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a method for regressing this wind model into a more compact representation; and finally
(iv) demonstrate how this representation is amenable to minimum-snap motion planning of
quad-rotor UAVs in realistic environments. We validate our approach using simulations and
hardware experiments, and show a significant improvement in the thrust used by the UAV in
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Leveraging Computational Fluid Dynamics in UAV Motion Planning

Yunshen Huang, Marcus Greiff, Abraham Vinod∗, and Stefano Di Cairano

Abstract— We propose a motion planner for quadrotor un-
manned aerial vehicles (UAVs) in windy environments, where
the motion is defined by a sequence of Bézier curves in the
flat output space of the UAV. The real-time implementable
planner incorporates wind information from high-fidelity com-
putational fluid dynamics simulations performed offline and
utilizes convexity properties of Bézier curves to enable real-time
implementations. For this purpose, we: (i) identify a model for
the UAV-wind interaction; (ii) use the OpenFoam software to
compute a model of the wind speeds subject to world geometry
and boundary conditions; (iii) describe a method for regressing
this wind model into a more compact representation; and
finally (iv) demonstrate how this representation is amenable to
minimum-snap motion planning of quad-rotor UAVs in realistic
environments. We validate our approach using simulations and
hardware experiments, and show a significant improvement in
the thrust used by the UAV in presence of strong winds.

I. INTRODUCTION

Emerging technologies such as the wind-LiDAR in [1]
promise instantaneous estimates of spatial wind speed vector
fields. It is therefore relevant to ask how to best leverage
such information to aid UAV motion planning. This question
comes with several challenges, and needs to be addressed
both at the level of the motion planner and at the level
of the underlying controllers. The proposed approach builds
upon existing motion planning methods with minimum-snap
objectives over motions defined as parametric curves, such
as the polynomial planning in [2]–[5], and the related Bézier
approaches in [6]–[8]. In these methods, quadratic programs
(QPs) or mixed-integer QPs (MIQPs) are formulated with
objectives in the total variation of the higher-order derivatives
of the motion. By ensuring smoothness of the planned tra-
jectories, such approaches guarantee motion feasibility with
respect to the full nonlinear UAV dynamics [9]. However,
in the context of wind disturbances, there are significant
drawbacks with the aforementioned methods:

• The flexibility of the objective is limited, as snap (the
fourth derivative of motion) is a geometric property that
is not influenced by disturbances [2]–[4], [6]–[8].

• If considering wind, the corresponding flatness equa-
tions [2], [9] of UAVs are well defined only if the
disturbance is sufficiently smooth in time.

Exogenous forces caused by wind or gravity contribute
significantly to the total energy consumed by a UAV while
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Fig. 1. (A) Two-dimensional slices of the CFD solution that is leveraged in
the motion planner, here with a complex world geometry and wind boundary
conditions (green). (B) Experiment setup in with a circulator fan (red circle).

flying [10] and should therefore be incorporated into the
objective. However, additional care is required to formulate
tractable optimization problems which retain the favorable
computational properties of the minimum snap planning [3],
[4], [6], [7]. To this end, we discuss how high-fidelity
computational fluid dynamics (CFD) simulations, such as the
flow depicted in Fig. 1, can be incorporated in the above
mentioned approaches by simply augmenting the objective
function. The approach is not limited to a specific planner,
but can be used with the planning methods in [5]–[8].

A. Contributions

The contributions of this paper are threefold:

• We provide analytical expressions to aid the construc-
tion of a combined minimum snap and thrust cost as
a function of the control points of time-scaled Bézier
curves, and show the resulting objective to be bi-convex.

• We demonstrate how high-fidelity CFD models can be
used to regress a disturbance model in an appropriate
function class, specifically when the disturbance is wind
acting on the translational motion of the UAV.

• We provide simulations and conduct experiments with a
lightweight UAV (Crazyflie 2.1 [11]) to demonstrate the
approach in an environment with complex geometries
and wind fields emulating an urban landscape.

B. Outline

The mathematical preliminaries are given in Sec. II. A set
of modeling assumptions are then introduced and challenged
in Sec. III, describing how free-space is computed, the CFD
simulator interpolation, the UAV-wind interaction and its



experimental validation. This is followed by the definition
of a the planning objectives in Sec. V. Supporting numerical
and experimental results for UAV path planning are given
in Sec. VI, and the conclusion in Sec. VII closes the paper.

II. PRELIMINARIES

Vectors are written x ∈ R
n with [x]i denoting the ith

element of x, and ei denotes a unit vector where [ei]i = 1.
The identity matrix is denoted Id ∈ R

d×d and the zero matrix
is denoted 0. We let ∥x∥2 = x⊤x, and take (Sn+)Sn++ to be
the cone of n × n positive (semi)definite matrices. For any
set of points, P = {pi ∈ R

d|i = 1, ..., n}, we let hull(P)
denote their convex hull, pnt(P) = 1

n

∑n

i=1 pi ∈ R
d be a

point in its interior and vol(P) denote its volume. A function
f : A 7→ B is said to belong to f ∈ Ck(A,B) if it is k-
times continuously differentiable on A. Let S : R3 7→ R

3×3

such that S(a)b = a × b is the cross product. Further, we
let ⊗ denote the Kronecker product, and for smooth curves
B ∈ Ck([0, T ],Rd) we write their squared L2-norms

∥B∥2L2([0,T ]) =

∫ T

0

∥B(t)∥22dt. (1)

A. Bézier Curves

To represent the UAV motion and analyze the effects of
wind on its thrust, we consider Bézier curves [12].

Definition 1 (Bézier curve) A Bézier curve of degree n
denoted B : [0, 1] 7→ R

d is defined by n + 1 control points

P = {p̄i ∈ R
d : d > 1, i ∈ [0, ..., n]} as the interpolation

B(λ;P) =
n
∑

i=0

(

n
i

)

(1− λ)(n−i)λip̄i ≜

n
∑

i=0

αn
i (λ)p̄i. (2)

As it is sometimes useful to consider P as a set of points, and
other times as a vector, let p = vec(P) ≜ (p̄⊤

0 , ..., p̄
⊤
n )

⊤. The
Bézier curve is a convex interpolation in its control points,
resulting in the following properties (see, e.g., [12]).

Property 1 Any Bézier curve is contained in the convex hull

of its control points B(λ;P) ∈ hull(P) for all λ ∈ [0, 1].

Property 2 The kth derivative of a Bézier curve is a Bézier

curve of order n− k, (dk/dλk)B(λ;P) = B(λ;P(k)), and

the control points P and P(k) are related by a linear map.

Property 3 The squared L2-norm of B(λ;P) is strictly

convex in the control points P over its domain λ ∈ [0, 1].

B. Time-scaled Bézier Curves and Trajectories

In the following, we relate motions along these curves to
signals such as wind speeds, which are defined in time. To
this end, we consider a time-scaled Bézier curve as follows.

Definition 2 (Time-scaled Bézier curve) For a Bézier

curve B(λ;P), its time scaled equivalent is defined by a

coordinate transform λ = tT−1 with t ∈ [0, T ] for T > 0.

With this time-scaling, Property 1 holds and Properties 2–
3 can easily be modified to derivatives/integration in t. In the
following, we consider a set of m segments {Bi : [0, Ti] 7→

R
d}mi=1, where Bi(t) = B(tT−1

i ;Pi) for some Ti > 0, d >
0, and construct a Bézier trajectory B : [0, T ] 7→ R

d, as

B(t) = Bi(t− τi) ∀t ∈ [τi, τi+1], τi =

i−1
∑

j=1

Tj , (3)

where T =
∑m

i=1 Ti and T0 = 0. To simplify notation, we
let pi = vec(Pi) ∈ R

d(n+1) be the control points associated
with the ith curve, and define all of the control points
associated with B in (3) as p = (p⊤

1 , . . . ,p
⊤
m)⊤ ∈ R

md(n+1)

and collect time intervals in t = (T1, . . . , Tm) ∈ R
m
+ .

C. UAV Dynamics and Properties

The UAV is configured in (r,R) ∈ R
3 × SO(3) with

SO(3) = {R ∈ R
3×3 : R⊤R = I, det(R) = 1}. Here, {G}

is a global frame with a basis {ei}
3
i=1, and {O} denotes

the body frame with a basis {eOi }
3
i=1, where [e1, e2, e3] =

R⊤[eO1 , e
O
2 , e

O
3 ]. From first principles [13, Chapter 2.3.5],

ṙ = v (4a)

mv̇ = fRe3 −mge3 (4b)

Ṙ = RS(ω) (4c)

Jω̇ = S(Jω)ω + τ , (4d)

where r ∈ R
3 [m] defines the position of the UAV in the

global frame {G}; v ∈ R
3 [m/s] defines the velocity of the

UAV in {G}; R ∈ SO(3) defines the attitude of the UAV;
ω ∈ R

3 [rad/s] denotes the usual attitude rates defined in
{O}; f > 0 [N] defines the thrust generated by the rotors;
τ [N·m] denotes the torques defined in {O}. The model is
parameterized by an inertia matrix J ∈ S

3
++ [kg·m2], a mass

m > 0 [kg], and the gravitational acceleration g > 0 [m/s2].
It is well known that the UAV dynamics are differentially
flat [2], [9]. For the purpose of modeling Newtonian wind
interactions, we note that (4) remains differentially flat if
there is a known and sufficiently smooth, additive disturbance
on (4b) by following the proofs in [2]. The maps from flat
outputs to states and control signals can be found in [2], [9].

III. WIND MODELING

At its most granular level, we model the wind as governed
by the incompressible Naviér-Stokes equations, with kine-
matic pressure ρ ∈ R

3 [m2/s2] and wind velocity u ∈ R
3

[m/s], evolving by the partial differential equations (PDEs)

∇x · u = 0 (5a)

(∂/∂t)u+∇x(uu
⊤)−∇x ·Ru = −∇xρ+ Su, (5b)

where Ru is a stress tensor and Su is a momentum source
(see, e.g., [14]). This PDE is considered over a compact set
Ω ⊂ R

3 with boundary bnd(Ω) =
⋃

iBi partitioned into an
inlet surface B1, a ground surface B2, an outlet surface B3,
and a boundary surface B4. Specifically, we consider

u(x, t) = u0(x), ∀x ∈ B1 (inlet) (6a)

u(x, t) = 0, ∀x ∈ B2 (ground) (6b)

∇xu(x, t) = 0, ∀x ∈ B3 (zero grad) (6c)

∇xu(x, t) · n(x) = 0, ∀x ∈ B4 (slip) (6d)



where n(x) denotes the normal of the surface x ∈ bnd(Ω)
pointing into the interior of Ω. The inlet flow is uniform

u0(x) = V (cos(ψ), sin(ψ), 0) ∀x ∈ B1, (7)

such that we can characterize the wind by means of an
inlet velocity and a wind direction. The boundary conditions
(BCs) are determined by θ = (V, ψ,B1, B2, B3, B4). In
the experiments, the wind is created by a fan in a small
wind tunnel (see Fig. 1), and Ω is taken to be a box with
vol(Ω) ≈ 47m3. In this setting, the inlet is a small face
B1 = {(x, y, z) ∈ Ω|x = −1.2,−1.35 ≤ y ≤ −1.05, 0.42 ≤
z ≤ 0.7}; the bottom plane and buildings are ascribed the
ground BC in (6b); the walls are ascribed the zero gradient
BC in (6c); and the top is given a slip BC in (6d).

To solve (5), we employ the OpenFoam software [14]
with the SIMPLE algorithm [15] and a finite element (FE)
discretization of Ω to approximately solve (5) over a mesh
by given a set of boundary conditions and general non-
convex obstacle geometries, G, represented as .stl-files.
The stationary velocity field solution of (5) computed for
a specific θi is denoted ui(x), stored as a large number
of three-dimensional vectors associated with each element
in the mesh. An example of a geometry G and solution
computed for (V, ψ) = (2, 0) is shown in Fig. 1.

A. Look-up Tables

As solving (5) takes a significant amount of time, this is
done offline. Having done so, we get a set of N stationary
solutions to (5) corresponding to the parameters {θi}

N
i=1.

Note that we can also compute a set of transient solutions
θi with the same boundary conditions. Yet this paper only
considers stationary solutions with the intention of finding
the ui(x) which most closely matches the real-time estimates
of methods such as [1] and approximating the future wind
flow with the corresponding stationary solution to (5).

IV. WIND REPRESENTATION AND INTERACTION

In keeping with the literature on UAV planning over Bézier
curves [6], [7], we leverage Property 1 and consider the
trajectory in (3) as being confined to sets in space over
intervals in time. These sets are referred to as free-space

sets F =
⋃

i Fi, where Fi is a polyhedral set. The wind
speed representation and regression are discussed in Sec. IV-
A, before modeling the UAV-wind interaction in Sec. IV-B.

A. Wind Regression

To facilitate real-time motion planning, we now discuss
a convexity-preserving, regression-based strategy to incor-
porate the wind information from the CFD solutions into
the motion planner. It is therefore interesting to consider
the wind speeds along trajectories in Ω. Here, we do this
by means of regression. Specifically, we assume that there
exists a motion trajectory B(t) that passes through a con-
nected sequence of m free-space sets characterized by the
parameters (p, t). We then define a wind trajectory W(t)
as a yet another Bézier trajectory of the same degree, with
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Fig. 2. The wind speeds (red) interpolated along a motion trajectory in
space from CFD solution depicted in Fig. 1, and a regression of a Bézier
curve to this data, computed by solving (10) for w.

parameters (w, t). Finally, we define a loss function in terms
of the total variation distance

JR(w;p, t) = ∥W(t)− u(B(t))∥2L2([0,T ]). (8)

where u is a CFD solution to the wind speeds. This objective
is not generally convex, but can be rewritten by discretizing
time as {tk = hk}Kk=0 such that t0 = 0 and tK = T . Each
point u(B(tk)) along the trajectory can then be associated
with a spline index j and a distance along that curve, as

Dj = {(λk,u(B(tk)) | λk = (tk − τj)T
−1
j ∈ [0, 1]}. (9)

By Riemann-integration, the loss in (8) can be approximated

JR(w;p, t) ≈
1

h

m
∑

j=1

∑

(λ̄k,ūk)∈Dj

∥(α(λ̄k)⊗ Id)wj − ūk∥
2
2

∝ ∥Aw −D∥22, (10)

where D⊤ = (d⊤
1 , ...,d

⊤
m), A = diag(A1, · · · ,Am), and

Aj =









...
...

αn
0 (λ̄k) · · · αn

n(λ̄k)
...

...









⊗ Id, dj =









...
ūk

...









, (11)

for all (λ̄k, ūk) ∈ Dj . This problem can be solved over each
curve independently and the problem is well posed if and
only if K is chosen such that minj |Dj | ≥ n+ 1, implying
that A⊤A is of full rank. Here, we need to formulate it
across all of the curves (10) to enforce equality constraints
in the regression which ensure W ∈ Ck([0, T ],R3). This is
required to expand B and W into the flat output space of the
UAV. The formulation of such constraints will be discussed in
Sec. V-B, and a solution of W(t) for a given B(t) computed
with respect to the solution in Fig. 1 is depicted in Fig. 2.

B. Wind Interaction

When considering UAV-wind interaction, it is relatively
common to model wind as a forcing term (viscous friction)
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Fig. 3. Sampled data and the regressed linear model in the e1-direction.

experienced by an object moving through a fully enclosing
fluid [16, Chap. 4.5]. This results in a quadratic force,

fd(δ) =
1

2
ρcdAδ

2 ∈ R, (12)

where δ [m/s] is the velocity of the object relative to the
fluid, ρ [kg/m3] is the fluid mass density, A [m2] is the
reference area of the object, and cd [·] is the drag coefficient.
In the following, we consider the translational dynamics of
the UAV (4b), and model the forcing term as

mv̇ = fRe3 −mge3 + fd(u(r)− v), (13)

where u(r) is the wind speed along the UAV motion in time.
Instead of directly deriving the forcing term by measuring
parameters in (12), we take a data-driven approach and define

ȳ = mv̇ − fRe3 +mge3 ∈ R
3 (14a)

x̄ = u(r)− v ∈ R
3. (14b)

These signals are sampled over multiple experiment trajecto-
ries, and stored as K input/output pairs D = {(x̄k, ȳk)}

K
k=1.

An approximate model of the forcing term is defined as

fd(x̄;α)=

L
∑

l=1

φl(x̄)αl, α= (α1, . . . ,αL)∈R
3L, (15)

with L differentiable kernels ϕl : R3 7→ R
3×3, before solving

argmin
α
∥ȳk − fd(x̄k;α)∥22. (16)

The forcing term (13) only depends on the relative wind
speed, and it is therefore easiest computed in the absence of
wind. After forming D from several trajectories with u(r) ≡
0 using a Crazyflie 2.1 [11], we obtain a good fit with a
linear model φ1(x̄) = diag(x̄), α1 = 10−2(3.3, 2.7, 2.2)
and L = 1 (see Fig. 3). Additional terms result in models that
are rejected by standard Bayesian information criteria [17].

The simple Newtonian UAV-wind interaction in (13) is
approximate, especially for lightweight UAVs such as the
Crazyflie, which are notoriously sensitive to turbulence ef-
fects [10]. Furthermore, the lift and drag forces of the rotors
are non-trivially affected by Bernoulli effects on the rotor
blades [18]. Some of these phenomena may be captured by
regressing a wind model using real-time wind measurements.
However, this is beyond the scope of the present paper.

V. PLANNING WITH WIND OVER BÉZIER CURVES

A. Objective function

Equipped with the CFD wind information, we next formu-
late a planing objective including the snap of the trajectory,

JS , the thrust consumption due to wind, JW , and the total
time of the maneuver. The objective function is defined as

J(p, t;w) = kSJS(p, t)+kWJW (p, t;w)+kTT, (17)

for some weights kS , kW , kT > 0. Notably, when fixing w,
(17) can be shown to be bi-convex in (p, t) if Tj > 0, ∀j,
and its gradient and hessian in (p, t) are are known in closed
form. By setting kW = 0 we can get a minimum snap
objective, and by adjusting the ratio kW /kS we can get
solutions that leverage the wind to a varying extent. The
components of the cost function is defined in the following.

1) Minimum Snap: For path planning in parametric
curves, it is common to define a cost that penalizes the total
variation of higher-order derivatives of the motion plan [3].
In the context of time-scaled Bézier curves, this objective
can be expressed as

JS(p,t) =

n
∑

k=0

ck∥(d
k/dtk)B(t)∥2L2([0,T ]) =

m
∑

j=1

p⊤
j QS(Tj)pj

(18)

with weights ck > 0 for all k = 0, ..., n. This is notably
a strictly bi-convex function in p and t, on the domain
(p, t) ∈ R

dm(n+1) × R
m
>0. While this minimum-snap-like

cost function captures some signals of interest, such as
translational kinetic energy, it is agnostic to any external
disturbances acting on the UAV. As such, we express the
squared L2-norm of the UAV thrust as an objective.

2) Minimum Thrust: To express a cost in the thrust of the
UAV given (13), we start by noting that

∥f∥22 = ∥mv̇ +mge3 −K(u(r)− v)∥22, (19)

for a matrix K = (∂/∂x̄)fd(x̄) = diag(α1), given that (15)
is linear in x̄. Consequently, the L2-norm of the thrust can
be written in terms of the trajectories B and W as

JW (p, t;w) = ∥f∥2L2([0,T ]) (20)

= ∥m d2

dt2B(t) +K d
dtB(t) +mge3 −KW(t)∥2L2([0,T ])

Here, we can utilize the fact that a sum of two Bézier curves
of degree n is another Bézier curve of degree n, with an
additive relationship between the control points. As such,
we can define a new curve V with points

v = 1(n+1)m ⊗mge3 − (I(n+1)m ⊗K)w, (21)

whereby (20) can be written as a quadratic in p,

JW (p,t;w) = ∥m d2

dt2B +K d
dtB + V∥2L([0,T ]) (22)

=

m
∑

j=1

(pj + vj)
⊤QW (Tj)(pj + vj).

Similar to (18), for fixed w, (22) is bi-convex in (p, t).

B. Constraints

Next, we introduce associated constraints. Here we con-
sider safety constraints (SCs), continuity constraints (CCs)
across splines, and generalized waypoint constraints (WPs).



1) Safety Constraints: To ensure safety, we confine the
segments of the trajectory in (3) to free space, leverag-
ing Property 1. Specifically, for a connected route R =
{r1, ..., rm} passing through a convex set Frj = {x ∈
R

3|Arjx ≤ brj}, we constrain the jth segment of the motion

(Arj ⊗ In+1)pj ≤ brj ⊗ 1n+1. (23)

In the context of the curve B(t) in (3), enforcing (23) across
all j ∈ [1,m] implies that

B(t) ∈

m
⋃

j=1

Frj , ∀t ∈ [0, T ], (24)

without invoking the times t in the inequality constraints.
2) Continuity Constraints: To guarantee that the planned

motion is dynamically feasible, we need to ensure that the
trajectory is sufficiently smooth across the end-points of the
curve. Given Beziér trajectories B(t) of degree n,

(dk/dtk)Bj(Tj) = (dk/dtk)Bj+1(0) (25)

as an equality constraint

[

Mk
n(Tj) −Mk

n(Tj+1)
]

[

pj

pj+1

]

= 0. (26)

Enforcing the constraint (26) across the j ∈ [1,m − 1]
connecting points for every derivative up until and including
k ensures that the planned trajectory B ∈ Ck([0, T ],R3).

3) Generalized Waypoint Constraints: Finally, the end-
points of the curve B(t) in (3) needs to be constrained. Here,
we define feasible to a initial and terminal convex sets

B(0) ∈ X◦ = {x ∈ R
d|AI

◦x ≤ bI◦ ,A
E
◦ x = bE◦ } ⊆ Fr1

B(T ) ∈ XT = {x ∈ R
d|AI

Tx ≤ bIT ,A
E
T x = bET } ⊆ Frm

which can be formulated in terms of p, as
[

AI
◦ 0d

0d AI
T

]

N(n, d)

[

p1

pm

]

≤

[

bI◦
bIT

]

(27a)
[

AE
◦ 0d

0d AE
T

]

N(n, d)

[

p1

pm

]

=

[

bE◦
bET

]

(27b)

where

N(n, d) =

[

Id 0d×2dn 0d

0d 0d×2dn Id

]

(28)

As such, we can constrain the initial position of the UAV to
a point, a line, a plane or a region in space, and we can also
to apply such constraints at any time t ∈ [0, T ] by modifying
the map corresponding to N(n, d).

Remark 1 For UAVs, it is sometimes desirable to start from

a stable hovering configuration. Here, it is worth noting that

v(0) = v̇(0) = ω(0) = ω̇(0) = τ (0) = 0 is ensured by

[

Id 0
]

Mk
n(T1)p1 = 0 ∀k > 0, (29)

when picking a sufficiently large k ≤ n.

C. Complete Planning Algorithm

Given the cost in (17), and the constraints in (23), (26),
and (27), for a specified route R, we can formulate and solve

Minimize J(p, t) (30a)

Ap ≤ b (30b)

C(t)p = 0 (30c)

t ≥ 0. (30d)

As the objective function is bi-convex in p and t given w, we
propose a block coordinate descent (BCD) approach in which
we start from a feasible point (p(0), t(0)) and solve (30) with
fixed t = t(0) as a quadratic program (QP). We then fix
p = p(1) and minimize the objective (30a) using a Newton
method (NM), leveraging the fact that we can express the
gradient and Hessian of the cost functions analytically.

Algorithm 1 Wind planning algorithm (SQP version).

1: Receive: Geometry Ω, r, G, and BCs {θl}
L
l=1

// Compute CFD solutions from geometry

2: Solve (5) given {θl}
L
l=1 for a look-up table {ul(x)}

L
l=1.

// Compute free space sets

3: Compute F given {ul(x)}
L
l=1

// Compute UAV-wind interaction model

4: Identify fd by solving (16) given {ul(x)}
L
l=1.

// Online re-planning (when queried)

5: Receive: Route R, and initial/terminal sets X0,XT

6: Select specific CFD solution ul(x)
7: Define X(0) = (p(0), t0) as in (17) given R

// Solve optimization problem

8: while ∥X(i) −X(i−1)∥∞ > ϵ do

9: Compute w(i) by minimizing JR in (10) given X(i)

10: Solve (30) for p(i+1) given t(i) and w(i)

11: Update t(i+1) by a NM given p(i+1) and w(i)

12: end while

VI. NUMERICAL EXAMPLES

To illustrate the benefits of complementing the minimum-
snap motion planning with a cost expressed in the form
of (20), we give an example where a trajectory is to be
planned in the positional three-dimensional (d = 3) subspace
of the flat output space of the UAV. This is done with
the geometry and CFD solution depicted in Fig. 1. For
illustration purposes and to get a fair comparison, we fix
the time intervals such that the motions are defined over an
equal total time interval, with T = 7.5s and Tj = T/m.
Furthermore, we chose the relative weighting of derivatives
in (18) as c4 = 1 with ck = 10−3 for all k ̸= 4, producing
a slightly regularized minimum snap trajectory. The free
space sets are computed using a world geometry that is
inflated along its normal directions by r = 0.1m. The degree
of each Bézier segment is set to n = 7, and each curve
is confined to a free-space set using the safety constraints
in (23). Continuity constraints are enforced up to the fourth



A B

C D

Fig. 4. Two views of the obstacle geometry (gray), the initial set X0 (blue), and the terminal set XT (green), with a section of the CFD solution and
projection of the free-space sets (magenta) at z = 0.5m. Optimal solutions with a minimum-snap cost (blue) and minimum-thrust cost (green) are shown,
respectively. Faint black trajectories in (A) and (B) are plotted based on flight logs recorded in the lab with real wind (C) using the Crazyflie (D).

derivative as per (26). Generalized end-point constraints are
enforced as in (27) and (29), with initial and terminal sets

X0 = {x ∈ R
3|x0 − δ ≤ x ≤ x0 + δ}, (31a)

XT = {x ∈ R
3|xT − δ ≤ x ≤ xT + δ}, (31b)

x0 = (2.00,−0.65, 0.75)⊤, (31c)

xT = (0.25,−2.50, 0.75)⊤, (31d)

δ = (0.05, 0.05, 0.25)⊤. (31e)

In one planner, the objective in (17) is (i) defined with
kW k−1

S = 10−4, amounting to a minimum snap-like solu-
tion. In the other planner, (ii) the thrust cost is set to dominate
the total objective, with kW k−1

S = 104. When considering
motions for the possible routes in R, we obtain two very
different solutions shown in Fig. 4, with optimal costs:

(i) JS(p
⋆, t) = 4.310, and JW (p⋆, t) = 0.75 (32a)

(ii) JS(p
⋆, t) = 39.33, and JW (p⋆, t) = 0.73 (32b)

Including knowledge of the wind results in a small reduction
of UAV thrust at the expense of making the trajectory more
volatile (increasing the snap cost). When studying Fig. 4, it is
clear that the planner achieves this by selecting the corridor
with lesser wind, which is antagonistic in this example. A
slight detour is taken in case (ii) in order to minimize wind
exposure. The thrust cost difference is quite small in the
case of the Crazyflie, due to the small impact of Newtonian
drag and the low operating speeds. However, for larger
UAVs operating at higher speeds with a greater influence of
Newtonian drag, the performance gains will be much greater
(as illustrated in Section VI-A).

When inflating the trajectories point-wise with spheres of
radius 0.1m, the obstacle inflation and confinement of the
trajectory to the free-space sets yield collision-free trajec-
tories with the control points residing on the boundary of
the safety sets. The resulting motions in (i) and (ii) are not
conservative given the constraints imposed in Section V-B.

A. Performance Improvement as a Function of Drag

The considered objective only takes the Newtonian effects
of wind into account. As such, it is relevant to explore
how varying levels of drag affect the planner performance
when introducing a minimum-thrust cost. To study this, we
consider the same initial and terminal sets as in (31), and
study two cases. In the first, we confine the trajectory to
the corridor with the more wind, and compute the differ-
ence between thrust cost of solutions with (i) dominating
minimum snap costs (kW k−1

S = 10−4) and (ii) dominating
minimum thrust costs (kW k−1

S = 104), respectively. We do
this for a large number of drag models K = βKnominal

for β ∈ [0, 10], where Knominal is the model regressed in
Section IV-B, and compute the ratio

R(β) =
JW (p⋆, t)|kW k

−1

S
=10−4

JW (p⋆, t)|kW k
−1

S
=104

. (33)

This is a measure of thrust usage of (i) vs (ii) when
varying the influence of drag. As expected, we note a
clear performance improvement with increasing drag and
permitting the planner to select either route (see Fig. 5,
black) and this performance increases with the magnitude of
the drag coefficient. If confining the trajectory to the same



exposed path in both (i) and (ii) we see a lesser performance
improvement, but even here, we note an improvement in the
used thrust of the UAV of upwards of 15% just by accounting
for how the wind varies thought the more exposed corridor.

0 1 2 3 4 5 6 7 8 9 10
1

1.2

1.4

1.6

Drag factor β (K = βKnominal)

R
at
io

R
(β
)

Restricting motion to high wind corridor
Permitting motion in both corridors
β = 1 corresponding to the Crazyflie

Fig. 5. Gap in thrust cost with (i) a planner that ignores wind and (ii) a
planner that leverages wind when increasing the gains of the drag model.

B. Experiments with Real Wind

To verify the implementation and further demonstrate
planning approach, a Crazyflie UAV [11] was flown along
the trajectories computed in Fig. 4 using an Optitrack motion
capture system. The UAV was controlled using the nonlinear
geometric tracking controller in [19], and the thrust-cost
in (20) was computed directly from the total thrust used to
compute the motor commands. Note that this is not the true
thrust of the UAV, which we have no way of measuring, but
it is a good proxy. The experiment was repeated N = 10
times per trajectory with the positional response shown in
Fig. 4 (A and B), resulting in the mean thrust usage

(i) E[∥f∥2L2([0,T ])] = 0.90 (kW k−1
S = 10−4) (34a)

(ii) E[∥f∥2L2([0,T ])] = 0.88 (kW k−1
S = 104). (34b)

The corresponding theoretical values in (32) are an under
approximation of the experimental results in (34), but we
note that the relative difference in thrust usage is strikingly
similar. However, we emphasize that there are many sources
of uncertainty, warranting a much larger number of sampled
trajectories due to the large number of factors affecting
the UAV thrust. Such factors include the absence of feed-
forward terms in the controller, the turbulent nature of the
wind generated by the fan, and Bernoulli effects that seem
to dominate the UAV-wind interaction with the Crazyflie in
our experiment setup. Such small difference in thrust cost
is expected when operating the Crazyflie at low speeds, as
indicated by (32) and Fig. 5, but larger UAVs are likely to
see a greater benefit of incorporating the wind information.

VII. CONCLUSIONS

In this paper, we demonstrate that classical minimum-
snap-like motion planning over Bézier curves can be com-
plemented by additional cost functions that describe the total
thrust used by the UAV actuators during a maneuver. We
show that if formulated appropriately, the thrust cost is bi-
convex in the control points of the Bézier curve and the time-
intervals under a linear Newtonian UAV-wind interaction. As

such, any Bézier-based motion planner that operates with
an objective function expressed in the weighted sum of L2-
norms of high-order motion derivatives can be complemented
by the proposed cost, and may leverage wind information.

Using the developed theory, we describe how information
from high-fidelity CFD simulators can be leveraged to better
plan the motions of the UAVs while retaining computational
tractability. The key being a temporal regression of the
disturbance in the same function class that motion of the
UAV is represented by. To this end, the UAV-wind interaction
was studied experimentally, and the expected theoretical
reduction in thrust was subsequently seen in the experiments.
However, it should be noted that the impact of including
thrust in the planner will be significantly greater for larger
UAVs with larger drag coefficients (as shown in Fig. 5).
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