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Abstract

We take a scene-understanding approach to video
anomaly localization (VAL) that leverages the rapid
progress that has been made in training general deep net-
works for object detection, object recognition and opti-
cal flow. Our method uses each detected object’s short-
term trajectory, appearance embedding, size, and loca-
tion as its representation. These high-level attributes pro-
vide rich information about the object types and move-
ments that are found in nominal video of a scene. By ef-
ficiently comparing the high-level attributes of test objects
to those of normal objects, our method detects anoma-
lous objects and anomalous movements. In addition, the
human-understandable attributes used by our method can
provide intuitive explanations for its decisions. We eval-
uate our method on many standard VAL datasets (USCD
Ped1/Ped2, CUHK Avenue, ShanghaiTech and Street Scene)
using spatio-temporal evaluation criteria and demonstrate
new state-of-the-art accuracy.

1. Introduction

We present a novel method for video anomaly localiza-
tion (VAL) based on a high-level scene representation, al-
lowing for intuitive explanations of decisions. Because of
the practical applications to automatic monitoring of static-
camera surveillance video, we focus on the single-scene,
unsupervised version of VAL in which nominal video of
a scene is provided to define only the normal activity in
a scene. In contrast to much of the recent work in this
area [16, 31, 43, 44], we focus on spatial localization of
anomalies in addition to temporal localization. Most scenes
include many different activities happening simultaneously
and it is important to indicate to a user which of the activi-
ties within each frame is anomalous. Thus, we use the term
”localization” instead of ”detection” to emphasize our focus
on both spatial and temporal localization.

Our approach is motivated from a scene understand-
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Figure 1. Visualization of all tracklets computed for a snippet of
video from Street Scene.

ing perspective that first tries to understand the scene in
terms of the objects present and their motions/trajectories.
This understanding is used to build a location-dependent
model of the nominal video. Location dependence is im-
portant because activities that are normal in some locations
(such as people walking on a sidewalk) may be abnormal in
other locations (such as people walking on a rooftop). Our
scene understanding approach yields a model that is human-
interpretable which allows our system to provide human-
understandable explanations for its decisions.

We leverage state-of-the-art deep networks for object de-
tection, object recognition and optical flow to yield a high-
level understanding of the activity in a scene. Objects are
detected using a combination of a deep network object de-
tector and simple motion segmentation (using optical flow)
which allows for the detection of unknown moving objects
that the object detector was not trained on. Short-term tra-
jectories for each detected object are then generated over T
frames from optical flow to provide rich information about
the movement of objects. Figure 1 shows an illustration for
a frame of Street Scene [25] of the detected objects and their
10-frame trajectories which are represented by red dots in-
dicating the location of the middle of the object’s bounding
box for the 10 frames. Additionally, object appearance is
modeled using the feature vector embedding provided by
an object recognition deep network. Putting all of these
high-level attributes together yields an object-centric repre-



sentation where, for each object, we store the object’s size
and location in the image, its trajectory over T frames, and
its appearance embedding. We call this combination of at-
tributes a tracklet. An exemplar-based model [26, 32] is
then built for the nominal video of the scene which stores
representative exemplar tracklets that cover the variety of
normal tracklets found in the scene. Anomalous tracklets
are detected by computing the distance to the nearest exem-
plar for each tracklet found in test video.

There are many novel aspects to our method. We present
an alternative to the majority of recent approaches to video
anomaly detection that rely on training a specialized deep
network for each scene using a frame reconstruction or
frame prediction objective function. Our method is the
first to combine object appearance, size, location and tra-
jectory into an object-centric representation that also uses
a straightforward exemplar-based model which does not re-
quire any deep network training for each new scene. Be-
cause of the use of human-understandable attributes in our
model, our method can provide explanations for its de-
cisions such as “This is anomalous because it is an un-
usual object class with an unusual trajectory.” Furthermore,
we demonstrate new state-of-the-art accuracy for localiz-
ing anomalies both spatially and temporally on standard
datasets.

2. Related work
The field of video anomaly detection/localization has grown
rapidly. For recent surveys please see [22, 28, 42]. Much
of the recent work has leveraged either the idea of us-
ing a form of autoencoder to reconstruct normal frames
[3, 10, 12, 16, 18, 23] or the idea of predicting unseen nor-
mal frames from nearby ones [15, 38, 44]. While these
approaches achieve good results on many standard VAD
datasets, one drawback is that they do not generally lead
to interpretable decisions. In contrast, our tracklet-based
method provides intuitive explanations for its decisions.

The idea of using trajectories for video anomaly local-
ization has been used in past works in ways that are distinct
from our method. The early work of Stauffer and Grim-
son [33] modeled long-term tracks of objects and could
detect anomalous trajectories as outliers from clusters of
trajectories. The work of [39], [24] and [46] also focused
on clustering long term trajectories and could detect outlier
trajectories, but did not evaluate anomaly detection accu-
racy on current datasets. Short-term tracks of super-pixels
along with Hidden Markov Models were used by [2] to de-
tect video anomalies. More recent approaches [13, 21, 30]
used the idea of learning to predict normal human skele-
ton trajectories (trajectories of human pose coordinates) to
detect anomalous human skeleton trajectories. Unlike our
method, these approaches are specialized to detecting only
anomalous trajectories of human poses. Ours is a method

for general anomaly detection.

The idea of explainable video anomaly detection has
gained interest in recent years with many new papers pub-
lished [4, 6, 11, 32, 36, 37, 40]. The earliest approach that
provided some type of explanations was due to Hinami et
al. [11]. They modeled the likelihood of high-level fea-
tures computed by networks for object recognition, action
recognition and attribute recognition computed from a sin-
gle frame. For objects detected as anomalies, high-level
attributes with the lowest likelihood were reported as the
reason for the anomaly. Following this work there were a
number of approaches that modeled nominal video using
scene graphs [4, 6, 34]. The basic idea is to model the ob-
jects in a scene as nodes of a graph and their relationships
as edges between nodes. The scene graph of [4] modeled
each frame independently with no temporal or tracking in-
formation. Later, [34] improved on this by building scene
graphs with temporal connections between nodes in differ-
ent frames. The work of [6] did not use temporal informa-
tion in their scene graphs, but added a separate branch that
models the skeletal trajectories of detected people. In a sim-
ilar vein, [36] proposed an explainable video anomaly lo-
calization method that used human-object interaction (HOI)
vectors to model interactions between people and objects. A
Gaussian mixture model is then learned from nominal HOI
vectors and low probability test HOI vectors are detected
as anomalous. Their method does not include any tempo-
ral modeling. Another method that provides explanations is
[37]. They use a traditional frame prediction approach to
detect anomalies and then in a separate stage provide expla-
nations by extracting object and action classes for anoma-
lous regions. Wu et al. [40] use pretrained networks to pro-
vide high-level features such as background segmentation,
object detections, and tracks. Then they learn an autoen-
coder model to predict normal high-level feature vectors.
Features that are poorly reconstructed are considered the
anomaly explanations.

Singh et al. [32] present one of the few interpretable ap-
proaches to build location-specific models of nominal video
which recognizes that what is normal in one region of the
scene (a car driving on the street) may be anomalous in an-
other region (a car driving on a sidewalk). Our approach
is similar in some ways to theirs, but replaces their high-
level motion features with object trajectories that provide
richer motion information. Detecting and tracking objects
removes the need for the fixed grid of spatial regions used in
their work. Singh et al.’s method is like viewing the world
through a small, fixed window. Fast-moving objects are
only seen for a few frames before they move out of the
fixed window. The size and location of each fixed win-
dow will not be appropriate for every object, resulting in
only seeing parts of many objects. Furthermore, Singh et
al.’s method of estimating motion features is difficult to do



from raw pixels and is their main source of errors. Our ap-
proach of using tracklets, addresses all of these problems.
Our method is like viewing the world through a variable-
sized window (according to the object size) that moves with
the object. Objects are tracked so that bounding boxes are
appropriately sized and keep the object centered which re-
sults in more accurate representations of objects and their
motions. We also leverage existing deep networks for ob-
ject detection, object recognition and optical flow estima-
tion instead of training specialized networks for motion fea-
tures. Our approach allows future improved models to be
swapped in. Our richer tracklet representation results in
significantly fewer exemplars which means smaller models.
Like [32], we build a location-specific model which allows
us to detect anomalies involving normal activities occurring
in unusual locations. In contrast to other work on explain-
able VAD (again with the exception of [32]), we build a
model of nominal video using an exemplar selection algo-
rithm that does not require any deep network training on
new scenes. Finally, we achieve significantly improved re-
sults using spatio-temporal evaluation criteria on standard
test sets.

3. Our Method
Our method consists of two stages. The first stage learns a
model of normal activity from the nominal video of a scene.
An illustration of this stage is shown in Figure 2. The sec-
ond stage detects anomalies in test videos by looking for
differences from the model of normal activity (see Figure
3). Both of these stages are based on tracklets which repre-
sent the objects present in each frame and their movements.
Tracklets are computed using pre-trained deep networks for
optical flow, object detection and object recognition.

3.1. Computing tracklets

Tracklets are formed by first detecting objects using both
a deep network-based object detector and a motion seg-
mentation algorithm. We use the DINO object detector
[45] to detect 80 different object classes in each frame of
video. Because pretrained object detectors cannot detect
object classes for which they were not trained, and be-
cause video anomaly localization can involve unexpected
objects, we also detect any moving objects (regardless of
object class) using a motion segmentation algorithm. Our
motion segmentation algorithm uses pixelwise optical flow.
Details are given in Section 4.1. If an object is detected by
both the object detection network and the motion segmenta-
tion algorithm (judged as having an intersection over union
value of 0.5 or greater) then we discard the motion segmen-
tation detection. We found DINO’s bounding boxes to be
more accurate than motion segmentation when objects are
close together (crowds of people) and to be more robust to
shadows. Object detection outputs a four-element vector for

each object: [x, y, w, h] where (x, y) are the coordinates of
the center of the bounding box, w is the width, and h is the
height.

For each detected object in the scene, we use a pretrained
deep network object recognizer to compute an appearance
embedding for the RGB image patch within the object de-
tection bounding box. We tried two different object recog-
nition networks: a custom-trained AppearanceNet (details
in Section 4.2) based on ResNext-50 [41] and OpenCLIP
[5]. We present results using each recognizer in the experi-
mental section. The appearance embedding is a vector, f , of
length N where N = 128 for AppearanceNet or N = 768
for OpenCLIP.

To represent the motion of each detected object, we use a
simple short-term tracking algorithm based on optical flow.
Because we are only tracking for a few frames (10 frames
is used in most experiments), a simple tracking method suf-
fices to produce good results. Details of our tracking al-
gorithm are given in Section 4, but the main idea is to use
optical flow to follow the displacement of a small sample of
moving pixels within the object’s bounding box from frame
t to frame t+1. The median displacement of the sample of
pixels is used as the consensus displacement for that frame.
This simple tracking algorithm works well in practice, but
any tracking algorithm could be used instead. Our goal here
is not to advance the state-of-the-art in tracking but rather to
show that a simple tracker is enough to provide a very useful
motion representation for video anomaly localization.

Tracking yields a trajectory, denoted C, for each de-
tected object which is a sequence of T coordinates, C =
{(x1, y1), (x2, y2), ..., (xT , yT )}, specifying the (x, y) im-
age coordinates of the center of the bounding box in each
of the T frames of the track. The (x1, y1) of trajectory C
and the (x, y) of the center of the bounding box from object
detection are the same.

Each detected object is thus represented as a tracklet,
Θ = [C,w, h, f ], containing the length T trajectory of 2D
coordinates, the scalar width and height, and the length N
appearance embedding.

3.2. Model of nominal video

Given nominal video of a scene, we compute tracklets for
every 5th frame. These tracklets give a high-level represen-
tation of all the objects that appear in the scene in terms of
their appearance (represented by the appearance embedding
vectors f ), their size (represented by each object’s bounding
box width (w) and height (h)), their movement (represented
by their trajectories, C), and their locations (represented by
the first coordinate in C).

We could store every tracklet found in the nominal video
and use that set as our model. However, this would be
wasteful since many of the tracklets are very similar. In-
stead, we use the exemplar selection algorithm of [25, 32]
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to select a small subset of tracklets (called exemplars) that
cover the variety of different tracklets found in the nominal
video. Given the set of all nominal tracklets, the exemplar
selection algorithm proceeds as follows:
1. Initialize the exemplar set to NULL
2. Add the first tracklet to the exemplar set.
3. For each subsequent tracklet, find its distance to the near-

est tracklet in the exemplar set. If this distance is above
a threshold, th, then add it to the exemplar set.
Exemplar selection yields an exemplar set E =

{Θ1,Θ2, ...,ΘM} of tracklets from the nominal video rep-
resenting the variety of objects and their movements found
in different locations of the scene. To use this simple
exemplar selection algorithm we need to define the dis-
tance between two tracklets. Given two tracklets, Θ1 =
[C1, w1, h1, f1] and Θ2 = [C2, w2, h2, f2], the distance,
D(Θ1,Θ2) is defined as:

D(Θ1,Θ2) = max(
L(Θ1,Θ2)− µL

σL
,
P (Θ1,Θ2)− µP

σP
,

A(Θ1,Θ2)− µA

σA
,
S(Θ1,Θ2)− µS

σS
), (1)

where L() is the location distance, P () is the trajectory
(path) distance, A() is the appearance distance, S() is the
size distance, and the µ and σ scalars are normalization con-
stants which make each distance function comparable.

The location distance is the Euclidean distance between
the centers of the object bounding boxes in the first frame
of the tracklets:

L(Θ1,Θ2) =
√

(x1,1 − x2,1)2 + (y1,1 − y2,1)2, (2)

where C1 = {(x1,1, y1,1), ..., (x1,T , y1,T )} and C2 =
{(x2,1, y2,1), ..., (x2,T , y2,T )} are the trajectories of each
tracklet. The trajectory distance is the sum of the differ-
ences between the displacements of the first tracklet and the
displacements of the second tracklet normalized by the min-

imum displacement:

P (Θ1,Θ2) =

T−1∑
t=1

|dx1,t − dx2,t|
max(min(dx1,t, dx2,t), 1)

+
|dy1,t − dy2,t|

max(min(dy1,t, dy2,t), 1)
, (3)

where dx1(t) = x1,t − x1,t+1, dx2(t) = x2,t − x2,t+1,
dy1(t) = y1,t − y1,t+1, dy2(t) = y2,t − y2,t+1. The max
function in the denominator is used to avoid division by
zero.

The appearance distance is the Euclidean distance be-
tween appearance embedding vectors, f1 and f2:

A(Θ1,Θ2) =

√√√√ N∑
i=1

(f1,i − f2,i)2. (4)

The size distance is the Euclidean distance between each
tracklet’s width and height normalized by the minimum
width and height:

S(Θ1,Θ2) =

√
(w1 − w2)2

min(w1, w2)
+

(h1 − h2)2

min(h1, h2)
. (5)

Note that because D(Θ1,Θ2) is a maximum over loca-
tion distance as well as appearance, trajectory and size dis-
tances, different tracklets will be stored as exemplars for
different locations in the frame. This is the desired behavior
since what is normal in one location may not be normal in
another.

3.3. Detect anomalies in test video

After the first stage of building a tracklet-based model of the
nominal video is done, the second stage consists of detect-
ing anomalies in testing video of the same scene. Anomaly
localization follows much of the same pipeline as model
building. The first step is to detect all objects in the testing
video (using a combination of deep network object detec-
tion and motion segmentation from optical flow) and then
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compute tracklets to represent the appearance, size, trajec-
tory and location of each object. This is done using the same
methods used in the model building stage.

Next we compute anomaly scores for each test tracklet
by finding the nearest exemplar tracklet. (Techniques for
speeding up the nearest neighbor search are discussed in
the supplemental material.) The anomaly score, AS, for a
tracklet, Θ, is the distance (Equation 1), to the nearest ex-
emplar tracklet:

AS(Θ, E) = min
Θe∈E

D(Θ,Θe), (6)

where E = {Θ1,Θ2, ...,ΘM} is the exemplar set learned
in the model building stage (Section 3.2).

4. Implementation details
In this section we give more details on various modules in
our pipeline.

4.1. Motion segmentation

Our motion segmentation algorithm takes as input pixel-
wise optical flow (from RAFTv2 [35]) between successive
frames. We first compute a motion mask by thresholding
the L2 flow magnitude (using a threshold of 0.5) to yield
a binary mask of moving pixels. We then run a clustering
algorithm (DBSCAN) on the moving pixels to find clus-
ters of pixels with similar flows. For each cluster, we find
all the connected components each of which corresponds
to a connected set of pixels with similar flow, i.e. a mo-
tion segment. Each motion segment correlates strongly to
a different object. We discard motion segments with fewer
than 120 pixels which removes most erroneous object de-
tections. The thresholds were chosen based on experiments
with Ped1 and Ped2 which were used as our validation set
(Section 5.1).

4.2. AppearanceNet

We train a slightly modified ResNext-50 [41] network to
recognize five different object classes given a 128x128x3
pixel RGB image patch as input. The five classes are
person, car, bicycle, dog and fire hydrant. These classes
were chosen because they are commonly found in surveil-
lance video as well as the standard datasets for VAD. Fur-
thermore, labeled training examples are available for these

classes. The ResNext-50 architecture was modified by
adding an extra linear layer that maps the usual 2048 length
penultimate layer to a new 128 length penultimate layer.
This 128-length feature vector is the embedding we use to
represent appearance. We collected training data for these
classes from MS-COCO [14] and VOC2012 [7] as well as
publicly available surveillance video that we annotated. In
total we used 41629 person examples, 33889 car examples,
5075 bicycle examples, 2481 dog examples, and 520 fire
hydrant examples. Our training set also included 59221
patches with all zero labels cropped from images that did
not contain any of these five object classes. More details
about this training set are in the supplemetal material. Bi-
nary cross entropy was used as our loss function which al-
lows separate probabilities for each object class as output.
The output can have high probability for more than one ob-
ject class or none of them since an image patch can contain
multiple objects or none of the known classes.

4.3. Tracking details

Object trajectories are formed by tracking an object detec-
tion bounding box for a small number (T ) of frames (10 in
most of our experiments) using pixelwise optical flow. An
object trajectory consists of a set of absolute (x, y) coordi-
nates for the center of the bounding box for each frame in
the track. The initial coordinate comes from the center of
the detected bounding box. From the initial bounding box,
we sample k moving pixels and follow the optical flow for
these points for T −1 more frames. For each frame, the dis-
placement of each point is found from the optical flow field
of that frame. The median displacement of the k points is
taken as the displacement of the tracked bounding box for
that frame. This procedure is continued for the remaining
frames in the track. Because optical flow will usually result
in non-integer coordinates for the k points, bilinear inter-
polation of the flow field is used to compute each displace-
ment. We use the median displacement for a small sample
of moving pixels to give robustness to noisy flow fields. In
our experiments we choose k = 9.

4.4. Computing distance normalization constants

The four components of the distance function in Equation 1
need to be comparable, i.e. need to have similar scales so
that one does not dominate the others. To insure this, each
distance is normalized by subtracting the mean and dividing
by the standard deviation. We use pairs of tracklets from
the nominal video of a dataset to compute each distance’s
distribution for that dataset. More details are given in the
supplemental material. Normalization results in distances
less than 0 if two tracklets are very similar (raw attribute
distance less than the mean), and distances greater than 1
if two tracklets are significantly different (raw attribute dis-
tance greater than the mean plus standard deviation).



5. Experiments

5.1. Datasets and evaluation criteria

To validate our proposed method, we evaluate our method
on the following datasets: UCSD Ped1 and Ped2 [20],
CUHK Avenue [17], Street Scene [25] and ShanghaiTech
[19]. We use UCSD Ped1 and Ped2 for hyperparameter tun-
ing and test our method on CUHK Avenue, Street Scene and
ShanghaiTech datasets.
UCSD Ped1 & Ped2: The UCSD Ped1 and Ped2
datasets consists of 14,000 (Train=6800 / Test=7200) and
4560 (Train=2550/ Test=2010), respectively, video frames
of pedestrian walkways. The nominal videos contain
only pedestrians while the anomalies consist of (1) non-
pedestrian entities (bikers, skaters and cars) and (2) unusual
pedestrian motion patterns.
CUHK Avenue: The Avenue dataset contains 30,652 video
frames (Train=15,328 / Test=15,324) of a college campus.
The abnormal events include unseen actions (running), sim-
ilar actions with unseen motion patterns (walking in wrong
direction) or unseen actions (throwing a backpack).
Street Scene: The Street Scene dataset is a large
dataset consisting of 203,257 video frames (Train=56,847
/ Test=146,410) representing a scene of a two-lane street
with bike lanes and pedestrian sidewalks. Prominent exam-
ples of anomalies include loitering, vehicles driving outside
their lanes and jaywalking.
ShanghaiTech: The ShanghaiTech dataset is a multi-scene
benchmark for video anomaly localization. It consists
of 296,690 video frames (Train=255,899 / Test=40,791)
recording different scenes in a college campus. Major cat-
egories of anomalies include people riding bikes or skat-
ing in pedestrian zones, fighting, jumping and chasing. We
evaluate our method on ShanghaiTech to highlight robust-
ness and applicability of our method to multi-scene bench-
marks. Specifically, the main focus of our framework is
on the single scene video anomaly localization task, which
includes location-dependent anomalies [27]. Even though
the location-dependent aspect of our model is not necessary
for a multi-scene dataset, we evaluate our method on Shang-
haiTech without any modification to highlight its robustness
and wide applicability. We expect further improvements in
accuracy if we specialize our model to multi-scene datasets.

Evaluation criteria. We use the Region-Based Detec-
tion Criterion (RBDC) and the Track-Based Detection Cri-
terion (TBDC) as proposed in [25] as our evaluation criteria
and report the area under the curve (AUC) for false pos-
itive rates per frame from 0 to 1. These criteria measure
both temporal and spatial localization accuracy. We do not
use the pixel-level criterion [20] due to its well known flaws
[25] or the popular frame-level criterion [20] because it does
not measure spatial localization. In addition to not caring
where an anomaly detection is located, the frame-level cri-

terion also does not take into account the number of false
positive regions when computing false positive rates.

Hyper-parameter tuning. For exemplar selection, we
select the threshold value th by using the Ped1 and Ped2
datasets as our validation set. We chose Ped1 and Ped2 as
our validation set because performance on these datasets is
saturated and hence they are not as useful for comparative
study. Furthermore, as noted by previous works [26, 32]
ground-truth annotations of Ped1 and Ped2 do not label ev-
ery location-specific anomaly. Thus, we follow [32] in us-
ing the new ground-truth labels that include all location-
specific anomalies. We show results on Ped1 and Ped2 with
different threshold values for exemplar selection in Table 1.
From the table, we can see that the choice of threshold has
a relatively small effect on accuracy. It mainly effects the
number of exemplars chosen to model nominal tracklets.
We select th = 0.25 as our final threshold value for eval-
uation on other benchmarks as it provides a good trade-off
between computational efficiency and test accuracy.

5.2. Results

We provide comparative results of our method with other re-
cent approaches on Avenue, ShanghaiTech and Street Scene
in Tables 2 and 3. From the results, we can see that our
framework outperforms other methods in accurately local-
izing anomalies. Specifically, we achieve state-of-the-art re-
sults on Avenue with respect to RBDC and TBDC criteria,
while for ShanghaiTech our method achieves best RBDC
score and second-best TBDC scores (Table 2). On the Street
Scene dataset, which is more challenging than other bench-
marks due to large and diverse set of anomalous events, we
outperform the previous best performing method by more
than 6% and 8% with respect to RBDC and TBDC met-
rics. The strong results demonstrated across five bench-
marks with diverse sets of anomalies highlight the gener-
ality and robustness of our framework.

5.3. Ablation study

We perform the following ablation experiments to gain fur-
ther insight into the impact of some of the design choices in
building our proposed framework.
Importance of individual attributes. To evaluate the
importance of individual components of our tracklet rep-
resentation, we perform a comparative study by building
location-dependent models with only a single other compo-
nent (appearance, trajectory or size). To do this, we simply
use only the location distance and one other component’s
distance in the maximum function of Equation 1. This
is done both to select exemplars and to compute anomaly
scores for test tracklets. We present our results in Table 4.
We see that all components encode useful information in de-
tecting anomalies in different situations. It is interesting to
see that a location-based appearance model does very well



th UCSD Ped1 UCSD Ped2
RBDC TBDC NUM RBDC TBDC NUM

2 40.8 87.1 252 / 14269 80.3 96.6 108 / 7050
1.5 43.2 88.8 380 / 14269 82.5 96.9 150 / 7050
1 44.0 89.0 644 / 14269 84.1 98.3 267 / 7050
0.75 44.4 89.8 961 / 14269 82.3 96.4 344 / 7050
0.5 44.9 89.7 1382 / 14269 83.3 96.6 461 / 7050
0.25 45.3 89.4 2133 / 14269 84.2 97.9 673 / 7050
0.0 45.5 89.6 3525 / 14269 83.4 98.2 1047 / 7050

Table 1. RBDC, TBDC and frame-level scores (in %) of our
method for different exemplar thresholds (th) on UCSD Ped1 and
Ped2. NUM denotes the number of exemplar tracklets selected vs
the total number of tracklets present in the training set. Bold row
indicates th chosen for later experiments.

on Street Scene. This is most likely because many anoma-
lies in Street Scene involve normal object classes in unusual
locations (jaywalking, biker outside of a bike lane or a car
u-turning). A location-based trajectory model does well on
Ped2 and Avenue. This is probably due to the fact that many
anomalies in those datasets involve unusual speeds such as
people sprinting or fast-moving cyclists, skateboarders or
golf carts. The best results are obtained when all compo-
nents are used jointly, thus highlighting the importance of
a variety of appearance and motion components to localize
anomalies under many different scenarios.
Tracklet length. We evaluate the effect of change in length
of tracklets, T , by computing anomaly localization results
using different track lengths on Ped1 and Ped2 (Table 5).
We find that tracklets with length T = 10 give us best re-
sults. Using only 5 frames hurts accuracy due to not enough
information about the object’s trajectory. Using 15 frames
also hurts accuracy a little probably due to the added diffi-
culty of tracking over more frames.
Appearance features. We further perform an ablation
study on UCSD Ped1 and Ped2, Avenue and Street Scene
datasets to compare our AppearanceNet model for repre-
senting object appearance versus using OpenCLIP [5]. For
the OpenCLIP pre-trained model, we specifically used the
ViT-L/14 model pretrained on DataComp-1B dataset and
used the image encoder output as the appearance feature
embedding. We present our results in Table 6 which shows
that AppearanceNet is more accurate in all cases although
the difference is relatively small in most cases. The supe-
riority of AppearanceNet is most likely due to its focus on
the small number of object classes that are most common in
outdoor surveillance video in contrast to OpenCLIP which
attempts to learn a vast number of object categories.

6. Explainability

The explainability of our method comes from the fact that
our model uses human-interpretable features to describe
what is happening in a scene. Figure 4 shows a visualiza-
tion of a test tracklet from Street Scene. The top, left image
in the figure shows part of the first frame for the tracklet
as well as the bounding box for the tracklet in that frame.

Method Avenue ShanghaiTech
RBDC TBDC RBDC TBDC

Ionescu et al.[12] 15.8 27.1 20.7 44.5
Ramachandra et al. [25] 35.8 80.9 - -
Ramachandra et al. [26] 41.2 78.6 - -
Georgescu et al. [8] 57.0 58.3 42.8 83.9
Liu et al. [15] 19.6 56.0 17.0 54.2
Liu et al. [16] 41.1 86.2 44.4 83.9
Georgescu et al. [9] 65.1 66.9 41.3 78.8
Liu et al.[15] + Ristea et al. [29] 20.1 62.3 18.5 60.2
Liu et al.[16] + Ristea et al. [29] 62.3 89.3 45.5 84.5
Georgescu et al.[9] + Ristea et al.
[29]

66.0 64.9 40.6 83.5

EVAL [32] 68.2 87.56 59.2 89.4
SSMTL++v1 [1] 40.9 82.1 43.2 84.1
SSMTL++v2 [1] 47.8 85.2 47.1 85.6
Our Method 69.6 89.6 59.6 87.6

Table 2. RBDC, TBDC and Frame AUC scores (in %) of various
state-of-the-art methods on Avenue and ShanghaiTech datasets.
The top score for each metric is highlighted in red, while the sec-
ond best score is in bold.

Methods RBDC TBDC
Auto-encoder [10] 0.3 2.0

Dictionary method [17] 1.6 10.0
Flow baseline [25] 11.0 52.0
FG Baseline [25] 21.0 53.0

EVAL [32] 24.3 64.5
Our method 30.9 72.9

Table 3. RBDC and TBDC AUC scores (in %) of various baseline
methods on Street Scene dataset. The top score for each metric is
highlighted in red, while the second best score is highlighted in
bold.

Attributes Ped1 Ped2 Avenue SS
App 35.8 / 71.4 74.4 / 92.1 48.9 / 70.1 29.4 / 69.1
Traj 34.9 / 85.9 76.4 / 97.6 57.3 / 89.5 20.0 / 59.6
Size 28.3 / 68.7 65.8 / 93.1 55.7 / 76.4 21.1 / 58.4

Tracklet 45.3 / 89.4 84.2 / 97.9 69.6 / 89.6 30.9 / 72.9

Table 4. RBDC / TBDC AUC scores (in %) of our method when
using individual components of tracklet representation (appear-
ance, trajectory and size) along with the location component com-
pared with the full representation (Tracklet).

Track Length Ped1 Ped2
5 40.0 / 84.2 81.5 / 94.6

10 45.3 / 89.4 84.2 / 97.9
15 44.4 / 86.3 82.0 / 94.4

Table 5. RBDC / TBDC AUC scores (in %) of our method when
considering different maximum lengths for each tracklet.

The top, right image visualizes all elements of the tracklet.
The image crop in the tracklet visualization shows the ob-
ject’s appearance and represents the appearance embedding
vector. The trajectory is shown in the right side of the track-
let visualization. The initial coordinate of the trajectory is
colored green and the final coordinate is colored red. It is



Attributes Ped1 Ped2 Avenue SS
App 45.3 / 89.4 84.2 / 97.9 69.6 / 89.6 30.9 / 72.9

OpenCLIP 43.4 / 87.8 82.0 / 97.6 62.8 / 87.2 28.9 / 66.4

Table 6. RBDC / TBDC AUC scores (in %) of our method when
using our pre-trained model (App) versus OpenCLIP pe-trained
model as appearance feature extractor.

scaled to fill the space to make it more visible. Without this
scaling, tracklets with small total displacement would not
be visible. This scaling for visualization essentially distorts
the velocity inherent in the trajectory, so the average veloc-
ity is given below the trajectory to indicate the amount of
distortion. The scaling factor for visualizing the trajectory
is inversely proportional to the trajectory’s average veloc-
ity. The height and width of the tracklet’s bounding box
is shown to the left and below the appearance patch. The
top of the tracklet visualization shows the absolute (x, y)
coordinates for the location of the tracklet. The visualiza-
tion of the test tracklet in Figure 4 shows a cyclist mov-
ing downward near the middle of the frame. The exemplar
tracklet with smallest distance to this test tracklet is shown
at the bottom, right of Figure 4. It is a car moving down
and to the right since this is the only object class occurring
near this location in the scene. Exemplars with normal cy-
clists occur much further away and thus have large location
distances. From these visualizations, we can immediately
see that the test tracklet is a different object class (cyclist)
from the closest normal tracklet and that it is moving with
a very different trajectory. A simple textual explanation of
the anomaly which is automatically generated is shown at
the bottom, left of the figure along with the four distance
scores for the location (L), trajectory (P), appearance (A)
and size (S).

Figures 5 and 6 show more visualizations of an anoma-
lous tracklet and the nearest exemplar tracklet. For the car
making a u-turn in Figure 5 it is clear that the trajectory is
what is anomalous and for the sprinting person in Figure 6,
it is also the trajectory and especially the velocity of the test
tracklet that is anomalous.

7. Conclusions
In this work, we have proposed a novel interpretable object-
centric framework for detecting anomalies in a given video
sequence. Our framework is based on (1) decomposing a
scene into objects, (2) representing each object into human-
understandable attributes (trajectory, appearance, size, and
location), and (3) constructing an efficient and informative
model of nominal video by identifying exemplar object
instances. Importantly, learning a model of a new scene
does not require any deep network training which makes it
much more practical for real-world applications. It is also
trivial to extend a model when new nominal video is avail-
able, making it ideal for continual learning. Our method

Figure 4. Visualization example for a region of Street Scene show-
ing an explanation of the “biker outside lane” anomaly.

Figure 5. Visualization example for a region of Street Scene show-
ing an explanation of the “car making u-turn” anomaly.

Figure 6. Visualization example for a region of CUHK Avenue
showing an explanation of the “person sprinting” anomaly.

achieves strong results on five different benchmarks and, in
particular, state-of-the-art results under RBDC and TBDC
criteria on CUHK Avenue, Street Scene, and ShanghaiTech
datasets, highlighting the precision and generalizability
of our method. Furthermore, our method is interpretable;
every anomaly classification decision can be explained
in terms of an object’s appearance and motion attributes
that differ from objects observed in nominal video. Thus,
our method exhibits a number of desirable properties for
a robust, real-world video anomaly localization system.
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