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Abstract

The success of deep learning in computer vision and natural language processing communities
can be attributed to the training of very deep neural networks with millions or billions of
parameters, which can then be trained with massive amounts of data. However, a similar
trend has largely eluded the training of deep reinforcement learning (RL) algorithms where
larger networks do not lead to performance improvement. Previous work has shown that
this is mostly due to instability during the training of deep RL agents when using larger
networks. In this paper, we make an attempt to understand and address the training of
larger networks for deep RL. We first show that naively increasing network capacity does not
improve performance. Then, we propose a novel method that consists of 1) wider networks
with DenseNet connection, 2) decoupling representation learning from the training of RL,
and 3) a distributed training method to mitigate overfitting problems. Using this three-fold
technique, we show that we can train very large networks that result in significant performance
gains. We present several ablation studies to demonstrate the efficacy of the pro- posed
method and some intuitive understanding of the reasons for performance gain. We show that
our proposed method outperforms other baseline algorithms on several challenging locomotion
tasks.
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Abstract

The success of deep learning in computer vision and natural language
processing communities can be attributed to the training of very deep
neural networks with millions or billions of parameters, which can then
be trained with massive amounts of data. However, a similar trend has
largely eluded the training of deep reinforcement learning (RL) algo-
rithms where larger networks do not lead to performance improvement.
Previous work has shown that this is mostly due to instability dur-
ing the training of deep RL agents when using larger networks. In this
paper, we make an attempt to understand and address the training
of larger networks for deep RL. We first show that naively increas-
ing network capacity does not improve performance. Then, we propose
a novel method that consists of 1) wider networks with DenseNet
connection, 2) decoupling representation learning from the training
of RL, and 3) a distributed training method to mitigate overfitting
problems. Using this three-fold technique, we show that we can train
very large networks that result in significant performance gains. We
present several ablation studies to demonstrate the efficacy of the pro-
posed method and some intuitive understanding of the reasons for
performance gain. We show that our proposed method outperforms
other baseline algorithms on several challenging locomotion tasks.
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(a) Average return. (b) Loss surface.

Fig. 1: Training curves of SAC agents with the different numbers of layers
while fixing the unit size (256) on Ant-v2 environment, and the loss function
surface [15] of the deepest (16-layers) Q-network. The training curves suggest
that simply building a deeper MLP with a fixed number of units does not
improve the performance of DRL while building a larger network is generally
effective in supervised learning. The loss surface shows that deeper networks
have a more complex loss surface that could be susceptible to the choice of
hyperparameters [15]. Motivated by this, we conduct an extensive study on how
to train larger networks that contribute to performance gain for RL agents.

Keywords: Deep Reinforcement Learning, Representation Learning, Robotics

1 Introduction

We have witnessed considerable improvements in the fields of computer vision
(CV) [1-4], natural language processing (NLP) [5-8], and robotics [9, 10] in
the last decade. These developments could be largely attributed to the training
of very large neural networks with millions (or even billions or trillions) of
parameters that can be trained using huge amounts of data and an appropriate
optimization technique to stabilize training [11]. In general, the motivation for
training larger networks comes from the intuition that larger networks allow
better solutions as they increase the search space of possible solutions. Having
said that, neural network training largely relies on finding good minimizers of
highly non-convex loss functions. These loss functions are also governed by the
choices of network architecture, batch size, etc. This has also driven a lot of
research in these communities towards understanding the underlying reasoning
for performance gains [12-15]

In striking contrast, the Deep Reinforcement Learning (DRL) community
has not reported a similar trend with regard to training larger networks for
RL. Some studies have reported that deep RL agents experience instability
while training with larger networks [16-19]. As an example, in Fig. 1, we show
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the results of the Soft Actor Critic (SAC) [20] agent that uses Multi-layered
Perceptron (MLP) for function approximation with the increasing number of
layers while fixing its unit size to 256 (also notice the loss surface). These plots
show that the use of deeper networks naively leads to poor performance for a
deep RL agent. Consequently, using larger networks to train deep RL networks
is not fully understood and thus is limiting in several ways. As a result, most
of the reported work in the literature ends up using similar hyperparameters
such as network structure, number, and size of layers.

Our work is motivated by this limitation. We explore the interplay between
the size, structure, training, and performance of deep RL agents to provide
some intuition and guidelines for using larger networks.

We present a large-scale study and provide empirical evidence for the use
of larger networks to train DRL agents. First, we highlight the challenges that
one might encounter when using larger networks to train deep RL agents. To
circumvent these problems, we integrate a three-fold approach: decoupling fea-
ture representation from RL to efficiently produce high-dimensional features,
employing DenseNet architecture to propagate richer information, and using
distributed training methods to collect more on-policy transitions to reduce
overfitting. Our method is a novel architecture that combines these three ele-
ments, and we demonstrate that our proposed method significantly improves
the performance of RL agents in continuous control tasks. We also conduct
an ablation study to show which component contributes to the performance
gain. In this paper, we consider learning from state vectors, i.e., not from
high-dimensional observations, such as images.

Our contributions can be summarized as follows:

® We conduct a large-scale study on employing larger networks for DRL agents
and empirically show that, contrary to deeper networks, wider networks can
improve performance.

® We propose a novel framework that synergistically combines recently pro-
posed techniques to stabilize training: decoupling representation learning
from RL, DenseNet architecture, and distributed training. Although each of
these components has previously been proposed, the combination is novel
and we demonstrate that it significantly improves performance.

® We analyze the performance gain of our method using metrics of effective
ranks of features and visualization of the loss function landscape of RL
agents.

2 Related Work

Our work is broadly motivated by Henderson et al. [16] which empiri-
cally demonstrates that DRL algorithms are vulnerable to different training
choices like architectures, hyperparameters, activation functions, etc. The
paper compares performance on the different numbers of units and layers and
demonstrates that larger networks do not consistently improve performance.
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This is contrary to our intuition considering recent progress in solving com-
puter vision tasks such as ImageNet [21]: larger and more complex network
architectures have proven to achieve better performance [1-3, 22].

Hasselt et al. [17] identify a deadly triad of function approzimation, boot-
strapping, and off-policy learning. When these three properties are combined,
learning can be unstable and potentially diverge, with value estimates becom-
ing unbounded. Several previous works have attempted to address this issue
by implementing various techniques, such as target networks [23], double Q-
learning [24], and n-step learning [25]. Our challenge of training larger networks
is specifically related to function approximation. However, as the deadly triad
is entangled in a complex manner, we also have to deal with other problems.
Regarding network size, some studies investigate the effect of making the net-
work larger for continuous control tasks using MLP [18, 26] and concluded
that larger networks tend to perform better, but also become unstable and
prone to diverge more. In a related investigation, Hasselt et al. [17] employed
CNNs to approximate functions for Atari games, which also revealed the insta-
bility that arises when expanding networks based on DQNs [23]. The study
also found that training stability can sometimes be achieved through the use
of Double Q-Networks, although it was not consistent with the size of the net-
works. Similar studies on on-policy methods are performed in Andrychowi et
al. [27] and Liu et al. [28], showing that too small or large networks could
cause a significant drop in policy performance. Although these studies are lim-
ited to relatively small sizes (hundreds of units with several layers), we will
have a more thorough study on much larger networks, specifically focusing on
learning from state vectors.

To build a large network, unsupervised learning has been used to learn
powerful representations for downstream tasks in natural language process-
ing [5, 29] and computer vision [30, 31]. In the context of RL, auxiliary
tasks, such as predicting the next state conditioned on the past state(s) and
action(s) have been widely studied to improve the sample efficiency of RL
algorithms [32-35]. Researchers have generally focused on learning a good
representation of the state input setting that produces low-dimensional fea-
tures [36, 37]. In contrast to this, Ota et al. [38] propose the use of an online
feature extractor network (OFENet) that intentionally increases input dimen-
sionality and demonstrates that a larger feature size enables improving RL
performance in both sample efficiency and control performance. We leverage
this idea and use larger input (or feature) for RL agents, as well as larger
networks for the policy and value function networks.

One can also use the AutoRL approaches [39] that dynamically adjust
hyperparameters during training to build large networks. For example, Wan
et al. [40] employ a combination of the population-based method [41] and
the Bayesian optimization framework to optimize hyperparameters, includ-
ing network architecture, to maximize returns during training. Mohan et
al. [42] empirically demonstrate that hyperparameter landscapes vary over
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time during training, which requires AutoRL algorithms to adjust hyperpa-
rameters dynamically. Although this work focuses on proposing a framework
to train large networks while improving the performance of RL algorithms,
the proposed framework can also be easily combined with these AutoRL
approaches.

3 Method
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Fig. 2: Proposed framework to train larger networks for deep RL agents. We
combine three elements. First, we decouple the representation learning from
RL to extract an informative feature z,, from the current state s; using a
feature extractor network that is trained using an auxiliary task to predict the
next state s¢y1. Second, we use large networks using DenseNet architecture,
which allows for stronger feature propagation. Finally, we employ the Ape-X-
like distributed training framework to mitigate the overfitting problems that
tend to happen in larger networks and enable to collect more on-policy data
that can improve performance. FC refers to a fully-connected layer.

While recent studies suggest that larger networks for DRL agents have the
potential to improve performance, it is non-trivial to alleviate some potential
issues that lead to instability when using larger networks to train RL agents.

Our method is based on three key ideas: (1) decoupling representation
learning from RL, (2) allowing better feature propagation using good network
architectures, and (3) using huge amounts of more on-policy data using dis-
tributed training to avoid overfitting in larger networks. We first obtain good
features apart from RL using an auxiliary task and then propagate the features
more efficiently by employing the DenseNet [3] architecture. Additionally, we
use a distributed RL framework that can mitigate the potential overfitting
problem. In the following, we describe in detail the three elements that we use
to train larger networks for deep RL agents. Our proposed approach is shown
schematically in Fig. 2.
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3.1 Decoupling Representation Learning from RL

While the simplicity of learning the entire pipeline in an end-to-end fashion
is appealing, updating all parameters of a large network using only a scalar
reward signal can result in very inefficient training [43]. Decoupling unsuper-
vised pretraining from downstream tasks is common in computer vision [30, 44]
and has proven to be very efficient. Taking inspiration from this, we adopt the
online feature extractor network (OFENet) [38] to learn meaningful features
separately from RL training.

OFENet learns the representation vectors of states z;, and state-action
pairs z, q,, and provides them to the agent instead of the original inputs s;
and a;, delivering significant performance improvements in continuous robot
control tasks. As the representation vectors z;, and z;, ,, are designed to
have much higher dimensionality than the original input, OFENet matches
our philosophy of providing a larger solution space that allows us to find a
better policy. The representations can be obtained by learning the mappings
zs, = ¢s(st) and zs, 4, = Ps,a(St, at). The ¢5 and ¢s o are neural networks with
arbitrary architecture that have parameters 6y _, 04, ,, and trained by minimiz-
ing an auxiliary task of predicting the next state s;y1 from the current state
and action representation zg, o, as:

Lawx = E(sy,a0)~p,m [llfpred(28t7at) - 3t+1||2] ) (1)

where fpreq is represented as a linear combination of the representation zy, 4, -
The learning of the auxiliary task is done concurrently with the learning of
the downstream RL task. Our experiments allow the input dimensionality to
be much larger than previously presented in Ota et al. [38]. Furthermore, we
also increase the network size of the RL agents. For more details, interested
readers are referred to Ota et al. [38].

3.2 Distributed Training

In general, larger networks need more data to improve the accuracy of the
function approximation [21, 45]. MLP with a large number of hidden layers
is particularly known to cause an overfitting of training data, often resulting
in inferior performance to shallow networks [46]. In the context of RL, while
we train and evaluate in the same environment, there is still a problem of
overfitting: the agent is only trained on limited trajectories it has experienced,
which cannot cover the entire state-action space of the environment [28]. Fu
et al. [26] showed that the overfitting to the experience replay does exist. To
mitigate this overfitting problem, Fedus et al. [47] empirically showed that
having more policy data in the replay buffer, i.e., collecting more than one
transition while updating the policy one time, can improve the performance
of the RL agent. However, it will be extremely slow.

In light of these studies, we employ the distributed RL framework, which
leverages distributed training architectures that decouple learning from col-
lecting transitions by utilizing many actors running in parallel on different
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environment instances [48, 49]. In particular, we use the Ape-X [48] frame-
work, where a single learner receives experiences from distributed prioritized
replay [50], and multiple actors collect transitions in parallel (see Fig. 2).
This helps to increase the number of data close to the current policy, that is,
more data on the policy, which can improve the performance of off-policy RL
agents [47] and mitigate rank collapse problems in Q networks [51]. It is noted
that one can collect more on-policy data by collecting more than one tran-
sition at each policy update iteration while being much slower, as shown in
Fedus et al. [47]. Furthermore, while we employ a distributed training frame-
work proposed in Horgan et al. [48], we do not use the RL algorithm used
there, but instead use standard off-policy RL algorithms: SAC [20] and the
Twin Delayed Deep Deterministic policy gradient algorithm (TD3) [52] in our
experiments. Furthermore, it should be noted that our approach uses a dis-
tributed training framework as suggested by Horgan et al. [48]. However, the
RL algorithms we evaluate differ from theirs; we employ two widely used off-
policy RL algorithms, namely Soft Actor-Critic (SAC) [20] and Twin Delayed
Deep Deterministic policy gradient algorithm (TD3) [52] in our experimental
design.

3.3 Network Architectures

Tremendous developments have been made in the computer vision community
in designing sophisticated architectures that enable training of very large net-
works by making the gradients more well-behaved, such as skip connections
and batch normalization [2, 3, 22, 53]. We focus specifically on the use of the
Dense Convolutional Network (DenseNet) architecture, which alleviates the
problem of vanishing gradient, strengthens feature propagation, and reduces
the number of parameters [3]. DenseNet has a skip connection that directly
connects each layer to all subsequent layers as y; = f2¢([yo, Y1, -, Yi—1])s
where y; is the output of the i*" layer; thus all the inputs are concatenated
into a single tensor. Here, fI®"s¢ is a composite function that consists of a
sequence of convolutions, Batch Normalization (BN) [53], and an activation
function. An advantage of DenseNet is its improved flow of information and
gradients throughout the network, making large networks easier to train. We
borrow this architecture to train large networks for RL agents.

Although there are existing examples of applying the DenseNet architec-
ture to Deep Reinforcement Learning (DRL) agents, the full potential of this
approach has yet to be fully investigated. In this regard, Sinha et al. [19] pro-
posed a novel modification to the DenseNet architecture, wherein the state or
the state-action pair is concatenated to each hidden layer of the multi-layer
perceptron networks (MLP), except the final linear layer, in their D2RL algo-
rithm. In contrast to the modified version proposed by Sinha et al. [19], Ota
et al. [38] strictly adhered to the original DenseNet architecture in their work,
utilizing the dense connection that concatenates all previous layer outputs for
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OFENet training. Similarly, our approach uses the original DenseNet archi-
tecture to represent the policy and value function networks. The schematic of
the DenseNet architecture is also shown in Fig. 2.

4 Experimental Settings

In this section, we summarize the settings we use for our experiments. We
run each experiment independently with five random seeds. Average and 41
standard deviation results will be reported, which are solid lines and shaded
regions when we show training curves. The horizontal axis of a training curve is
the number of gradient steps, which is not identical to the number of steps an
agent interacts with an environment only when we use the distributed replay.

4.1 Metrics

We evaluate the experimental results on two metrics: average return and
recently proposed effective ranks [51] of the features matrices of Q-networks.
Kumar et al. [51] showed that MLPs used to approximate policy and value
functions that use bootstrapping lead to a reduction in the effective rank
of the feature, and this rank collapse for the feature matrix results in
poorer performance. The effective rank can be computed as sranks(®) =

koo

min {k : % >1- (5}, where o;(®) are the singular values of the feature
i=191

matrix ®, which are the features of the penultimate layer of the Q-networks.

We used sranks(®) = 0.01 to calculate the number of effective ranks in the

experiments, as in Kumar et al. [51].

4.2 Implementations
RL agents

The hyperparameters of the RL algorithms are also the same as those of their
original papers, except that the TD3 uses the batch size 256 instead of 100
as done in Ota et al. [38]. Also, for a fair comparison to Ota et al. [38], we
used a random policy to store transitions to replay buffer before training RL
agents for 10K time steps for SAC and for 100K steps for TD3. The other
hyperparameters, network architectures, and optimizers are the same as those
used in their original papers [20, 38, 52]. Our implementation of RL agents is
based on the public codebase used by Ota et al. [38]. We conduct experiments
on five different random seeds and report the average and standard deviation
scores.

OFENet

Regarding the parameters of OFENet, we also follow the implementation
of [38], that is, all OFENet networks that we used for our experiments consist
of 8-layers DenseNet architectures with Swish activation [54]. To implement
OFENet, we refer to the official codebase provided by Ota et al. [38]. We also
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Fig. 3: Schematic of asynchronous training. We use N = 2 cores for col-
lecting experiences, where each core has NV = 32 environments. Since the
network parameters are shared, and the training and collecting transitions are
decoupled, the collected experiences result in more on-policy data compared to
the standard off-policy training, where the agent collects one transition while
it applies one gradient step.

used target networks [23] to stabilize OFENet training, since the distribution
of experiences stored in the shared replay buffer can change more dynami-
cally utilizing the distributed training setting as described in Sec. 3.2. Target
networks are updated at each training step by slowly tracking the learned net-
works: 6’ <— 70+ (1—7)¢’, where we assume that ¢ are the network parameters
of the current OFENet, and 6’ are the target network parameters. We use the
target smoothing coefficient 7 = 0.005, which is the same as the one used to
update the target value networks in SAC [20], in other words, we do not tune
this parameter.

Distributed training

The distributed training setting we used is similar to Stooke et al. [55], which
collects experiences using N cores on which each core contains NV envi-
ronments. Specifically, we used N = 2 and NV = 32. Figure 3 shows the
schematic of the distributed training. Since the actions are computed by the
latest parameters, the collected experiences result in more on-policy data.

4.3 Visualizing loss surface of Q-function networks

Li et al. [15] proposed a method to visualize the loss function curvature
by introducing filter normalization method. The authors empirically demon-
strated that the non-convexity of the loss functions could be problematic, and
the sharpness of the loss surface correlates well with test error and generaliza-
tion error. In light of this, we also visualize the loss surface of the networks to
figure out why the deeper network could not lead to better performance, while
the wider networks result in high-performance policies (Fig. 5).
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To visualize the loss surface of our Q-networks, we use the authors’
implementation! with the loss of:

JQ(0) = E(s, a)~p B (Qe (st,ar) — Q (St7at)>1 ; (2)

with .

Q (st,ar) =7 (s, a) +VEs, np [V (5641)] (3)
in which we exactly follow the notations used by SAC paper [20]. To com-
pute this objective Jg(0), we collect all the transitions used in the training of
deeper and wider networks and compute the target values of Q (st, a¢) after the

training has been completed and store the tuples of (st, at, Q (s¢, at)) for all

transitions in the training. Then, we use the authors’ implementation to visu-
alize the loss with the stored transitions and trained weights of the Q-network.
Please refer to Li et al. [15] for more details.

5 Experimental Results

In this section, we present the results of numerical experiments in order to
answer some relevant underlying questions posed in this paper. In particular,
we answer the following questions.

e Can RL agents benefit from the usage of larger networks during training?
More concretely, can using larger networks lead to better policies for DRL
agents?

® What characterizes a good architecture that facilitates better performance
when using larger networks?

® Can our method work across different RL algorithms as well as different
tasks, including sparse reward settings?

e How does the proposed framework perform in terms of wall clock time and
sample efficiency?

5.1 Impact of network size on performance

In the first set of experiments, we try to investigate whether increasing the size
of the network always leads to poor performance. We quantitatively measure
the effectiveness of increasing the network size by changing the number of units
Nt and layers N'®°" while the other parameters are fixed.

Figure 1a shows the training curves when increasing the number of layers
while the unit size is fixed to N"™* = 256. As we described in Sec. 1, we observe
that the performance becomes worse as the network becomes deeper. In Fig. 4a,
we show the effect of increasing the number of units while the number of layers
is fixed to N'&¢" = 2. Contrary to the results when making the network deeper,
we can observe a consistent improvement when making the network wider. To

LCode used for these plots can be found at https://github.com/tomgoldstein/loss-landscape
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Fig. 4: Training curves of SAC agent with different number of units on Ant-
v2 environment and the loss function surface of the widest (2048-units) Q-
network. This shows that performance improves consistently when using wider
MLPs.
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Fig. 5: Grid search results of maximum average return at one-million training
steps over the different number of units and layers for SAC agent on Ant-v2
environment. This demonstrates that a deeper MLP (see horizontally) does not
consistently improve performance, while a wider MLP (see vertically) generally
does.

investigate more thoroughly, we also conduct a grid search, where we sample
each parameter of the network from N"it € {128,256,512,1024,2048}, and
N'aver ¢ [1.2.4.8,16} and evaluate the performance in Fig. 5. We can see a
monotonic improvement in performance when widening networks at almost all
depths of the network.
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(a) Wider network (b) Deeper network
(Nlaycr =2, Nunit — 2048) (Nlayer =16, Nunit _ 256)

Fig. 6: Loss landscapes of models trained on HalfCheetah-v2 with one million
steps, visualized using the technique in [15].

This result is in line with the general belief that training deeper net-
works is, in general, more difficult and more susceptible to the choice of
hyperparameters [46]. This could be attributed to the initialization of the net-
works — it is known that the wider a layer, the closer the network is to the
ideal conditions under which the initialization scheme was derived [56]. To
understand why the deeper network is harder than the wider networks, we
investigate the loss surface curvatures [15] of both deeper and wider networks.
We show the loss surface of the deeper network (N'™er = 16, Nunit = 256) in
Fig. 1b and the wider network (N'&°" = 2 Nunit = 2048) of the SAC agent
trained in the Ant environment in Fig. 4b as well as HalfCheetah-v2 environ-
ment in Fig. 6 using the visualization method proposed in Li et al. [15] with
the loss of TD error of Q-functions of SAC agents. These figures show that
wider networks have a nearly convex surface while deeper networks have more
complex loss surface, which could be susceptible to the choice of hyperparam-
eters [15]. Comparison of deeper and wider networks has also been done in
several works [2, 14, 15, 57, 58], where wider networks are prone to have more
generalization capability due to their smooth loss functions.

From these results, we observe and conclude that larger networks can
be effective in improving deep RL performance. In particular, we achieve
consistent performance gains when we widen individual layers rather than
going deeper. Consequently, we fix the number of layers to N = 2 and
only change the number of units to learn larger networks in the following
experiments.

5.2 Architecture Comparison

In the next set of experiments, we try to investigate the role of a synergistic
combination of connectivity architecture, state representation, and distributed
training to allow the usage of larger networks for training deep RL agents. A
brief introduction to these techniques is described in Sec. 3.
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Fig. 7: Comparison of connectivity architecture on Ant-v2. Our proposed
DenseNet architecture produces the best return on both large (N"it = 2048,
denoted by L) and small (N"i® = 128, §) networks while mitigating rank
collapse as good as MLP-D2RL.

Connectivity architecture

We first compare four connectivity architectures: standard MLP, MLP-ResNet,
MLP-DenseNet, and MLP-D2RL, which is a recently proposed architecture to
improve RL performance. MLP-ResNet is a modified version of Residual Net-
works (ResNet) [2, 59], which has a skip-connection that bypasses the nonlinear
transformations with an identity function: y; = ff**(y;—1) + yi—1, where y; is
the output of the i*! layer, and f* is a residual module, which consists of a
fully connected layer and a nonlinear activation function. An advantage of this
architecture is that the gradient can flow directly through the identity map-
ping from the top layers to the bottom layers. MLP-D2RL is identical to Sinha
et al. [19], and MLP-DenseNet is our proposed architecture defined in Sec. 3.3.
We compare these four architectures on both small networks (NUnit = 128,
denoted by S) and large networks (Nt = 2048, denoted by L).

Figure 7 shows the training curves of the average return in Fig. 7a, and the
effective ranks in Fig. 7b. The results show that our MLP-DenseNet achieves
the highest return on small and large networks while mitigating rank col-
lapse comparable to MLP-D2RL. This shows that MLP-DenseNet is the best
architecture among these four choices, and thus we employ this architecture
for both the policy network and the value function network in the following
experiments.

Decoupling representation learning from RL

Next, we evaluate the effectiveness of using OFENet (see Sec. 3.1) to decou-
ple representation learning from RL. In order to evaluate the performance
on different network sizes, we sample the number of units from N ¢



14 Training Larger Networks for DRL

2000
8000 17501
7000 1500
6000 1250
1000
5000 ) e
E c T T
=1 o© 0 1
2 4000 ° 1e6
o >
£ 250
3000 o
L w/ OFENet =
£ 245
2000 L w/o OFENet
—— Mw/ OFENet 240
1000 —— M w/o OFENet
—— Sw/ OFENet 235
0 —— S w/o OFENet
0.0 0.2 0.4 0.6 038 1.0 0 1
Million steps 1e6 1e6
(a) Average return. (b) Effective ranks.

Fig. 8: Training curves of w/ and w/o OFENet on Ant-v2. This shows decou-
pling representation learning from RL is generally effective across the different
sizes of the networks in terms of both control performance and mitigating rank
collapse issues.

{256,1024, 2048}, which we respectively denote S, M, and L, and compare
these against the baseline SAC agents, which do not use OFENet-like struc-
ture with the auxiliary loss and are trained only from a scalar reward signal.
In other words, the baseline agents are identical to the DenseNet architecture
of the previous connectivity comparison experiment.

The results in Fig. 8 show separating representation learning from RL
improves control performance and mitigates rank collapse of Q-networks
regardless of network size. Thus, we can conclude using bigger representa-
tions, which are learned using the auxiliary task (see Sec. 3.1), contributes to
improving performance on downstream RL tasks.

To investigate more in-depth, we also conduct a grid search over the dif-
ferent number of units for both SAC and OFENet in Fig. 9. The baseline is
SAC agent without OFENet (see leftmost column). The results suggest that
the performance does improve when compared against the baseline agent (see
horizontally), however, it saturates around the average return of 8000. In the
following experiments, we employ distributed replay and expect we can attain
higher performance.

Distributed RL

Finally, we add distributed replay [48] to further improve performance while
using larger networks. We use an implementation similar to Stooke et al. [55],
which collects experiences using N cores on which each core contains N
environments, specifically we used N = 2 and NV = 32.

Similarly to the previous experiments, we perform a grid search on the
different number of units for SAC and OFENet with the distributed replay in
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number of units between SAC and OFENet. OFENet can improve performance
on almost all settings but saturates around the return of 8000.
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Fig. 10: Grid search results of average maximum return over the different num-
ber of units between SAC and OFENet with ApeX-like distributed training.
Compared to Fig. 9, adding distributed RL enables monotonic improvement

when we widen SAC or OFENet.

Fig. 10, and also compare the training curves of three different network size
S, M, and L in Fig. 12. Note that the horizontal axis in Fig. 12 is the number
of times we applied gradients to the network, not the number of interactions.
Comparing Fig. 10 and Fig. 9, we can clearly see that distributed training
enables further performance gain in all sizes of networks. Furthermore, we can
observe a monotonic improvement when we increase the number of units for
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Fig. 11: Training curves on five different MuJoCo tasks with two different RL
algorithms (SAC and TD3). The proposed methods denoted as SAC (Ours)
and TDS (Ours) improve performance by employing larger networks.
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Fig. 12: Training curves on the performance of our proposed framework w/
and w/o using Ape-X architecture on Ant-v2 environment.

both SAC and OFENet. Thus, we verified that combining distributed replay
contributes to further performance gain while training larger networks.

How about generalization to different RL algorithms and
environments?

To quantitatively measure the effectiveness of our method across differ-
ent RL algorithms and tasks, we evaluate two popular optimization algo-
rithms, namely SAC and TD3 [20, 52], on five different locomotion tasks in
MuJoCo [60]. We denote our method as Ours, which uses the largest network
of NWits = 2048 among the previous experiments for both the OFENet and
the RL algorithms. We compare the proposed method against two baselines:
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Table 1: The highest average returns for each environment. The bold number
indicates the best performance. Our method outperforms OFENet [38] and
the original algorithm in most environments.

SAC
ENVIRONMENT Ours OFENET ORIGINAL
HoPPER-V2 3467.3 3511.6 3316.6
WALKER2D-V2 8802.4 5237.0 3401.5
HALFCHEETAH-V2 19209.9 16964.1 14116.1
ANT-V2 14021.0 8086.2 5953.1
HumANOID-v2 14858.2 9560.5 6092.6

TD3
ENVIRONMENT Ours OFENET ORIGINAL
HoPPER-V2 3206.7 3488.3 3613.0
WALKER2D-V2 7645.8 4915.1 4515.6
HALFCHEETAH-V2 18147.5 16259.5 13319.9
ANT-V2 12811.3 8472.4 6148.6
HumANOID-v2 13282.0 120.6 340.5

the original RL algorithm denoted by Original. Furthermore, we also com-
pare OFENet, which can achieve current state-of-the-art performance on these
tasks to the best of our knowledge.

We plot the training curves in Fig. 11 and list the highest average return in
Table 1. In the figure and the table, our method SAC (Ours) and TD3 (Ours)
achieves the best performance in almost all environments. Furthermore, we
can see that our proposed method can work with both RL algorithms and thus
is agnostic to the choice of the training algorithm. In particular, our method
notably achieves much higher episode returns in Ant-v2 and Humanoid-v2,
which are harder environments with larger state/action space and more train-
ing examples. Interestingly, the proposed method does not achieve reasonable
solutions in Hopper-v2, which has the smallest dimensionality among five envi-
ronments. We consider that the performance in smaller dimension problems
saturates early and even additional methods cannot provide any significant
performance gain.

5.3 Ablation study

Since our method integrates several ideas into a single agent, we conduct
additional experiments to understand what components contribute to the
performance gain. We highlight that our method consists of three elements:
feature representation learning using OFENet, DenseNet architecture, and
distributed training. Furthermore, we compare the results without increas-
ing the network size to reinforce that a larger network improves performance.
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Figure 13 shows the ablation study on SAC with Ant-v2 environment. Full is
our method, which combines all three elements we proposed and uses large
networks (NUt = 2048, N'&er = 2) for the SAC agent. sac is the original
SAC implementation.

w/o Ape-X removes Ape-X-like distributed training setting. As distributed
RL enables the collection of more experiences close to the current policy,
we consider that the significant performance gain can be explained by learn-
ing from more on-policy data, which was also empirically shown by Fedus et
al. [47]. Also, we believe that receiving more novel experiences helps the agent
generalize to state-action space. In other words, although the off-policy train-
ing setting obtains a new experience by interacting with the environment, it
is much less compared to the on-policy setting, resulting in overfitting to the
limited trajectories, which becomes more problematic in harder environments,
which have larger state/action space and larger neural networks. Fu et al. [26]
have also empirically proven this issue.

w/0 OFENet removes OFENet and trains the entire architecture using only
a scalar reward signal. The much lower return shows that learning the large
networks from just the scalar reinforcement signal is difficult, and training the
bottom networks (close to the input layer), i.e. obtaining informative features
by using an auxiliary task, enables better learning of control policy.

w/o0 Larger NN reduces the number of units from N = 2048 to 256 for
both OFENet and SAC. This also significantly decreases performance; there-
fore, we can conclude that the use of larger networks is essential to achieve
high performance.

Finally, w/o DenseNet replaces the MLP-DenseNet defined in Sec. 3.3 with
the standard MLP architecture. The result shows that strengthening feature
propagation does contribute to improving performance.

It is noted that while fully using the proposed architecture improves the
performance the most, each component (decoupling representation learning
from RL, distributed training, and network architecture) also contributes to
the performance gain.

5.4 Sparse reward setting

So far, we have evaluated the proposed framework in dense reward settings. In
this section, we apply our framework to the sparse reward settings in multi-goal
environments discussed in Plappert et al. [61], which includes a 7 DoF robot
manipulator (Fetch) to perform Reach, Slide, Push, and PickAndPlace tasks.
Since our framework does not need to change the underlying RL algorithms,
it can be naturally combined with any plug-and-play method. Specifically, we
combine our framework with Hindsight Experience Replay (HER) [62], which
is a standard method for solving RL problems with sparse reward settings.
Figure 14 shows the success rates of the four different sparse reward envi-
ronments. It clearly shows that the proposed framework enables the agent to
learn a better policy compared to the baseline method, which is a naive com-
bination of HER and SAC; that is, it does not include the proposed framework
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Fig. 13: Training curves of the derived methods of SAC on Ant-v2. This shows
that each element does contribute to performance gain, and our combination
of DenseNet architecture, distributed training, and decoupled feature repre-
sentation (shown as Full ) allows us to train larger networks that perform
significantly better compared against the baseline SAC algorithm (shown as
sac).

that consists of three components. Specifically in difficult settings (Slide, Push,
and PickAndPlace), our method quickly converges to a success rate of almost
100 %, while the original algorithm does not achieve the goal in 300 thousands
of steps.

5.5 Analysis on computation and sample efficiency

In the final experiment, we evaluate the performance of the proposed frame-
work with respect to wall clock time and sample efficiency.

Environmental and gradient steps per second

First, we analyze the number of environmental and gradient steps per second
for the four different methods. Table 2 compares the gradient and environmen-
tal steps averaged over all environments for Ours, Ours w/o ApeX, OFENet,
and Original. Comparing Ours and Ours w/o ApeX, which is our proposed
framework without the ApeX-like distributed training, the proposed method
collects 88(= 1362.0/15.4) times more transitions per second by employing
the distributed training framework. Therefore, more on-policy transitions are
stored in a replay buffer compared to those without a distributed training
framework, which is important to train high-performance policy. Focusing on
the gradient steps, Ours has more steps than Ours w/o ApeX, because our
framework conducts policy updates and transition collection asynchronously,
which will be effective for performance in terms of wall clock time performance.

Wall clock time performance

Next, we compare the performance of the models with respect to the wall
clock time, that is, we compare models trained over a fixed period of time.
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Fig. 14: Training curves on four different sparse reward tasks with SAC com-
bined with Hindsight Experience Replay. The proposed framework denoted as
SAC (Ours) converges to a success rate of almost 100 % compared to the naive
baseline SAC (Original) that does not include our proposed framework.

Table 2: The number of environment and gradient steps per second averaged
over all environments. Note that the environment and gradient steps are dif-
ferent only for Ours because of the distributed training.

| Ours Ours w/o ApeX OFENet Original

Environmental steps per second | 1362.0 15.4 29.8 43.9
Gradient steps per second 19.3 15.4 29.8 43.9

Specifically, we compare the performance of all methods for the amount of
time taken by the naive baseline SAC (Original) to complete the training,.

The result in Table 3 shows that our method SAC (Ours) achieves the
best performance in almost all environments, although the number of gradient
steps is 2.3(= 43.9/19.3) times less than Original. This is achieved by using the
distributed training framework; our method collects more on-policy transitions
thanks to the asynchronous data collection setup, which enables the agent to
overfit its networks to the experience replay (see Section 3.2 for more details).
Thus, we show that the proposed framework is effective with respect to the
wall clock time.
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Table 3: The highest average returns for each environment with fixed wall
clock time, specifically as of the naive baseline SAC (Original) agent completed
training, for analyzing the performance gain with respect to wall clock time.
The numbers in bold indicate the best performance. Our method outperforms
OFENet [38] and the original algorithm in most environments for complex
environments (HalfCheetah-v2, Ant-v2, and Humanoid-v2).

SAC
ENVIRONMENT Ours OFENET ORIGINAL
HoPPER-V2 2798.9 3406.4 3316.6
WALKER2D-V2 4633.8 4813.7 3401.5
HALFCHEETAH-V2 18345.3 16214.91 14116.1
ANT-V2 13008.5 7748.0 5953.1
HumANOID-vV2 12678.1 7944.0 6092.6

TD3
ENVIRONMENT Ours OFENET ORIGINAL
HoPPER-V2 1597.0 3458.4 3613.0
WALKER2D-V2 7336.2 4392.5 4515.6
HALFCHEETAH-V2 17784.5 15808.6 13319.9
ANT-V2 12463.4 8199.9 6148.6
HumANOID-v2 12970.8 119.5 340.5

Sample efficiency

Next, we analyze the sample efficiency, where we compare our method with
baselines with the same number of environmental steps (thus we do not
consider the wall clock time).

Table. 4 shows the performance of each method with a fixed number of
environmental steps (1 million for Hopper-v2 and Walker2D-v2 and 3 million
for the others). Note that the returns of SAC (Original) and SAC (OFENet)
are identical to those in Table 1 of the manuscript because these methods do
not use the distributed training framework. Comparing Ours with baselines
(OFENet and Original), our proposed framework performs worse than the
baselines. This is because it collects a huge amount of samples very quickly,
thanks to the asynchronous training architecture (Fig. 3 in the manuscript);
the data collection speed of the proposed framework is 88 times faster than
that of the naive baseline. Therefore, effectively, our proposed method is able
to apply only fewer gradient steps (approximately 100 times less) than the
compared baselines. This results in poor performance, as there are simply not
enough updates to train the model.

Finally, to show the effectiveness of the other two components of the
proposed framework, namely the DenseNet architecture and decoupling repre-
sentation learning from RL, we also added results without distributed training,
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Table 4: The highest average returns for each environment with the fixed num-
ber of environmental steps to analyze the performance with respect to sample
efficiency. The numbers in bold indicate the best performance. Our method
works worse than OFENet [38] and the original algorithm in most environ-
ments due to the nature of asynchronous training. However, our framework
without distributed training (Ours w/o ApeX) works much better than base-
lines, indicating one can remove distributed training when sample efficiency is
most important.

SAC
ENVIRONMENT Ours OURs w/0 APEX OFENET ORICGINAL
HOPPER-V2 532.1 3452.7 3511.6 3316.6
WALKER2D-V2 621.2 6385.3 5237.0 3401.5
HALFCHEETAH-V2  14548.5 17942.6 16964.1 14116.1
ANT-V2 8508.0 10249.5 8086.2 5953.1
HuMANOID-vV2 1177.3 10720.3 9560.5 6092.6
TD3
ENVIRONMENT Ours OuRs w/0 APEX OFENET ORICGINAL
HOPPER-V2 367.5 3562.1 3488.3 3613.0
WALKER2D-V2 635.9 6021.3 4915.1 4515.6
HALFCHEETAH-V2  14474.9 17402.8 16259.5 13319.9
ANT-V2 7216.5 9820.9 8472.4 6148.6
HuMANOID-vV2 4302.1 10235.3 120.6 340.5

denoted by Ours w/o ApeX in Table. 4. From the table, Ours w/o ApeX
achieves much higher performance than the baselines, while it has the same
sample efficiency as the baselines, since it does not use distributed training.
Therefore, one can choose the framework with or without distributed training
based on the importance of sample efficiency; While our full framework is not
very sample efficient due to the nature of distributed training, the proposed
method without distributed training still performs much better than the base-
lines. Implementing the distributed framework can really improve performance
due to the distributed implementation and the large amounts of on-policy
diverse data.

6 Conclusion

Deep Learning has catalyzed huge breakthroughs in the fields of computer
vision and natural language processing, making use of massive neural networks
that can be trained with huge amounts of data. Although these domains have
greatly benefitted from the use of larger networks, the RL community has
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not witnessed a similar trend in the use of larger networks to train high-
performance agents. This is mainly due to the instability when using larger
networks to train RL agents. In this paper, we studied the problem of using
a larger network to train RL agents. To achieve this, we proposed a novel
framework for training larger networks for deep RL agents, while reflecting on
some of the important design choices that one has to make when using such
networks. In particular, the proposed framework consists of three elements.
First, we decouple the representation learning from RL using an auxiliary loss
to predict the next state. This allows more informative features to be obtained
to learn control policies with richer information than learning entire networks
from a scalar reward signal. The learned representation is then propagated
to the DenseNet architecture, which consists of very wide networks. Finally,
a distributed training framework provides huge amounts of on-policy data
whose distribution is much closer to the current policy and thus enables the
RL agent to mitigate the overfitting problem and enhance generalization to
novel scenarios. Our experiments demonstrate that this novel combination
achieves significantly higher performance compared to current state-of-the-art
algorithms across different off-policy RL algorithms and different continuous
control tasks. While this paper focused on learning from state vectors, we
plan to apply the proposed framework to high-dimensional observations, such
as images, in future work. Furthermore, motivated by a surge of interest in
applying Transformer-based networks to RL agents [63-66], we also plan to
include a self-attention-based architecture to our framework. Nevertheless, we
believe that our approach could be helpful toward training larger networks for
Deep RL agents.
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