (1D)
LoRA (2D)
SuperLoRA (2D, reshape)
SuperLoRA (2D, reshape, linear)
SuperLoRA (2D, reshape, linear_v2)
SuperLoRA (LoRTA: reshape)
SuperLoRA (LoRTA: reshape, linear)
SuperLoRA (LoRTA: reshape, linear_v2)

Figure 17. fixed random projection within group

A.9. Visualization

To better understand the superiority of SuperLoRA, espe-
cially in low-parameter regimes, we visualize a set of gen-
erated images from SuperLoRA, as well as dense FT and
LoRA, from a range of parameter setting: high-parameter
(> 70,000), middle-parameter (from 5,000 to 10,000), low-
parameter (around 1,000) and extremely-low parameter (<
100) regimes. We selected one image with the best IS for

104 105

params

0.02

0.04

0.06

0.08

0.10

IS

The effect of shuffling: IS vs # of params (SVHN->MNIST)
dense (1D)
LoRA (2D)
SuperLoRA (2D)
SuperLoRA (2D, shuffled)
SuperLoRA (2D, reshape)
SuperLoRA (2D, reshape, shuffled)

Figure 18. fixed random shuffling within group

each hyper-parameter setting we have tested under same
level of parameter amount. Figure 19 shows that all gen-
erated images by the transfer learning model from SVHN
to MNIST are close to images from MNIST dataset itself
with black-white background, removing most domain infor-
mation of color SVHN. SuperLoRA (2D, group8, rank13)
in Figure 19c shows competitive results with LoRA (rank8)
using 5,000 less parameters.

For the middle-parameter regimes, Figure 20 shows vi-
sualization of LoNKr, SuperLoRA (2D, reshape), LoRTA
(3D, reshape), LoRTA (4D, reshape) and SuperLoRA (2D,
reshape, projection). More domain information with color-
ful digits and background occur occasionally. There are also
some missing digits presented in middle-parameter area.

When the number of parameters is as low as 1,000, even
though only few choices left like LoNKr and LoRTA, one
can always stretch hyper-parameter settings from middle-
parameter level coupled with fixed linear projection layer
to compress the tensor size. In this way, the strength
of middle-parameter level gets extended to low-parameter
area. As shown in Figure 21, compared with the visualiza-
tion from middle-parameter results, more missing digits and
more colorful backgrounds are presented.

Finally, we also visualized a few images from extremely-
low parameter level less than 100 in Figure 21. Surprisingly,
domain transfer in those images is somewhat realized from
SVHN to MNIST even with such an extremely few param-
eter case such as 31, which is more than four orders of mag-
nitude smaller than dense FT.

A.10. Linear vs. nonlinear projection

Besides linear projection, we also examined nonlinear pro-
jections. We use the “tanhshrink” operation, denoted by
tanhs(x) := x − tanh(x), after the fixed linear projec-
tion, resulting in the ‘nonlinear’ and ‘nonlinearv2’ variants.
Note that the ‘v2’ projection uses a Gaussian random vector
rather than a binary random vector B for the fastfood pro-
jection as shown in Figure 3. More specifically, we consider

(a) dense
#param 565,248

IS 0.0184

(b) LoRA r = 8
#param 75,776

IS 0.03025

(c) SuperLoRA
#param 70,720

IS 0.0305

(d) SuperLoRA
#param 73,728

IS 0.0263

Figure 19. Visualization of generated images under high-parameter level (> 70,000).

(a) LoNKr
#param 5,112

IS 0.036

(b) SuperLoRA
#param 10,752

IS 0.0294

(c) LoRTA
#param 8,160

IS 0.0272

(d) LoRTA
#param 11,100

IS 0.036

(e) SuperLoRA w/ p
#param 8,512

IS 0.0273

Figure 20. Visualization of generated images under middle-parameter level ([5,000, 20,000]).

six variants for the projection function F(·) in this paper:

• identity (no projection): F(x) = x;
• shuffling: F(x) = xΠ;
• linear: F(x) = xH′ diag[G]ΠH diag[B];
• linearv2: F(x) = xH′ diag[G]ΠH diag[G′];
• nonlinear: F(x) = tanhs

[
xH′ diag[G]ΠH diag[B]

]
;

• nonlinearv2: F(x) = tanhs
[
xH′ diag[G]ΠH diag[G′]

]
.

Here, Π performs a random permutation of a vector.
The Walsh–Hadamard matrices H′ ∈ RNin×2N and H ∈
R2N×Nout are left- and right-truncated versions of a regular
Walsh–Hadamard matrix H⊗N

2 ∈ R2N×2N , where [·]⊗N

denotes N -fold Kronecker power and H2 = 1√
2

[
1 1
1 −1

]
.

Letting Nin and Nout be the number of elements for the in-
put and output of the projection function F(·) with a com-
pression ratio of ρ = Nin/Nout, the exponent N is cho-
sen as N = ceil[log2(max(Nin, Nout))]. In practice, the
left-truncated Walsh–Hadamard matrix is realized by in-
put zero-padding before fast Walsh–Hadamard transform.
The random vector G is hence of size 2N , and drawn from
the normal distribution. Here, G′ ∈ RNout is another ran-
dom vector drawn from the normal distribution while B ∈
{±1}Nout is a random vector drawn from the Rademacher

distribution.

Figure 22 shows the comparison of several projection
variants. Surprisingly, with the same number of parame-
ters, the linear version outperforms the nonlinear versions
in most cases.

A.11. Transfer learning from SVHN to MNIST

A.11.1 Grouping effect (complete results)

Scatter plots of all metrics (FID, IS, KID, MSID, Improved
Precision and Improved Recall) are given in Figure 23. Ex-
cept IS, all metrics show many examples performing better
than dense FT, while worse according to the visualization
results, indicating IS is a more reasonable quantitative met-
ric in this case.

A.11.2 Reshaping effect (complete results)

Complete results for reshaping, with scatter plots for all
metrics, are shown in Figure 24.

(a) LoNKr
#param 1,080

IS 0.0471

(b) LoRTA
#param 1,060

IS 0.0565

(c) SuperLoRA w/ p
#param 832

IS 0.0607

(d) LoRTA
#param 76
IS 0.1131

(e) LoRTA w/ p
#param 31
IS 0.0871

Figure 21. Visualization of generated images under low-parameter level (1,000) and extremely-low level (< 100).

102 103 104 105

params

0.02

0.04

0.06

0.08

0.10

IS

The effect of projection layer: IS vs # of params (SVHN->MNIST, Pareto frontier shown only)
dense (1D)
LoRA (2D)
SuperLoRA (2D, reshape)
SuperLoRA (2D, reshape, linear)
SuperLoRA (2D, reshape, nonlinear)
SuperLoRA (2D, reshape, linear_v2)
SuperLoRA (2D, reshape, nonlinear_v2)
SuperLoRA (LoRTA: reshape)
SuperLoRA (LoRTA: reshape, linear)
SuperLoRA (LoRTA: reshape, nonlinear)
SuperLoRA (LoRTA: reshape, linear_v2)

(a) linear vs. nonlinear (IS, Pareto only)

102 103 104 105

params

0.02

0.04

0.06

0.08

0.10

0.12

0.14

IS

The effect of projection layer: IS vs # of params (SVHN->MNIST)
dense (1D)
LoRA (2D)
SuperLoRA (2D, reshape)
SuperLoRA (2D, reshape, linear)
SuperLoRA (2D, reshape, nonlinear)
SuperLoRA (2D, reshape, linear_v2)
SuperLoRA (2D, reshape, nonlinear_v2)
SuperLoRA (LoRTA: reshape)
SuperLoRA (LoRTA: reshape, linear)
SuperLoRA (LoRTA: reshape, nonlinear)
SuperLoRA (LoRTA: reshape, linear_v2)

(b) linear vs. nonlinear (IS, all points)

Figure 22. Comparison between Linear/Linearv2/Nonlinear/Nonlinearv2 projections.

A.11.3 SuperLoRA (LoNKr, complete results)

Complete results for SuperLoRA (LoNKr), with scatter
plots for all metrics, are shown in Figure 25.

A.11.4 SuperLoRA (LoRTA, complete results)

Complete results for SuperLoRA (LoRTA), with scatter
plots for all metrics, are shown in Figure 26.

A.12. Transfer learning from MNIST to SVHN

A.12.1 Grouping effect

Transfer learning from MNIST to SVHN is also tested. Fig-
ure 27 shows that some metrics cannot function when trans-
ferred from a simpler dataset to a more complicated one,
e.g. FID, IS, KID and Improved Precision, where some ill-
posed cases appear. Besides this, we can still find from
the Pareto frontiers that SuperLoRA extends LoRA to low-
parameter regime and works better occasionally in terms of
IS, MSID, Improved Precision and Improved Recall.

A.12.2 Reshaping effect

Figure 28 shows that SuperLoRA with reshaping works bet-
ter than non-reshaping in most cases in transfer learning
from MNIST to SVHN, consistent with the results in trans-
fer learning from SVHN to MNIST.

A.12.3 SuperLoRA (LoNKr)

Figure 29 demonstrates the results of SuperLoRA (LoNKr).
From MSID figure, we can see that, LoNKr extends LoKr
to low-parameter regime, and achieves a better MSID.

A.12.4 SuperLoRA (LoRTA)

From FID and KID in Figure 30, LoRTA pushes required
parameters from 104 to 102 compared with LoRA, provid-
ing more flexibility when the memory is limited.

A.13. Effect of groups in LoNKr and LoRTA

From Figure 31 and Figure 32, LoNKr and LoRTA be-
have differently in terms of the number of groups: for
LoNKr, fewer groups are better (than more groups) in

104 105

params

100

102

104

106

108

110

112

114

FI
D

The effect of # groups: FID vs # params (SVHN->MNIST)
dense (1D)
LoRA (2D, weight-wise)
SuperLoRA (2D, group1, group-wise)
SuperLoRA (2D, group4, group-wise)
SuperLoRA (2D, group8, group-wise)
SuperLoRA (2D, group12, group-wise)

(a) weight-wise vs. group-wise (FID)

104 105

params

0.02

0.03

0.04

0.05

0.06

0.07

IS

The effect of # of groups: IS distance vs # of params (SVHN->MNIST)
dense (1D)
LoRA (2D, weight-wise)
SuperLoRA (2D, group1, group-wise)
SuperLoRA (2D, group4, group-wise)
SuperLoRA (2D, group8, group-wise)
SuperLoRA (2D, group12, group-wise)

(b) weight-wise vs. group-wise (IS)

104 105

params

0.100

0.105

0.110

0.115

0.120

0.125

KI
D

The effect of # groups: KID vs # params (SVHN->MNIST)

dense (1D)
LoRA (2D, weight-wise)
SuperLoRA (2D, group1, group-wise)
SuperLoRA (2D, group4, group-wise)
SuperLoRA (2D, group8, group-wise)
SuperLoRA (2D, group12, group-wise)

(c) weight-wise vs. group-wise (KID)

104 105

params
0

5

10

15

20

25

30

35

M
SI

D

The effect of # groups: MSID vs # params (SVHN->MNIST)
dense (1D)
LoRA (2D, weight-wise)
SuperLoRA (2D, group1, group-wise)
SuperLoRA (2D, group4, group-wise)
SuperLoRA (2D, group8, group-wise)
SuperLoRA (2D, group12, group-wise)

(d) weight-wise vs. group-wise (MSID)

104 105

params

0.1

0.2

0.3

0.4

0.5

Im
pr

ov
ed

 P
re

cis
io

n

The effect of # groups: Improved Precision vs # params (SVHN->MNIST)
dense (1D)
LoRA (2D, weight-wise)
SuperLoRA (2D, group1, group-wise)
SuperLoRA (2D, group4, group-wise)
SuperLoRA (2D, group8, group-wise)
SuperLoRA (2D, group12, group-wise)

(e) weight-wise vs. group-wise (Improved Precision)

104 105

params

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Im
pr

ov
ed

 R
ec

al
l

The effect of # groups: Improved Recall vs # params (SVHN->MNIST)

dense (1D)
LoRA (2D, weight-wise)
SuperLoRA (2D, group1, group-wise)
SuperLoRA (2D, group4, group-wise)
SuperLoRA (2D, group8, group-wise)
SuperLoRA (2D, group12, group-wise)

(f) weight-wise vs. group-wise (Improved Recall)

Figure 23. Complete comparison between weight-wise LoRA and group-wise SuperLoRA.

low-parameter regime, while they are comparable in high-
parameter regime. However, LoRTA prefers less groups.

A.14. Effect of split K in LoNKr

As shown in Figure 33, larger K works better than smaller
ones in the low-parameter regime.

104 105

params

100

102

104

106

108

110

112

114

FI
D

The effect of reshaping: FID vs # params (SVHN->MNIST)
dense (1D)
LoRA (2D)
SuperLoRA (2D, group1)
SuperLoRA (2D, group4)
SuperLoRA (2D, group8)
SuperLoRA (2D, group1, reshape)
SuperLoRA (2D, group4, reshape)
SuperLoRA (2D, group8, reshape)

(a) reshaping vs. non-reshaping (FID)

104 105

params

0.02

0.03

0.04

0.05

0.06

0.07

IS

The effect of reshaping: IS distance vs # of params (SVHN->MNIST)
dense (1D)
LoRA (2D)
SuperLoRA (2D, group1)
SuperLoRA (2D, group4)
SuperLoRA (2D, group8)
SuperLoRA (2D, group1, reshape)
SuperLoRA (2D, group4, reshape)
SuperLoRA (2D, group8, reshape)

(b) reshaping vs. non-reshaping (IS)

104 105

params

0.100

0.105

0.110

0.115

0.120

0.125

KI
D

The effect of reshaping: KID vs # params (SVHN->MNIST)
dense (1D)
LoRA (2D)
SuperLoRA (2D, group1)
SuperLoRA (2D, group4)
SuperLoRA (2D, group8)
SuperLoRA (2D, group1, reshape)
SuperLoRA (2D, group4, reshape)
SuperLoRA (2D, group8, reshape)

(c) reshaping vs. non-reshaping (KID)

104 105

params

0

5

10

15

20

25

30

35

40

M
SI

D
The effect of reshaping: MSID vs # params (SVHN->MNIST)

dense (1D)
LoRA (2D)
SuperLoRA (2D, group1)
SuperLoRA (2D, group4)
SuperLoRA (2D, group8)
SuperLoRA (2D, group1, reshape)
SuperLoRA (2D, group4, reshape)
SuperLoRA (2D, group8, reshape)

(d) reshaping vs. non-reshaping (MSID)

104 105

params

0.1

0.2

0.3

0.4

0.5

Im
pr

ov
ed

 P
re

cis
io

n

The effect of reshaping: Improved Precision vs # params (SVHN->MNIST)
dense (1D)
LoRA (2D)
SuperLoRA (2D, group1)
SuperLoRA (2D, group4)
SuperLoRA (2D, group8)
SuperLoRA (2D, group1, reshape)
SuperLoRA (2D, group4, reshape)
SuperLoRA (2D, group8, reshape)

(e) reshaping vs. non-reshaping (Improved Precision)

104 105

params

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Im
pr

ov
ed

 R
ec

al
l

The effect of reshaping: Improved Recall vs # params (SVHN->MNIST)
dense (1D)
LoRA (2D)
SuperLoRA (2D, group1)
SuperLoRA (2D, group4)
SuperLoRA (2D, group8)
SuperLoRA (2D, group1, reshape)
SuperLoRA (2D, group4, reshape)
SuperLoRA (2D, group8, reshape)

(f) reshaping vs. non-reshaping (Improved Recall)

Figure 24. Complete comparison between reshaping and non-reshaping SuperLoRA.

102 103 104 105

params

100

105

110

115

120

125

130

135

FI
D

Extension of LoKr: FID vs # params (SVHN->MNIST)
dense (1D)
LoRA (2D)
LoKr (2D, K=2)
SuperLoRA (LoNKr: 2D, K>2, weight-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise)
SuperLoRA (LoNKr: 2D, K>2, group-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise, reshape)
SuperLoRA (LoNKr: 2D, K>2, group-wise, reshape)

(a) SuperLoRA (LoNKr, FID)

102 103 104 105

params

0.02

0.04

0.06

0.08

0.10

0.12

IS

Extension of LoKr: IS vs # params (SVHN->MNIST)
dense (1D)
LoRA (2D)
LoKr (2D, K=2)
SuperLoRA (LoNKr: 2D, K>2, weight-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise)
SuperLoRA (LoNKr: 2D, K>2, group-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise, reshape)
SuperLoRA (LoNKr: 2D, K>2, group-wise, reshape)

(b) SuperLoRA (LoNKr, IS)

102 103 104 105

params

0.095

0.100

0.105

0.110

0.115

0.120

0.125

KI
D

Extension of LoKr: KID vs # params (SVHN->MNIST)
dense (1D)
LoRA (2D)
LoKr (2D, K=2)
SuperLoRA (LoNKr: 2D, K>2, weight-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise)
SuperLoRA (LoNKr: 2D, K>2, group-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise, reshape)
SuperLoRA (LoNKr: 2D, K>2, group-wise, reshape)

(c) SuperLoRA (LoNKr, KID)

102 103 104 105

params

0

10

20

30

40

50

60
M

SI
D

Extension of LoKr: MSID vs # params (SVHN->MNIST)
dense (1D)
LoRA (2D)
LoKr (2D, K=2)
SuperLoRA (LoNKr: 2D, K>2, weight-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise)
SuperLoRA (LoNKr: 2D, K>2, group-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise, reshape)
SuperLoRA (LoNKr: 2D, K>2, group-wise, reshape)

(d) SuperLoRA (LoNKr, MSID)

102 103 104 105

params
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Im
pr

ov
ed

 P
re

cis
io

n

Extension of LoKr: Improved Precision vs # params (SVHN->MNIST)
dense (1D)
LoRA (2D)
LoKr (2D, K=2)
SuperLoRA (LoNKr: 2D, K>2, weight-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise)
SuperLoRA (LoNKr: 2D, K>2, group-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise, reshape)
SuperLoRA (LoNKr: 2D, K>2, group-wise, reshape)

(e) SuperLoRA (LoNKr, Improved Precision)

102 103 104 105

params

0.02

0.04

0.06

0.08

0.10

Im
pr

ov
ed

 R
ec

al
l

Extension of LoKr: Improved Recall vs # params (SVHN->MNIST)

dense (1D)
LoRA (2D)
LoKr (2D, K=2)
SuperLoRA (LoNKr: 2D, K>2, weight-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise)
SuperLoRA (LoNKr: 2D, K>2, group-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise, reshape)
SuperLoRA (LoNKr: 2D, K>2, group-wise, reshape)

(f) SuperLoRA (LoNKr, Improved Recall)

Figure 25. Complete results for LoNKr.

102 103 104 105

params

100

105

110

115

120

125

130

FI
D

The effect of higher-order dW: FID vs # params (SVHN->MNIST)
dense (1D)
LoRA (SuperLoRA: 2D/reshape/weight-wise)
SuperLoRA (LoRTA: 3D, reshape, weight-wise)
SuperLoRA (LoRTA: 4D, reshape, weight-wise)
SuperLoRA (LoRTA: 5D, reshape, weight-wise)
SuperLoRA (2D, reshape, group-wise)
SuperLoRA (LoRTA: 3D, reshape, group-wise)
SuperLoRA (LoRTA: 4D, reshape, group-wise)
SuperLoRA (LoRTA: 5D, reshape, group-wise)

(a) SuperLoRA (LoRTA, FID)

102 103 104 105

params

0.02

0.04

0.06

0.08

0.10

0.12

IS

The effect of higher-order dW: IS distance vs # params (SVHN->MNIST)
dense (1D)
LoRA (SuperLoRA: 2D/reshape/weight-wise)
SuperLoRA (LoRTA: 3D, reshape, weight-wise)
SuperLoRA (LoRTA: 4D, reshape, weight-wise)
SuperLoRA (LoRTA: 5D, reshape, weight-wise)
SuperLoRA (2D, reshape, group-wise)
SuperLoRA (LoRTA: 3D, reshape, group-wise)
SuperLoRA (LoRTA: 4D, reshape, group-wise)
SuperLoRA (LoRTA: 5D, reshape, group-wise)

(b) SuperLoRA (LoRTA, IS)

102 103 104 105

params

0.100

0.105

0.110

0.115

0.120

0.125

KI
D

The effect of higher-order dW: KID vs # params (SVHN->MNIST)
dense (1D)
LoRA (SuperLoRA: 2D/reshape/weight-wise)
SuperLoRA (LoRTA: 3D, reshape, weight-wise)
SuperLoRA (LoRTA: 4D, reshape, weight-wise)
SuperLoRA (LoRTA: 5D, reshape, weight-wise)
SuperLoRA (2D, reshape, group-wise)
SuperLoRA (LoRTA: 3D, reshape, group-wise)
SuperLoRA (LoRTA: 4D, reshape, group-wise)
SuperLoRA (LoRTA: 5D, reshape, group-wise)

(c) SuperLoRA (LoRTA, KID)

102 103 104 105

params
0

10

20

30

40

50

M
SI

D
The effect of higher-order dW: MSID vs # params (SVHN->MNIST)

dense (1D)
LoRA (SuperLoRA: 2D/reshape/weight-wise)
SuperLoRA (LoRTA: 3D, reshape, weight-wise)
SuperLoRA (LoRTA: 4D, reshape, weight-wise)
SuperLoRA (LoRTA: 5D, reshape, weight-wise)
SuperLoRA (2D, reshape, group-wise)
SuperLoRA (LoRTA: 3D, reshape, group-wise)
SuperLoRA (LoRTA: 4D, reshape, group-wise)
SuperLoRA (LoRTA: 5D, reshape, group-wise)

(d) SuperLoRA (LoRTA, MSID)

102 103 104 105

params
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Im
pr

ov
ed

 P
re

cis
io

n

The effect of higher-order dW: Improved Precision vs # params (SVHN->MNIST)
dense (1D)
LoRA (SuperLoRA: 2D/reshape/weight-wise)
SuperLoRA (LoRTA: 3D, reshape, weight-wise)
SuperLoRA (LoRTA: 4D, reshape, weight-wise)
SuperLoRA (LoRTA: 5D, reshape, weight-wise)
SuperLoRA (2D, reshape, group-wise)
SuperLoRA (LoRTA: 3D, reshape, group-wise)
SuperLoRA (LoRTA: 4D, reshape, group-wise)
SuperLoRA (LoRTA: 5D, reshape, group-wise)

(e) SuperLoRA (LoRTA, Improved Precision)

102 103 104 105

params

0.02

0.04

0.06

0.08

0.10

0.12

Im
pr

ov
ed

 R
ec

al
l

The effect of higher-order dW: Improved Recall vs # params (SVHN->MNIST)
dense (1D)
LoRA (SuperLoRA: 2D/reshape/weight-wise)
SuperLoRA (LoRTA: 3D, reshape, weight-wise)
SuperLoRA (LoRTA: 4D, reshape, weight-wise)
SuperLoRA (LoRTA: 5D, reshape, weight-wise)
SuperLoRA (2D, reshape, group-wise)
SuperLoRA (LoRTA: 3D, reshape, group-wise)
SuperLoRA (LoRTA: 4D, reshape, group-wise)
SuperLoRA (LoRTA: 5D, reshape, group-wise)

(f) SuperLoRA (LoRTA, Improved Recall)

Figure 26. Complete results for LoRTA.

104 105

params

150

175

200

225

250

275

300

325

FI
D

The effect of # groups: FID vs # params (MNIST->SVHN)
dense (1D)
LoRA (2D, weight-wise)
SuperLoRA (2D, group1, group-wise)
SuperLoRA (2D, group4, group-wise)
SuperLoRA (2D, group8, group-wise)
SuperLoRA (2D, group12, group-wise)

(a) weight-wise vs. group-wise (FID)

104 105

params

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

IS

The effect of # groups: IS distance vs # params (MNIST->SVHN)
dense (1D)
LoRA (2D, weight-wise)
SuperLoRA (2D, group1, group-wise)
SuperLoRA (2D, group4, group-wise)
SuperLoRA (2D, group8, group-wise)
SuperLoRA (2D, group12, group-wise)

(b) weight-wise vs. group-wise (IS)

104 105

params

0.10

0.15

0.20

0.25

KI
D

The effect of # groups: KID vs # params (MNIST->SVHN)

dense (1D)
LoRA (2D, weight-wise)
SuperLoRA (2D, group1, group-wise)
SuperLoRA (2D, group4, group-wise)
SuperLoRA (2D, group8, group-wise)
SuperLoRA (2D, group12, group-wise)

(c) weight-wise vs. group-wise (KID)

104 105

params

0

20

40

60

80

100

M
SI

D
The effect of # groups: MSID vs # params (MNIST->SVHN)

dense (1D)
LoRA (2D, weight-wise)
SuperLoRA (2D, group1, group-wise)
SuperLoRA (2D, group4, group-wise)
SuperLoRA (2D, group8, group-wise)
SuperLoRA (2D, group12, group-wise)

(d) weight-wise vs. group-wise (MSID)

104 105

params

0.00

0.02

0.04

0.06

0.08

0.10

Im
pr

ov
ed

 P
re

cis
io

n

The effect of # groups: Improved Precision vs # params (MNIST->SVHN)
dense (1D)
LoRA (2D, weight-wise)
SuperLoRA (2D, group1, group-wise)
SuperLoRA (2D, group4, group-wise)
SuperLoRA (2D, group8, group-wise)
SuperLoRA (2D, group12, group-wise)

(e) weight-wise vs. group-wise (Improved Precision)

104 105

params

0.1

0.2

0.3

0.4

0.5

0.6

Im
pr

ov
ed

 R
ec

al
l

The effect of # groups: Improved Recall vs # params (MNIST->SVHN)
dense (1D)
LoRA (2D, weight-wise)
SuperLoRA (2D, group1, group-wise)
SuperLoRA (2D, group4, group-wise)
SuperLoRA (2D, group8, group-wise)
SuperLoRA (2D, group12, group-wise)

(f) weight-wise vs. group-wise (Improved Recall)

Figure 27. Complete comparison between weight-wise LoRA and group-wise SuperLoRA for transfer learning from MNIST to SVHN.

104 105

params

150

175

200

225

250

275

300

325

FI
D

The effect of reshaping: FID vs # params (MNIST->SVHN)

dense (1D)
LoRA (2D)
SuperLoRA (2D, group1)
SuperLoRA (2D, group4)
SuperLoRA (2D, group8)
SuperLoRA (2D, group1, reshape)
SuperLoRA (2D, group4, reshape)
SuperLoRA (2D, group8, reshape)

(a) reshaping vs. non-reshaping (FID)

104 105

params

0.00

0.05

0.10

0.15

0.20

0.25

IS

The effect of reshaping: IS distance vs # params (MNIST->SVHN)
dense (1D)
LoRA (2D)
SuperLoRA (2D, group1)
SuperLoRA (2D, group4)
SuperLoRA (2D, group8)
SuperLoRA (2D, group1, reshape)
SuperLoRA (2D, group4, reshape)
SuperLoRA (2D, group8, reshape)

(b) reshaping vs. non-reshaping (IS)

104 105

params

0.10

0.15

0.20

0.25

KI
D

The effect of reshaping: KID vs # params (MNIST->SVHN)

dense (1D)
LoRA (2D)
SuperLoRA (2D, group1)
SuperLoRA (2D, group4)
SuperLoRA (2D, group8)
SuperLoRA (2D, group1, reshape)
SuperLoRA (2D, group4, reshape)
SuperLoRA (2D, group8, reshape)

(c) reshaping vs. non-reshaping (KID)

104 105

params

0

20

40

60

80

100

M
SI

D
The effect of reshaping: MSID vs # params (MNIST->SVHN)

dense (1D)
LoRA (2D)
SuperLoRA (2D, group1)
SuperLoRA (2D, group4)
SuperLoRA (2D, group8)
SuperLoRA (2D, group1, reshape)
SuperLoRA (2D, group4, reshape)
SuperLoRA (2D, group8, reshape)

(d) reshaping vs. non-reshaping (MSID)

104 105

params

0.00

0.02

0.04

0.06

0.08

0.10

Im
pr

ov
ed

 P
re

cis
io

n

The effect of reshaping: Improved Precision vs # params (MNIST->SVHN)
dense (1D)
LoRA (2D)
SuperLoRA (2D, group1)
SuperLoRA (2D, group4)
SuperLoRA (2D, group8)
SuperLoRA (2D, group1, reshape)
SuperLoRA (2D, group4, reshape)
SuperLoRA (2D, group8, reshape)

(e) reshaping vs. non-reshaping (Improved Precision)

104 105

params

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Im
pr

ov
ed

 R
ec

al
l

The effect of reshaping: Improved Recall vs # params (MNIST->SVHN)
dense (1D)
LoRA (2D)
SuperLoRA (2D, group1)
SuperLoRA (2D, group4)
SuperLoRA (2D, group8)
SuperLoRA (2D, group1, reshape)
SuperLoRA (2D, group4, reshape)
SuperLoRA (2D, group8, reshape)

(f) reshaping vs. non-reshaping (Improved Recall)

Figure 28. Complete comparison between reshaping and non-reshaping SuperLoRA for transfer learning from MNIST to SVHN.

102 103 104 105

params

150

200

250

300

350

FI
D

Extension of LoKr: FID vs # params (MNIST->SVHN)

dense (1D)
LoRA (2D)
LoKr (2D, K=2)
SuperLoRA (LoNKr: 2D, K>2, weight-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise)
SuperLoRA (LoNKr: 2D, K>2, group-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise, reshape)
SuperLoRA (LoNKr: 2D, K>2, group-wise, reshape)

(a) SuperLoRA (LoNKr, FID)

102 103 104 105

params

0.00

0.05

0.10

0.15

0.20

0.25

0.30

IS

Extension of LoKr: IS vs # params (MNIST->SVHN)
dense (1D)
LoRA (2D)
LoKr (2D, K=2)
SuperLoRA (LoNKr: 2D, K>2, weight-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise)
SuperLoRA (LoNKr: 2D, K>2, group-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise, reshape)
SuperLoRA (LoNKr: 2D, K>2, group-wise, reshape)

(b) SuperLoRA (LoNKr, IS)

102 103 104 105

params

0.10

0.15

0.20

0.25

0.30

0.35

KI
D

Extension of LoKr: KID vs # params (MNIST->SVHN)

dense (1D)
LoRA (2D)
LoKr (2D, K=2)
SuperLoRA (LoNKr: 2D, K>2, weight-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise)
SuperLoRA (LoNKr: 2D, K>2, group-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise, reshape)
SuperLoRA (LoNKr: 2D, K>2, group-wise, reshape)

(c) SuperLoRA (LoNKr, KID)

102 103 104 105

params

0

20

40

60

80

100

M
SI

D
Extension of LoKr: MSID vs # params (MNIST->SVHN)

dense (1D)
LoRA (2D)
LoKr (2D, K=2)
SuperLoRA (LoNKr: 2D, K>2, weight-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise)
SuperLoRA (LoNKr: 2D, K>2, group-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise, reshape)
SuperLoRA (LoNKr: 2D, K>2, group-wise, reshape)

(d) SuperLoRA (LoNKr, MSID)

102 103 104 105

params

0.00

0.02

0.04

0.06

0.08

0.10

Im
pr

ov
ed

 P
re

cis
io

n

Extension of LoKr: Improved Precision vs # params (MNIST->SVHN)
dense (1D)
LoRA (2D)
LoKr (2D, K=2)
SuperLoRA (LoNKr: 2D, K>2, weight-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise)
SuperLoRA (LoNKr: 2D, K>2, group-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise, reshape)
SuperLoRA (LoNKr: 2D, K>2, group-wise, reshape)

(e) SuperLoRA (LoNKr, Improved Precision)

102 103 104 105

params

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Im
pr

ov
ed

 R
ec

al
l

Extension of LoKr: Improved Recall vs # params (MNIST->SVHN)
dense (1D)
LoRA (2D)
LoKr (2D, K=2)
SuperLoRA (LoNKr: 2D, K>2, weight-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise)
SuperLoRA (LoNKr: 2D, K>2, group-wise)
SuperLoRA (LoNKr: 2D, K=2, group-wise, reshape)
SuperLoRA (LoNKr: 2D, K>2, group-wise, reshape)

(f) SuperLoRA (LoNKr, Improved Recall)

Figure 29. Complete results of SuperLoRA (LoNKr) for transfer learning from MNIST to SVHN.

102 103 104 105

params

150

200

250

300

350

FI
D

The effect of higher-order dW: FID vs # params (MNIST->SVHN)

dense (1D)
LoRA (SuperLoRA: 2D/reshape/weight-wise)
SuperLoRA (LoRTA: 3D, reshape, weight-wise)
SuperLoRA (LoRTA: 4D, reshape, weight-wise)
SuperLoRA (LoRTA: 5D, reshape, weight-wise)
SuperLoRA (2D, reshape, group-wise)
SuperLoRA (LoRTA: 3D, reshape, group-wise)
SuperLoRA (LoRTA: 4D, reshape, group-wise)
SuperLoRA (LoRTA: 5D, reshape, group-wise)

(a) SuperLoRA (LoRTA, FID)

102 103 104 105

params

0.00

0.05

0.10

0.15

0.20

0.25

0.30

IS

The effect of higher-order dW: IS distance vs # params (MNIST->SVHN)
dense (1D)
LoRA (SuperLoRA: 2D/reshape/weight-wise)
SuperLoRA (LoRTA: 3D, reshape, weight-wise)
SuperLoRA (LoRTA: 4D, reshape, weight-wise)
SuperLoRA (LoRTA: 5D, reshape, weight-wise)
SuperLoRA (2D, reshape, group-wise)
SuperLoRA (LoRTA: 3D, reshape, group-wise)
SuperLoRA (LoRTA: 4D, reshape, group-wise)
SuperLoRA (LoRTA: 5D, reshape, group-wise)

(b) SuperLoRA (LoRTA, IS)

102 103 104 105

params

0.10

0.15

0.20

0.25

0.30

0.35

KI
D

The effect of higher-order dW: KID vs # params (MNIST->SVHN)

dense (1D)
LoRA (SuperLoRA: 2D/reshape/weight-wise)
SuperLoRA (LoRTA: 3D, reshape, weight-wise)
SuperLoRA (LoRTA: 4D, reshape, weight-wise)
SuperLoRA (LoRTA: 5D, reshape, weight-wise)
SuperLoRA (2D, reshape, group-wise)
SuperLoRA (LoRTA: 3D, reshape, group-wise)
SuperLoRA (LoRTA: 4D, reshape, group-wise)
SuperLoRA (LoRTA: 5D, reshape, group-wise)

(c) SuperLoRA (LoRTA, KID)

102 103 104 105

params
0

10

20

30

40

50

60

70
M

SI
D

The effect of higher-order dW: MSID vs # params (MNIST->SVHN)
dense (1D)
LoRA (SuperLoRA: 2D/reshape/weight-wise)
SuperLoRA (LoRTA: 3D, reshape, weight-wise)
SuperLoRA (LoRTA: 4D, reshape, weight-wise)
SuperLoRA (LoRTA: 5D, reshape, weight-wise)
SuperLoRA (2D, reshape, group-wise)
SuperLoRA (LoRTA: 3D, reshape, group-wise)
SuperLoRA (LoRTA: 4D, reshape, group-wise)
SuperLoRA (LoRTA: 5D, reshape, group-wise)

(d) SuperLoRA (LoRTA, MSID)

102 103 104 105

params

0.00

0.05

0.10

0.15

0.20

Im
pr

ov
ed

 P
re

cis
io

n

The effect of higher-order dW: Improved Precision vs # params (MNIST->SVHN)
dense (1D)
LoRA (SuperLoRA: 2D/reshape/weight-wise)
SuperLoRA (LoRTA: 3D, reshape, weight-wise)
SuperLoRA (LoRTA: 4D, reshape, weight-wise)
SuperLoRA (LoRTA: 5D, reshape, weight-wise)
SuperLoRA (2D, reshape, group-wise)
SuperLoRA (LoRTA: 3D, reshape, group-wise)
SuperLoRA (LoRTA: 4D, reshape, group-wise)
SuperLoRA (LoRTA: 5D, reshape, group-wise)

(e) SuperLoRA (LoRTA, Improved Precision)

102 103 104 105

params

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Im
pr

ov
ed

 R
ec

al
l

The effect of higher-order dW: Improved Recall vs # params (MNIST->SVHN)
dense (1D)
LoRA (SuperLoRA: 2D/reshape/weight-wise)
SuperLoRA (LoRTA: 3D, reshape, weight-wise)
SuperLoRA (LoRTA: 4D, reshape, weight-wise)
SuperLoRA (LoRTA: 5D, reshape, weight-wise)
SuperLoRA (2D, reshape, group-wise)
SuperLoRA (LoRTA: 3D, reshape, group-wise)
SuperLoRA (LoRTA: 4D, reshape, group-wise)
SuperLoRA (LoRTA: 5D, reshape, group-wise)

(f) SuperLoRA (LoRTA, Improved Recall)

Figure 30. Complete results of LoRTA for transfer learning from MNIST to SVHN.

102 103 104 105

params

0.02

0.04

0.06

0.08

0.10

IS

Extension of LoKr: IS vs # params (SVHN->MNIST, Pareto frontier shown only)
dense (1D)
LoRA (2D)
SuperLoRA (LoNKr: 2D, K>=2, group1)
SuperLoRA (LoNKr: 2D, K>=2, group4)
SuperLoRA (LoNKr: 2D, K>=2, group8)
SuperLoRA (LoNKr: 2D, K>=2, group12)
SuperLoRA (LoNKr: 2D, K>=2, group16)
SuperLoRA (LoNKr: 2D, K>=2, group1, reshape)
SuperLoRA (LoNKr: 2D, K>=2, group4, reshape)
SuperLoRA (LoNKr: 2D, K>=2, group8, reshape)
SuperLoRA (LoNKr: 2D, K>=2, group12, reshape)
SuperLoRA (LoNKr: 2D, K>=2, group16, reshape)

(a) SuperLoRA (LoNKr, Pareto frontier only)

102 103 104 105

params

0.02

0.04

0.06

0.08

0.10

0.12

IS

Extension of LoKr: IS vs # params (SVHN->MNIST)
dense (1D)
LoRA (2D)
SuperLoRA (LoNKr: 2D, K>=2, group1)
SuperLoRA (LoNKr: 2D, K>=2, group4)
SuperLoRA (LoNKr: 2D, K>=2, group8)
SuperLoRA (LoNKr: 2D, K>=2, group12)
SuperLoRA (LoNKr: 2D, K>=2, group16)
SuperLoRA (LoNKr: 2D, K>=2, group1, reshape)
SuperLoRA (LoNKr: 2D, K>=2, group4, reshape)
SuperLoRA (LoNKr: 2D, K>=2, group8, reshape)
SuperLoRA (LoNKr: 2D, K>=2, group12, reshape)
SuperLoRA (LoNKr: 2D, K>=2, group16, reshape)

(b) SuperLoRA (LoNKr)

Figure 31. Effect of groups in LoNKr.

102 103 104 105

params

0.02

0.04

0.06

0.08

0.10

IS

The effect of higher-order dW: IS distance vs # params (SVHN->MNIST, Pareto frontier only)
dense (1D)
LoRA (SuperLoRA: 2D/reshape/weight-wise)
SuperLoRA (LoRTA: 3D, reshape, group1)
SuperLoRA (LoRTA: 3D, reshape, group4)
SuperLoRA (LoRTA: 3D, reshape, group8)
SuperLoRA (LoRTA: 3D, reshape, group12)
SuperLoRA (LoRTA: 3D, reshape, group16)
SuperLoRA (LoRTA: 4D, reshape, group1)
SuperLoRA (LoRTA: 4D, reshape, group4)
SuperLoRA (LoRTA: 4D, reshape, group12)
SuperLoRA (LoRTA: 5D, reshape, group1)
SuperLoRA (LoRTA: 5D, reshape, group4)

(a) SuperLoRA (LoRTA, Pareto frontier only)

102 103 104 105

params

0.02

0.04

0.06

0.08

0.10

0.12

IS
The effect of higher-order dW: IS distance vs # params (SVHN->MNIST)

dense (1D)
LoRA (SuperLoRA: 2D/reshape/weight-wise)
SuperLoRA (LoRTA: 3D, reshape, group1)
SuperLoRA (LoRTA: 3D, reshape, group4)
SuperLoRA (LoRTA: 3D, reshape, group8)
SuperLoRA (LoRTA: 3D, reshape, group12)
SuperLoRA (LoRTA: 3D, reshape, group16)
SuperLoRA (LoRTA: 4D, reshape, group1)
SuperLoRA (LoRTA: 4D, reshape, group4)
SuperLoRA (LoRTA: 4D, reshape, group12)
SuperLoRA (LoRTA: 5D, reshape, group1)
SuperLoRA (LoRTA: 5D, reshape, group4)

(b) SuperLoRA (LoRTA)

Figure 32. Effect of groups in LoRTA.

102 103 104 105

params

0.02

0.04

0.06

0.08

0.10

IS

Extension of LoKr: IS vs # params (SVHN->MNIST, Pareto frontier shown only)
dense (1D)
LoRA (2D)
SuperLoRA (LoNKr: 2D, K = 2)
SuperLoRA (LoNKr: 2D, K = 3)
SuperLoRA (LoNKr: 2D, K = 4)
SuperLoRA (LoNKr: 2D, K = 2, reshape)
SuperLoRA (LoNKr: 2D, K = 3, reshape)
SuperLoRA (LoNKr: 2D, K = 4, reshape)

(a) SuperLoRA (LoNKr, Pareto frontier only)

102 103 104 105

params

0.02

0.04

0.06

0.08

0.10

0.12

IS

Extension of LoKr: IS vs # params (SVHN->MNIST)
dense (1D)
LoRA (2D)
SuperLoRA (LoNKr: 2D, K = 2)
SuperLoRA (LoNKr: 2D, K = 3)
SuperLoRA (LoNKr: 2D, K = 4)
SuperLoRA (LoNKr: 2D, K = 2, reshape)
SuperLoRA (LoNKr: 2D, K = 3, reshape)
SuperLoRA (LoNKr: 2D, K = 4, reshape)

(b) SuperLoRA (LoNKr)

Figure 33. Effect of K in LoNKr.

	Title Page
	page 2

	
	. Introduction
	. SuperLoRA
	. Transfer Learning Experiments
	. Conclusion
	. Related Work
	. Low-Rank Adaptation (LoRA)
	. SuperLoRA
	. Illustration of ViT model in detail
	ImageNet21k to CIFAR-100 transfer
	ImageNet1k to CIFAR-10 transfer

	. Illustration of diffusion model in detail
	. Illustration of grouping mechanism
	. Geometric analysis
	. Grouping effect on SuperLoRA (1D, dense, with projection)
	. Image generation transfer task
	Settings:
	Grouping effect:
	Reshaping effect:
	LoKr vs. LoNKr:
	LoRTA:
	Projection effect:
	Shuffling effect:

	. Visualization
	. Linear vs@汥瑀瑯步渠. nonlinear projection
	. Transfer learning from SVHN to MNIST
	Grouping effect (complete results)
	Reshaping effect (complete results)
	SuperLoRA (LoNKr, complete results)
	SuperLoRA (LoRTA, complete results)

	. Transfer learning from MNIST to SVHN
	Grouping effect
	Reshaping effect
	SuperLoRA (LoNKr)
	SuperLoRA (LoRTA)

	. Effect of groups in LoNKr and LoRTA
	. Effect of split K in LoNKr

