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Abstract

Conventional radar feature extraction faces limitations
due to low spatial resolution, noise, multipath reflection,
the presence of ghost targets, and motion blur. Such limita-
tions can be exacerbated by nonlinear object motion, par-
ticularly from an ego-centric viewpoint. It becomes evident
that to address these challenges, the key lies in exploiting
temporal feature relation over an extended horizon and en-
forcing spatial motion consistence for effective association.
To this end, this paper proposes SIRA (Scalable Inter-frame
Relation and Association) with two designs. First, inspired
by Swin Transformer, we introduce extended temporal rela-
tion, generalizing the existing temporal relation layer from
two consecutive frames to multiple inter-frames with tem-
porally regrouped window attention for scalability. Second,
we propose motion consistency track with the concept of a
pseudo-tracklet generated from observational data for bet-
ter trajectory prediction and subsequent object association.
Our approach achieves 58.11 mAP@0.5 for oriented object
detection and 47.79 MOTA for multiple object tracking on
the Radiate dataset, surpassing previous state-of-the-art by
a margin of +4.11 mAP@0.5 and +9.94 MOTA, respec-
tively.

1. Introduction
Automotive perception involves the interpretation of the ex-
ternal driving environment and internal vehicle cabin con-
ditions with an array of perception sensors to achieve ro-
bust safety and driving autonomy [40]. Compared to opti-
cal camera and lidar sensors, radar is cost-effective, friendly
to sensor maintenance and calibration, and has distinct ad-
vantages in providing long-range perception capabilities in
adverse weather and lighting conditions [59].

Nevertheless, a notable limitation of radar-based auto-
motive perception is its low spatial resolution in the az-
imuth and elevation domains, and its inherent noise, includ-
ing multipath reflection,ghost targets and motion blur. As
a result, its ability to detect and track objects lags behind
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Figure 1. Conventional radar perception pipelines such as Tempo-
Radar [27] (Bottom Row) rely on a limited number (one or two) of
frames and the limited time horizon may lead to incorrect feature-
level and object-level association (e.g., t = T − 1) and propagate
to subsequent frames (e.g., t = T ). In contrast, SIRA (Top Row)
accounts for joint spatio-temporal consistency over an extended
temporal horizon (e.g., all 3 frames here), allowing for more ac-
curate association in nonlinear motion scenarios even in an ego-
centric viewpoint.

the requirements for fully autonomous driving capabilities.
Recently, standalone radar-only perception has been inves-
tigated in [1, 14, 27, 28, 38, 39, 60]. Li et al. [27] proposed a
framework called TempoRadar to study temporal attention
to features from 2 ego-centric bird-eye-view (BEV) radar
frames. It has shown promising performance gains when
evaluated on the large-scale open Radiate [47] dataset.

However, such limitations can be exacerbated by non-
linear object motion, particularly from an ego-centric BEV.
In particular, low frame rates result in significant influence
from the nonlinearity of object motion, leading to frequent
tracking errors. Conventional radar perception pipelines
such as TempoRadar enables prediction based on informa-
tion from the previous frame, but in the case of objects with
fast and nonlinear motion within radar frames, such infor-
mation is inadequate (Bottom of Fig. 1). Although applying
Kalman filter (KF [24])-based algorithms [4, 8, 12, 62], is
possible, radar perception is difficult to relate accurately due



to a complex combination of factors, including the effects of
high-speed nonlinear motion dynamics and the lack of de-
tailed appearance features due to low resolution. To address
these limitations and improve radar perception for object
detection and tracking, we propose a framework called scal-
able inter-frame relation & association (SIRA). SIRA con-
sists of two modules: extended temporal relation (ETR) and
motion consistency track (MCTrack). The contributions of
this study are as follows:
• We introduce ETR, generalizing the existing temporal

relation layer from two consecutive frames to multiple
inter-frames with temporally regrouped window attention
for scalability. It emphasizes the temporal consistency
of moving objects by enabling accurate detection while
maintaining computational efficiency over long time hori-
zon. This can facilitate easy detection through consistent
correlations across multiple frames at the object level.

• We designed MCTrack based on the concept of pseudo-
tracklets, which are generated by using a learnable mod-
ule to predict the arbitral nonlinear motion of an object
between multiple frames, and the association caused by
these pseudo-tracklets enhances spatial consistency dur-
ing inference. Thus, MCTrack enables more reliable po-
sition predictions, even in scenarios with fast-moving ob-
jects and low frame rates.

• We propose SIRA that adopts a loss function for the end-
to-end learning of these two modules, achieving stable
predictions that capture the spatio-temporal consistency
of nonlinear moving objects.

• We evaluate SIRA on Radiate [47], a BEV radar dataset.
Our approach achieves 58.11 mAP@0.5 for oriented ob-
ject detection and 47.79 MOTA for multiple object track-
ing on the Radiate dataset, surpassing previous state-
of-the-art by a margin of +4.11 mAP@0.5 and +9.94
MOTA, respectively.

2. Related Work for Radar Perception

Automotive radar predominantly employs a frequency-
modulated continuous waveform (FMCW) for object detec-
tion, generating point clouds. The fundamental of FMCW
is explained in Appendix 18. In addition, we defer a short
review of recent visual tracking in Appendix 6.

Detection by Radar: For automotive perception, radar-
assisted multimodal approaches were proposed [10, 29, 34,
42, 51, 55]. Compared with multimodals, standalone radar-
only perception has been studied in [1, 13, 14, 27, 28, 38,
39, 60]. A multi-view feature fusion method was proposed
in [14] to combine features from range-Doppler, range-
angle, and angle-Doppler radar heatmaps for object classifi-
cation. As opposed to single-frame radar feature extraction,
Li et al. [27] proposed TempoRadar with 2 frames.

Mutiple Object Tracking by Radar: Object tracking
with radar has seen several proposals depending on the spar-
sity or density of the radar points obtained for each ob-
ject [40]. For sparse radar detection points, model-based
tracking algorithms have been explored in the context of
extended object tracking (EOT) [16]. They use Bayesian
filtering [3, 6, 17, 25, 37, 49, 53] to model the spatial distri-
bution of radar detection points across the vehicle’s range
and predict and update the extended states such as posi-
tion and velocity. Moreover, to address the nonlinearity
problem due to objects deviating from constant linear mo-
tion, algorithms such as extended KF [48] and unscented
KF [23] have been proposed to handle nonlinear motion us-
ing first- and third-order Taylor approximations. However,
these still rely on approximating the Gaussian prior distribu-
tion assumed by the KF, making modeling challenging for
movements where the next position is determined by hu-
man intent, such as in vehicles. Particle filter [18] addresses
nonlinear motion using a sampling-based posterior estima-
tion, which requires exponential computation. For high-
density radar detection points, following [58, 65], Tempo-
Radar extended the achieved strong tracking performance
through learning. Our proposed framework extends KF-
based methods and learning-based approaches by assuming
high-density radar detection points. It explicitly considers
strong object-level consistency by using multiple frames to
capture the nonlinear motion of objects.

3. Scalable Inter-frame Relation & Association

An overview of the SIRA framework is illustrated in Fig. 2
with two main modules: 1) ETR and 2) MCTrack. ETR fo-
cuses on the temporal consistency, while MCTrack captures
the spatial motion consistency, ensuring the continuity and
accuracy of object detection and tracking at the output.

3.1. Preliminary

Encoder: Radar perception pipelines employ an encoder
to transform the radar frame It ∈ R1×H×W into high-level
features and accentuate the position of objects.

Zt := Fθ (It) ∈ RC×H
s ×W

s , (1)

where C, H , W , and s represent the number of chan-
nels, height, width, and downsampling ratio over the spa-
tial dimension, respectively. Fθ (·) is encoder such as
ResNet [19] with parameters θ. By denoting multiple T
radar frames as I = {It}Tt=1 ∈ RT×H×W , we can obtain
informative features Zt = Fθ (I).

Decoder: The decoder estimates the bounding boxes
from the features. To localize objects, the two-dimensional
(2D) center coordinates (xt, yt) of the top-K peak values ĉt
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Figure 2. The architecture of SIRA with two modules: 1) extended temporal relation (ETR) capturing the temporal feature consistency
while maintaining computational efficiency, and 2) motion consistency track (MCTrack) estimating pseudo-direction of objects during
training and establishing pseudo-tracklets for better association in inference. The detection loss LBBox

t and pseudo-direction loss LDEst are
used to train the pipeline end-to-end for object detection and tracking.

in the heatmap, corresponding width ŵt and length ĥt, ori-
entation ϑ̂t, and 2D offsets (ôx,t, ôy,t) are predicted as the
output bounding box of an object with decoder heads Gθ as:(

xt, yt, ŵt, ĥt, ϑ̂t, ôx,t, ôy,t, ĉt

)⊤
= Gθ (Zt) . (2)

One such decoder is the one used in CenterPoint [64].

Exploiting Temporality: For radar perception, it is nec-
essary enhance the feature extraction utilizing additional
properties from the temporal domain. One straightforward
way is to stack multiple frames as the input to the en-
coder, i.e., Zt = Fθ (I). To exploiting the feature-level
temporal relation, TempoRadar [27] introduces a tempo-
ral relation layer (TRL) that selects top-K features Ht ∈
RC×K from Zt := Fθ (It,t−1) and Ht−1 ∈ RC×K from
Zt−1 := Fθ (It−1,t), where It−1,t concatenates two con-
secutive radar frames along the channel dimension in the
order of (t− 1, t) with the following feature selector SK :

Ht = SK (Zt) , t = {t− 1, t} . (3)

By concatenating the 2K selected features as Ht,t−1 =
[Ht,Ht−1]

⊤, TRL further computes masked multi-head
cross-attention (MCA) as

A (V,X) := softmax

(
M+ q (X) k (X)

⊤
√
d

)
v (V) (4)

where V = Ht,t−1, X = Hpos
t,t−1 is the concate-

nated feature Ht,t−1 supplemented by the positional encod-
ing, {q (·) , k (·) , v (·)} are query/keys/values, and d is the

query/key dimension. The masking matrix M is designed to
turn off the attention between features from the same frame
and allow for only cross-frame feature attention to ensure
temporal feature consistency.

These enhanced features are refilled back to Zt and Zt−1

at corresponding spatial coordinates and fed to the decoder
for object detection and tracking. Refer to Appendix 8 for
the top-K feature selector SK and the design of M.

3.2. ETR: Extended Temporal Relation

The ETR module borrows the concept of shifted window at-
tention in Swin Transformer [31] but in a deformable tem-
poral fashion. It generalizes the TRL over a longer time
horizon of consecutive frames with a scalable complexity.
In the following, we introduce the two main blocks: tem-
poral window attention (TWA) and temporally regrouped
window attention (TRWA) of ETR shown in Fig. 2.

Temporal Window Attention: The l-th TWA layer ex-
pands the TRL from 2 consecutive frames to a temporal
window of U ≥ 2 frames and computes masked MCA
within each window. In Fig. 3, we group U = 4 consec-
utive frames into one temporal window (in dash boxes) and
we have 4 windows for T = 16 frames.

For each temporal window {t, t − 1, · · · , t − U + 1},
we cyclically shift the frame indices and concatenate the U
shifted radar frames along the channel dimension for the
backbone feature extraction, i.e.,

Zt := Fθ (It,t−1,··· ,t−U+1) ,

Zt−1 := Fθ (It−1,t−2,··· ,t−U+1,t) , · · · ,
Zt−U+1 := Fθ (It−U+1,t,t−1,··· ,t−U+2) . (5)



It is easy to see that, when U = 2, this reduces to the TRL.
We then follow the same top-K feature selector as the Tem-
poRadar (refer to Appendix 8)

Ht = SK (Zt) , t = {t, t− 1, · · · , t− U + 1}. (6)

By concatenating features from the temporal window of
U frames, we have Hl−1

t,··· ,t−U+1 = [Hl−1
t , · · · ,Hl−1

t−U+1]
⊤,

where the superindex denotes the layer index in the ETR
model and H0

t takes Ht of (6) as input for the first layer.
We apply the masked MCA of (4) H1 times to Hl−1

t,··· ,t−U+1

with a masking matrix M of dim UK × UK for cross-
frame feature attention within each window. Collecting
from all windows, the TWA block obtains the features
Hl

t, · · · ,Hl
t−T+1 from all T frames at its output.

Temporally Regrouped Window Attention: To allow
for cross-window attention, we regroup the subset features
from different windows in a deformable temporal order.
First, we partition the K features of each frame into Ω sub-
frame patches with a stride S. Each sub-frame patch con-
sists of M features. As shown in Fig. 3, one choice for
a non-overlapping sub-frame partition is M = K/2 and
S = K/2 (assuming K is even) where each frame is par-
titioned into Ω = 2 sub-frame patches, as illustrated in
two contrasting colors for each frame in Fig. 3. Alterna-
tively, we may choose S < M for overlapping partition.
The resulting sub-frame patches of frame t are defined as
Hl

t [ω] ∈ RC×M , ω = 1, · · · ,Ω. For more discussion of
patch size, refer to Appendix 11.

The sub-frame patches are regrouped into a new set of
windows in a deformable temporal order for cross-window
attention. For the newly regrouped window, the features are
aggregated as

Fl
t(ω) :=

{
Hl

t [ω] ,H
l
t−U [ω] , · · · ,Hl

t−T+U [ω]
}⊤

, (7)

As illustrated in the top right portion of Fig. 3, the regroup-
ing operation extracts one sub-frame patch from each win-
dow and results in U = 4 patches and UM = UK/2
features in each new window. Subsequently, we apply the
masked MCAs of (4) H2 times over the aggregated fea-
ture Fl

t(ω) in each new window with an affordable cross-
window attention complexity of TM/U × TM/U .

The cross-window attentive features are re-grouped in
the reverse manner to construct the K features of each
frame according to the temporal (t) and patch (ω) indices.
In the case of overlapping patch partitioning, i.e., S < M , a
patch merging operation M is necessary to merge the fea-
tures Hl+1

t = M{Hl+1
t [1], · · · ,Hl+1

t [Ω]} at the overlap-
ping positions. Patch merging operations (mean, sum and
max) will be examined in Section 4.3. The TRWA block
outputs Hl+1

t , · · · ,Hl+1
t−T+1 for all T frames, sharing the

same dimension as the input Hl
t, · · · ,Hl

t−T+1.
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Figure 3. The TRWA block of the ETR module. Each frame is par-
titioned into sub-frame patches (in two contrasting colors of each
frame in Top Left) and these patches are regrouped into new win-
dows (Top Right) in a deformable temporal order (arrow lines).
Masked multi-head cross-attention (MCA) is applied to new re-
grouped windows for scalable cross-window attention.

Stacking as a Stage: We can stack the TWA and TRWA
blocks as one stage and repeat the stage L times. In be-
tween stages, the output of TRWA block serves the input
to the TWA block in the next stage. Finally, we put these
features Hl+1

t , · · · ,Hl+1
t−T+1 back to {Zt, · · · ,Zt−T+1} at

corresponding spatial coordinates. The effect of L will be
examined in Section 4.3.

Complexity Analysis: For a given T , K, and the number
of stages L, the computational complexity expressions for
TempoRadar [27] and the ETR module are shown below

TempoRadar: (TK)
2
L (8)

ETR: (TWA + TRWA)L = K2TUL+MT 2KL/U (9)

where U is the number of frames in one temporal window
in the TWA block and M is the number of features for each
sub-frame patch in the TRWA block. Note that, if U = T
and M = K, ETR reduces to the TWA module only, result-
ing in a full-size attention like TempoRadar. In this case,
the ETR complexity in (9) reduces to that of TempoRadar
in (8). Appendix 13 provides numerical comparison of the
complexity in several settings.

3.3. MCTrack: Motion Consistency Track

As shown in Fig. 2, MCTrack takes the temporally en-
hanced features {Zt} from the ETR output, and applies the
decoding heads on each Zt for bounding box estimation. To
further exploit motion consistency, we introduce two MC
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modules: one for training and one for inference, for im-
proved detection and tracking performance.

Motion Consistency for Training: We introduce the
concept of pseudo-direction to improve motion consis-
tency during training. Pseudo-directions are vectors that di-
rectly predict the current object position from each of the
previous frames, using a decoder head with learnable pa-
rameters. It is used to iteratively refine object positions be-
tween frames during learning and the pseudo-direction loss
contributes to the overall training loss in Section 3.4.

To compute the τ -step pseudo-direction d̂T |T−τ
1 from

the past frame T − τ to frame T , we design a specific de-
coder head GDEst

θ (·): direction estimation (DEst) with learn-
able parameters θ in Fig. 4,

d̂T |T−τ = GDEst
θ (ZT ,ZT−τ ) [pzT

] ∈ R2, (10)

where ZT and ZT−τ are temporally enhanced features at
frame T and T − τ , pzT

is a two-dimensional coordinate,
and τ = 1, 2, · · · , T − 1. Fig. 4 shows the DEst head ar-
chitecture, comprising the deformable convolution [9], nor-
malization, and convolution layers. The deformable convo-
lution is particularly used to capture features of objects that
have undergone significant displacement across τ frames.

The estimated vectors represent the positional differ-
ences of objects across τ frames. It is essential to address
scenarios where objects move significantly within just one
frame due to low frame rates and ego-vehicle motions.

Motion Consistency for Inference: In inference, we use
a KF-based tracker such as OC-SORT [8] to enforce mo-
tion consistency. As shown in Fig. 2, the tracker consists of
a number of steps with the most crucial one in Association.

1With slightly abused notation, we use T to denote not only the number
of frames, but also current frame index in this section.

Calculation of 

Calculation of 

KF predicted direction
Trajectory 
Forward direction

KF predicted state
Predicted angle

Observation
Estimated observation

Association
Pseudo direction

Figure 5. The calculation of similarity metrics Cangle and C tracklet

in MCTrack at inference. A pseudo-tracklet {{ẑt}Tt=1 , {v̂t}Tt=2}
is constructed with d̂T |T−τ estimated with DEst, and is used for
association: (Top) rotating a state xT |T−1 to be more correlate the
observation zT , (Bottom) directly correlating the observations zt
with ẑt.

To this end, we further introduce the concept of pseudo-
tracklet2, constructed from the above pseudo-direction es-
timation. A pseudo-tracklet consists of a pair of vectors:
{{ẑt}Tt=1, {v̂t}Tt=2}. ẑt is an estimated observation with
pseudo-direction d̂T |T−τ and zT (Top of Fig. 5), and v̂t is
the forward direction linking between the estimated obser-
vations (Bottom of Fig. 5).

The pseudo-tracklet can only be calculated from obser-
vations that are independent of the state of KF, and explic-
itly contains information about the movement of the object
from the past to the present. We use this pseudo-tracklet to
design the similarity metric in the association:

CMCTrack = λCangle + (1− λ)C tracklet, (11)

C tracklet =
1

T − 1

T−1∑
τ=1

GIoU
(
BzT−τ

, BẑT−τ

)
, (12)

Cangle = GIoU
(
BzT

, Bx̂R
T |T−1

)
, (13)

where λ is the weighting coefficient, B represents the BBox
with subscripts, and GIoU [46] denotes the similarity deter-
mined based on the distance between two BBoxes. In other
words, C tracklet and Cangle represent the similarity between
the similarity between the pseudo-tracklet and the trajectory
of the KF, and the current observation zT and the rotated
state x̂R

T |T−1 of the KF, respectively.

2A tracklet is essentially an aggregation of a small number of consec-
utive sensor reports processed by a sensor level tracker [11]. We use the
tracklet as a short trajectory from a set of observations.



As shown in top of Fig. 5, C tracklet directly correlates the
observations zts of the KF trajectory with the estimated ob-
servations ẑt with the pseudo-direction. This approach, un-
like the conventional method of correlating with only one
observation value in the current frame, is more robust to
motion. The effectiveness of using both C tracklet and Cangle

is reported in Section 4.3. Refer to Algorithm 1 in Ap-
pendix 11 for the pseudo-code of SIRA in inference.

In addition, as shown in bottom of Fig. 5 which repre-
sents the calculation of Cangle, the predicted state x̂T |T−1

with KF from the previous state x̂T−1 is rotated with a
rotation matrix R of angle ϕave. It can be calculated as
px̂R

T |T−1
= R(px̂T |T−1

−px̂T−1
)+px̂T−1

, where the angle

ϕ̂ave can be calculated as ϕ̂ave = 1
T−2

∑T−3
ρ=0 ϕ̂T−ρ such

that ϕ̂T−ρ = cos−1 (v̂T−ρ·v̂T−ρ−1)
∥v̂T−ρ∥∥v̂T−ρ−1∥ . By using this rotated

state x̂R
T |T−1, we can avoid a high correlation between the

predicted state assuming linear motion and the incorrect ob-
servation znoise

T .
Our approach exploits the proposition that the tempo-

rally enhanced features across multiple frames from ETR
allows for more robust estimation of the pseudo-direction
d̂T |T−τ from past frame T − τ to current frame T , com-
pared with conventional single-frame based approaches.

3.4. Learning

A loss function is constructed not only to acquire con-
ventional detection capabilities, but also to provide a clear
guideline to enhance tracking performance. It consists of
two components: a loss between the predicted and the
ground truth BBox (LBBox

t ), and a loss of the pseudo-
direction in which an object has moved between frames and
the actual movement direction (LDEst

t ), as shown in Fig. 2.

Lθ :=

T∑
t=1

(
LDEst
t + LBBox

t

)
. (14)

For each training step, our training procedure calculates Lθ

and does the backward for both t = 1 to t = T and t = T
to t = 1 simultaneously. Therefore, optimization minθ Lθ

can be viewed as a bidirectional backward-forward training
through T frames. For more clear trainig procedure, refer
to Fig. 8 in Appendix 11.

Oriented Bounding Box Loss: We pick the object’s cen-
ter coordinates from the heatmap, and learn its attributes
from feature representations through regression. Regres-
sion functions, which are heatmap loss Lh

t , width & Length
loss Lb

t , orientation loss Lr
t, and offset loss Lo

t , compose the
training objective by a linear combination:

LBBox
t =

1

Ngt

Ngt∑
k=1

(
Lb
t,k+Lr

t,k+Lo
t,k

)
− 1

N

N∑
i=1

Lh
t,i, (15)

where N denotes the total number of pixels in the heatmap
and Ngt is the total number of ground truth bounding boxes.
Refer to Appendix 9 for mathematical definition of each
loss component.

Pseudo-Direction Estimation Loss: LDEst represents a
pseudo-direction estimation loss:

LDEst
t =

1

Ngt

Ngt∑
k=1

LDEst
t,k , (16)

LDEst
t,k =

1

T − 1

T∑
τ=1

{
SL1

(∥∥∥d̂t|τ − dgt
t|τ

∥∥∥) τ ̸= t

0 τ = t
, (17)

where d̂t|τ = GDEst
θ (Zt,Zτ )

[
pgt
t,k

]
denotes a two-

dimensional direction from a position of time τ to a posi-
tion of time t as mentioned in Section 3.3. pgt

t,k denotes the
coordinate (xt,k, yt,k) of the center of k-th ground truth ob-
ject and SL1

(·) is a smooth L1 loss [15]. dgt
t|τ = pgt

t,k −pgt
τ,k

denotes the ground truth direction, which can be calculated
from the difference between the coordinates of the k-th ob-
ject. This loss improves the consistency of the detection
positions between frames, which impacts both the detection
and the tracking performance.

4. Experiments

4.1. Experimental Setup

Due to page limitations, more details on experimental set-
tings are shown in Appendix 12.

Dataset: We use the automotive radar dataset: Radi-
ate [47] in our experiments, the same as TempoRadar
in [27]. The reasons to use this dataset are that it contains
high-resolution radar images, provides well-annotated ori-
ented bounding boxes with tracking IDs for objects, and
records various real driving scenarios in adverse weather,
please refer to Appendix 7 for more details of the rea-
sons. Radiate consists of video sequences recorded in ad-
verse weathers, including sun, night, rain, fog and snow.
We follow the official 3 splits: “train in good weather”
(22383 frames, only in good weather, sunny or overcast),
“train good & bad weather” (9749 frames, both good & bad
weather conditions), and “test” (11305 frames, all kinds of
weather conditions).

Implementation: Our baseline detectors include: 1) Reti-
naNet [30], 2) CenterPoint [64], 3) BBAVectors [57], 4)
TempoRadar [27] (referred to as TR in all results). We
also implemented 5) a Sequential TempoRadar (SeTR) that



Table 1. Experimental results of object detection on Radiate. The
number following the model name indicates the # of layers in the
Resnet, and the number in parentheses indicates the # of frames T .

Train good weather Train good & bad weather

mAP@0.3 mAP@0.5 mAP@0.3 mAP@0.5

RetinaNet-18 (1) 52.50±1.81 37.83±1.82 49.44±1.32 31.57±1.54

CenterPoint-18 (1) 58.69±3.09 49.41±2.94 55.83±3.28 44.48±3.19

BBAVectors-18 (1) 59.38±3.47 50.53±2.07 56.84±3.45 45.43±2.87

TR-18 (2) 62.79±2.01 53.11±1.96 58.87±3.31 46.42±3.24

TR-18 (4) 66.37±1.62 53.23±1.67 65.10±1.67 52.47±1.21

SeTR-18 (4) 65.97±2.03 55.79±2.12 64.62±1.79 51.78±1.81

SIRA-18 (4) 67.28±1.47 56.98±1.35 65.37±1.76 52.88±1.60

RetinaNet-34 (1) 50.79±3.10 35.61±3.35 48.09±3.85 31.10±3.37

CenterPoint-34 (1) 59.42±1.92 50.17±1.91 53.92±3.44 42.81±3.04

BBAVectors-34 (1) 60.88±1.79 51.26±1.99 55.87±2.90 44.61±2.57

TR-34 (2) 63.63±2.08 54.00±2.16 56.18±4.27 43.98±3.75

TR-34 (4) 67.48±0.94 57.01±1.03 64.60±2.08 51.99±1.94

SeTR-34 (4) 67.30±1.80 56.61±1.83 65.51±1.52 52.43±1.51

SIRA-34 (4) 68.68±1.12 58.11±1.40 66.14±0.83 53.79±1.14

stacks self-attention for two consecutive frames and sequen-
tially connects them through T frames. We defer the de-
scription of the SeTR to Appendix 10. We use ResNet-18
and ResNet-34 for the backbone feature extraction.

For MOT, we implemented several trackers that have
been well demonstrated in this task for comparison. These
trackers include the following: CenterTrack [65] and OC-
SORT [8]. For the results of CenterTrack with Tempo-
Radar and ResNet, we copied directly from the paper [27]
except for TempoRadar with 34 layers. And for the KF-
based method, we use the specific parameters and show
the parameters in Appendix 17. We follow [47] and ex-
clude pedestrians and groups of pedestrians from detection
and tracking targets, since only very few reflections are ob-
served in these two kinds of objects. For all numerical re-
sults, we apply a center crop with size 256 × 256 upon in-
put images and exclude the targets outside this scope. We
additionaly report the detection results with the full size
(1152× 1152) images in Appendix 15.

Metrics: We adopt the mean average precision (mAP)
with intersection over union (IoU) at 0.3, 0.5, and 0.7 (re-
ported in Appendix 15) to evaluate detection performance.
The numbers are averaged over 10 random seeds. For MOT,
we adopt MOTA [35] and IDF1 [32] as the main metrics.
MOTA focuses more on the detection performance, while
IDF1 reflects on the performance of association and identity
preservation. Other metrics [35] such as ID switch (IDs),
fragmentation (frag), MT, and PT are also reported. Defini-
tions of these MOT metrics are included in Appendix 14.

4.2. Main Results

Detection: We report the detection results in Table 1. The
benefits of exploiting longer temporal relation for radar ob-

Table 2. Experimental results of MOT on Radiate.

Train good weather MOTA↑ IDF1↑ IDs↓ Frag.↓ MT↑ PT↑

ResNet-18 (1) CenterTrack 13.01 - 873 920 269 254
ResNet-34 (1) CenterTrack 14.55 - 802 831 282 279
TR-18 (2) CenterTrack 33.59 - 349 498 145 330
TR-34 (2) CenterTrack 37.85 39.90 457 511 108 246
TR-34 (2) OC-SORT 40.74 45.01 151 291 124 172

TR-18 (4) CenterTrack 42.77 44.91 519 520 244 336
TR-34 (4) CenterTrack 43.64 44.17 503 538 197 326
TR-34 (4) OC-SORT 44.01 44.27 354 497 194 333
SeTR-18 (4) CenterTrack 42.11 50.33 658 561 261 317
SeTR-34 (4) CenterTrack 44.57 48.72 875 602 348 299
SeTR-34 (4) OC-SORT 40.16 28.20 775 689 370 305

ETR-34 (4) CenterTrack 46.06 50.81 1832 613 345 305
ETR-34 (4) OC-SORT 47.11 50.04 540 481 343 313
SIRA-34 (4) CenterTrack* 47.30 50.16 1249 566 354 300
SIRA-34 (4) OC-SORT 47.79 51.13 523 488 342 314

* C tracklet is only used for association since this is not based on SORT.

ject detection are evident in improvements of about +3
mAP@0.3 and about +2.5 mAP@0.5 from single frame of
RetinaNet, CenterPoint, BBAVectors to two frames of the
TempoRadar, and further more of about +5 mAP@0.3 and
about +4 mAP@0.5 from two frames to four frames of the
best among TempoRadar, SeTR, and SIRA. In both train-
ing splits, our SIRA consistently outperforms TempoRadar
and its simple extension SeTR with 4 radar frames. The im-
provement margin is more significant in the “good & bad
weather” training split when ResNet34 is the backbone net-
work. We report the effectiveness of increasing the number
of frames in Appendix 15.

Tracking: Table 2 illustrates the results of MOT. Sim-
ilar conclusions can be made by observing the improve-
ment margins in almost all metrics by using more radar
frames. If we narrow down to the case of 4 frames and
with CenterTrack as the tracker, SIRA-34 shows a sig-
nificant improvement of +3.66 over TR-34 and +2.83
over SeTR-34 in MOTA. The combination of SIRA+OC-
SORT can further improve the MOT by another +0.49 over
SIRA+CenterTrack.

Compared with ETR (without LDEst
t for training), SIRA

shows consistent improvement in both MOTA and IDF1,
highlighting the effectiveness of modeling consistency in
object movement. For other metrics such as Frag., MT,
and PT, SIRA shows fluctuating but close-to-the-best per-
formance. Full results, including the effectiveness of in-
creasing the number of frames and other indicators, are re-
ported in Appendix 15 due to paper space limitations.

Visualization: We show the visualization results in Fig. 6.
Each set of figures represents ground truth in the upper row
and predictions in the lower row. It is observed that many of
the predictions are made at approximately the same position
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Figure 6. Visualizations on radar perception on Radiate. 4 sets of MOT results are shown in radar sequences of city-7-0, fog-6-0, junction-
1-10 and rain-4-0. Each set contains 4 frames. Bounding boxes are ground truth or object detection from SIRA. Colors indicate object IDs
and plotted arrows show the motion of detected objects.

M mAP@0.3 mAP@0.5

Mean 65.15±2.20 55.06±2.07
Sum 65.76±2.15 55.55±1.59
Max 67.67±1.18 56.47±1.54

(a) OperationsM. Using the Max
operation works the best.

H1 H2 mAP@0.3 mAP@0.5

1 1 66.95±1.47 56.65±2.38
2 1 67.59±0.83 57.59±0.84
1 2 68.36±0.94 58.46±0.91
2 2 68.68±1.12 58.11±1.40

(b) # of MCAs. A larger H2 con-
tributes more than a larger H1.

L mAP@0.3 mAP@0.5

1 68.68±1.12 58.11±1.40
2 68.68±0.83 58.24±1.19
3 69.12±1.32 58.28±1.34
4 69.16±1.06 58.26±1.27

(c) # of Stages. More stages
slightly improves the detection.

C tracklet Cangle MOTA↑ IDF1↑

- - 47.11 50.04
✓ - 47.11 50.02
- ✓ 47.00 50.05
✓ ✓ 47.79 51.13

(d) Associations C. Using both
C tracklet and Cangle works the best.

Table 3. SIRA ablation experiments on Radiate. If not specified, we used SIRA-34 (4) trained on train good weathter and followed the
experimental settings for other parameters. The best performance is marked in gray.

as the annotations. Furthermore, correct predictions are ob-
served for complex motions, including nonlinear motions.
More visualizations are included in Appendix 16 with more
comparison to other baseline methods.

4.3. Ablation Study

Patch Merging Operator: In the context of patch merg-
ing within ETR, it is essential to merge feature vectors from
overlapping positions. Multiple merging operations, includ-
ing Mean, Sum and Max, can be considered. In the exper-
iment, we use ETR-34 (4) as the model. Table 3a shows
the detection performance. It is seen that the Max operation
works best as the Mean and Sum operations may change the
temporally enhanced features. We use the Max operation as
the default.

Number of Masked MCA (H1 and H2): We investi-
gated the effect of the number of masked MCA H1 in
TWA and H2 of TRWA. The result in Table 3b shows
that larger H improves the detection performance. More
masked MCAs H2 = 2 in the TRWA contributes to big-
ger improvement margin than using more masked MCAs
H1 = 2. We set H1 = 2 and H2 = 2 as the default.

Number of Stages (L): We investigated the effect of the
number of stages L of ETR. Table 3c evaluates the detection
performance when L varies from only 1 to 4. Stacking more
ETR stages slightly improves the detection performance.

Association in MCTrack: In Table 3d, the ablation study
on association reveals that using both C tracklet and Cangle

leads to improved tracking performance. These facts in-
dicate that SIRA enforces the spatio-temporal consistency
and can be effective to deal with nonlinear object motion
across consecutive frames. See Appendix 15 for detailed
evaluation results on the performance of Pseudo-Direction
estimation and on the differences in λ.

5. Conclusion

We overcame the limitations of radar for effective object
detection and tracking in automotive perception by intro-
ducing the SIRA framework, which includes ETR and MC-
Track. SIRA exploits joint spatio-temporal consistency
across multiple frames and enables reliable predictions de-
spite low frame rates and nonlinear motion. Our approach
outperforms previous state-of-the-art by a big margin in
both detection and tracking.
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6. Related Work for Visual Tracking
In recent years, KF-based approaches have gained popular-
ity in the context of visual tracking, and various extensions
have been proposed [7, 8, 12, 33, 41, 52, 54, 61, 62], ex-
emplified by SORT [4]. SORT can achieve high tracking
performance, but it relies on the assumption that objects
have consistent linear motion in a short time, which re-
quires continuous observations. Therefore, it can face chal-
lenges when objects exhibit occlusion or nonlinear motion,
requiring a high frame rate. To overcome occlusion prob-
lems, ByteTrack [62] uses the similarity between tracklets
and low-scoring detection boxes to recover the true objects
and filter out background detections. OC-SORT [8] intro-
duces object motion computed from pre- and post-occlusion
time pairs to address occlusion and non-linear motion. Our
proposed framework extends recent KF-based methods and
learning-based approaches by assuming high-density radar
detection points. It explicitly considers strong object-level
consistency by using multiple frames to capture the nonlin-
ear motion of objects.

7. Related Work for Radar Datasets
If we categorize open radar datasets into the ones
with sparse detection points, dense points and low-level
heatmap, RADIATE[47] is the largest dense-point dataset
with bounding box and tracking ID labels for both detec-
tion and tracking as shown in Table 4. We will use these
datasets for further evaluation in the future.

8. TempoRadar [27]
Our ETR generalizes TempoRadar [27] into a long time
horizon and shares several key building blocks such as the
top-K feature selector SK and the design of the (tempo-
ral) masking matrix M in the masked multi-head attention
(MCA).

Top-K Feature Selector SK: To exploit the feature-level
temporal relation, TempoRadar introduces a temporal re-
lation layer (TRL). Given the extracted features Zt :=
Fθ (It,t−1) and Zt−1 := Fθ (It−1,t) from the encoder,
where It−1,t concatenates two consecutive radar frames
It−1 and It along the channel dimension in the order of
(t− 1, t), the feature selector SK of (3) is defined as:

Ht = SK (Zt) := Zt

[
P pre-hm
t

]
,

Ht−1 = SK (Zt−1) := Zt−1

[
P pre-hm
t−1

]
,

Table 4. A list of open radar datasets in the format of dense points.

Dataset # of data Radar format BBox Tracking ID

RADIATE [47] 44K dense points 2D ✓
Zendar [36] 4.8K dense points 2D ✓
TJ4DRadSet [63] 7.7K dense points 2D ✓
RADIal [45] 25K heatmap+points 2D

where Ht/t−1 ∈ RC×K and P pre-hm
t is defined as the set of

(x, y) coordinates corresponding to the K selected features,

P pre-hm
t :=

{
(x, y)

∣∣∣ {Ct}xy ≥ {Ct}K
}
, (18)

where Ct = Gpre-hm
θ (Zt) maps the channel dimension of

the feature map via a learnable feedforward neural network
(FNN) module Gpre-hm

θ : RC×H
s ×W

s → R1×H
s ×W

s into a
scalar feature map for feature ranking, {Ct}K stands for
the K-th largest value in Ct over the spatial space H

s × W
s ,

and the subscript xy takes value at the coordinate (x, y).

Design of M in Masked MCA: Let us stack the top-K
selected features from the two consecutive radar frames as
Ht,t−1 := {Ht,Ht−1}⊤ ∈ R2K×C . The masked MCA
takes Ht,t−1 and applies cross-frame attention over the two
sets of features, as shown in Fig. 7a.

Since the position is lost in Ht,t−1, we generate the posi-
tion information of the selected top-K features via a learn-
able positional encoding network Eθ from the coordinate set
P pre-hm
t of (18)

Penc
t = Eθ

(
P pre-hm
t

)
∈ RK×Dpos ,

where Dpos is the dimension of positional encoding. We
then supplement the positional encoding into feature vectors

Hpos
t,t−1 =

{
Ht,t−1,P

enc
t,t−1

}
∈ R2K×(C+Dpos),

where Penc
t,t−1 =

{
Penc

t ,Penc
t−1

}⊤ ∈ R2K×Dpos , and pass it
to the masked MCA for temporal attention.

In computing the temporal relation, the masked MCA
follows [2, 20, 21, 43] and uses a temporal inductive bias
with a masking matrix M

A (V,X) := softmax

(
M+ q (X) k (X)

⊤
√
d

)
v (V) ,

where q (·), k (·) and v (·) are linear transformation lay-
ers and are referred to as query, keys and values, re-
spectively, and d is the dimension of the query and the



keys. For the temporal attention over {t, t − 1}, we have
A{Ht,t−1,H

pos
t,t−1} with V = Ht,t−1 for the value and

X = Hpos
t,t−1 for the key and query. The masking matrix

M is given as

M :=

[
IK ,1K

1K , IK

]
+ σ

([
1K ,0K

0K ,1K

]
− I2K

)
, (19)

where IK is the identity matrix of size K, 1K and 0K are
the all-one and all-zero matrix with size K × K, respec-
tively, and σ is a large negative constant, e.g., −1010, to
guarantee a near-zero value in the output through the soft-
max function. It can be shown that diagonal blocks in M
disable attention between features within the same frame,
while off-diagonal blocks allow for cross-frame attention.
The masked MCA may repeat multiple times.

9. Details of BBox Loss

We pick the object’s center coordinates from the heatmap,
and learn its attributes from feature representations through
regression. Regression functions, which are heatmap loss
Lh
t , width & Length loss Lb

t , orientation loss Lr
t, and offset

loss Lo
t , compose the training objective by a linear combi-

nation as (15):

LBBox
t =

1

Ngt

Ngt∑
k=1

(
Lb
t,k+Lr

t,k+Lo
t,k

)
− 1

N

N∑
i=1

Lh
t,i,

where N denotes the total number of pixels in the heatmap
and Ngt is the total number of ground truth bounding boxes.
Each loss is as follows:

Lh
t,i =1{ct,i=1} (1− ĉt,i)

α
log (ĉt,i)

+ 1{ct,i ̸=1} (1− ct,i)
β
ĉαt,i log (1− ĉt,i) , (20)

where ct,i and ĉt,i denote the ground-truth and predicted
value at i-th coordinate in Ghm

θ

(
Zhm

t

)
, and α and β are

hyper-parameters and are chosen empirically with 2 and 4,
respectively.

Lb
t,k =SL1

(∥∥∥Gb
θ

(
Zt

[
P gt
t,k

])
−(wt,k, ht,k)

⊤
∥∥∥) , (21)

Lr
t,k =SL1

(∥∥∥Gr
θ

(
Zt

[
P gt
t,k

])
−(cosϑt,k,sinϑt,k)

⊤
∥∥∥), (22)

Lo
t,k =SL1

(∥∥∥Go
θ

(
Zt

[
P gt
t,k

])
−(ox,t,k, oy,t,k)

⊤
∥∥∥) , (23)

where P gt
t,k denotes the coordinate (xt,k, yt,k) of the cen-

ter of k-th ground truth object, (wt,k, ht,k) is the width &
length, and (ox,t,k, oy,t,k) is the offset as follows:

(ox,t,k, oy,t,k) =
(xt,k

s
−
⌊xt,k

s

⌉
,
yt,k
s

−
⌊yt,k

s

⌉)
. (24)
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Figure 7. Masked MCA. (a) TempoRadar [27] computes masked
multi-head cross-attention (MCA) over the top-K selected fea-
tures from a time horizon of only T = 2 consecutive radar
frames. (b) SeTR computes masked MCA for two consecutive
radar frames at a time, the same as the TempoRadar in (a), but
slides the window of two frames after each MCA sequentially to
cover a longer time horizon of T > 2 frames.

10. Sequential TempoRadar (SeTR)

One might postulate: “What are the implications of extend-
ing TempoRadar to cover more consecutive radar frames?”
The answer might be two-fold. On the one hand, one should
expect improved performance under the assumption that
most radar features are present over more than just 2 frames,
considering a typical radar frame rate of > 4 fps (Radiate
dataset has 4 fps [47]). On the other hand, directly ap-
plying temporal attention to a longer time horizon incurs
a quadratic computation complexity (refer to (8)) over the
number of features from each frame K and the number of
frames T .

One straightforward way for a scalable TempoRadar is to
stack temporal feature attention for two consecutive frames
and sequentially connect them, which we refer to as sequen-
tial TempoRadar (SeTR). As illustrated in Fig. 7b, SeTR
computes masked MCA for two consecutive radar frames
at a time, the same as the TempoRadar in Fig. 7a, but slides



the window of two frames after each MCA sequentially to
cover a longer time horizon of T > 2 frames.

11. Training and Inference Pipelines for SIRA
Training Pipeline for SIRA: To train SIRA, we takes
T consecutive radar frames, pass them into the training
pipeline in the Top diagram of Fig. 8, and compute the loss
function LBBox of (15) at the decoder output for detection
loss and the pseudo-direction loss LDEst of (16) at the out-
put of the DEst module (detailed in Motion Consistency
for Training of Section 3.3). Through backpropagation,
the learnable modules, hatched in light green, are updated
using the derived loss value.

Inference Pipeline for SIRA: In the bottom of Fig. 8, we
show the inference pipeline for SIRA. Noticeably, a tracker
is attached to the DEst module to further enforce the mo-
tion consistency via the concept of pseudo-tracklet, detailed
in Motion Consistency for Inference of Section 3.3. All
learnable parameters during training are frozen in the infer-
ence. We further include the pseudo-code of the inference
pipeline in Algorithm 1. A typical tracker consists of five
steps: Prediction, Association, Update, Deletion, and Ini-
tialization. We can integrate our MCTrack with standard
trackers (e.g., OC-SORT) by incorporating the key compo-
nents (highlighted in green in Algorithm 1), e.g., the use of
motion similarity of (11), to the Association step.

Extension with higher-order KF: As shown in Fig. 9,
we expect SIRA can deal with nonlinear motion to an ex-
tent as the average predicted angle ϕ̂ave can correct the
KF predicted state x̂T |T−1 closer to the right observation
zT . SIRA can be extended with higher-order KF (e.g., ex-
tended/unscented KF) to further improve the predicted state
x̂T |T−1 with a proper nonlinear model and the average pre-
dicted angle ϕ̂ave, yielding improved trajectory predictions.

The choice of patch size: Since the patch is a subset of
Top-K features in each frame, we have the patch size M ∈
[1,K]. Given the number of frames U in each window, the
smaller the patch size M , the smaller the window size UM
in the re-grouping stage of the TRWA block (see the top
right of Fig. 3 for an example of U = 4 frames and M =
K/2), and the lower the computational complexity of the
window-based attention which is quadratic with respect to
UM . On the other hand, a small M may limit the number
of features to be correlated across windows and reduces the
connectivity of temporal attention.

12. Details of Experimental Settings

Algorithm 1: Pseudo-code of SIRA for Inference.
Input: A radar frame sequence V; encoder Enc; decoder Dec;

object detector ETR; direction estimator DEst; detection
score threshold γ; birth threshold β

Output: Tracks T of the video
1 Initialization: T ← ∅
2 for frame fk in V do

/* Fig.2, and Fig.8 */

/* **predict bboxes with ETR** */
3 Fk ← Enc(fk)
4 Fk ← ETR(Fk)
5 Dk ← Dec(Fk)

/* **tracking with MCTrack** */
6 Jk ← DEst(Fk)
7 Dhigh ← ∅
8 Jhigh ← ∅
9 for d, j in Dk,Jk do

10 if d.score > γ then
11 Dhigh ← Dhigh ∪ {d}
12 Jhigh ← Jhigh ∪ {j}
13 end
14 end

/* predict new locations of tracks */
15 for t in T do
16 t← KalmanFilter.predict(t)
17 end

/* Fig.5 */
/* association */

18 Associate T andDhigh&Jhigh with Similarity Eq.11
19 Dremain ← remaining unmatched object from Dhigh

20 Tremain ← remaining matched tracks from T

/* update status of matched tracks */
21 for t in Tremain do
22 t← KalmanFilter.update(t)
23 end

/* delete unmatched tracks */
24 T ← T \ Tremain

/* initialize new tracks */
25 for d in Dremain do
26 if d.score > β then
27 T ← T ∪ {d}
28 end
29 end
30 end
31 Return: T

In green is the key of our method.

Dataset To facilitate the research on robust and reli-
able vehicle perception, Radiate dataset was collected in
7 scenarios under various weather and lighting conditions:
Sunny (Parked), Sunny/Overcast (Urban), Overcast (Mo-
torway), Night (Motorway), Rain (Suburban), Fog (Sub-
urban) and Snow (Suburban). It includes multiple sensor
modalities from radar and optical images to 3D LiDAR
point clouds and GPS. 8 object classes, i.e., car, van, truck,
bus, motorbike, bicycle, pedestrian and group of pedes-
trian, were annotated on the radar frames. The data for-
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mat of radar frames generated from dense point clouds,
where the pixel values indicate radar reflection magnitude.
Radiate adopted the Navtech CTS350-X FMCW radar, a
scanning radar that provides 360◦ high-resolution range-
azimuth BEV images at 4 Hz. It was set to have 100-
meter maximum operating range with a distance resolution
of 0.175 m, an azimuth resolution of 1.8◦ and an elevation
resolution of 1.8◦. It does not provide Doppler informa-
tion. Radar frames in Cartesian are provided as .png at
1152 × 1152 resolution. Nearest neighbour interpolation
was used to convert the radar framess from the polar co-
ordinate to the Cartesian one. Each pixel in the Cartesian

coordinate represents a grid of 0.17361 × 0.17361m2. In
other words, the field of view is about [−100m, 100m] in
one axis and [−100m, 100m] in the other axis in BEV. Ra-
diate dataset has official 3 splits: “train in good weather”
which consists of 31 sequences (22383 frames, only in good
weather, sunny or overcast), “train good & bad weather”
which consists of 12 sequences (9749 frames, both good
& bad weather conditions), and “test” which consists of
18 sequences (11305 frames, all kinds of weather condi-
tions). Fig. 10 shows sampled RGB and corresponding
radar frames under adverse weather and low lighting condi-
tions. We separately train models on the former two training
sets and evaluate on the test set.

Hyper-parameters The hyper-parameters used in our ex-
periments of Section 4 are shown in Table 5. The table is
divided into three parts, Data, Architecture, and Training,
each with parameter names, notations, and values.

13. Comparison of Complexity Analysis
Fig. 11 compares the computational complexity of Tempo-
Radar in (8) and ETR in (9) as a function of the number of
consecutive radar frames T , under two settings of the num-
ber of selected features K = 8 and K = 16 (grouped in



Figure 10. Visualization of RGB and corresponding radar frames. From left to right, the scenes are from City-3-7, City-7-0, Junction-1-10,
Night-1-4, Fog-6-0, Rain-4-0 and Snow-1-0 in Radiate. Albeit of more coarse-grained and less semantic features, radar frames are much
more resilient than RGB frames in adverse weather and low lighting conditions.

Table 5. Hyper-parameters used in our experiments.

Name Notation Value

D
at

a

dataset - Radiate
train good weather - 22383
train good & bad weather - 9749
test - 11305
cropped image size H ×W 256 × 256
full image size H ×W 1152 × 1152

A
rc

hi
te

ct
ur

e

position dimention Dpos 64
downsampling ratio s 4
# of top-Ks K 8
# of sets of top-K U 2
# of ETR stages L 1
# of masked MCAs: TWA H1 2
# of masked MCAs: TRWA H2 2
operation M max
coefficient λ 0.5
detection score threshold γ 0.08
birth threshold β 0.20

Tr
ai

ni
ng

batch size - 16
epoch - 10
optimizer - Adam
learning rate - 5e-4
schedule for train good weather ×0.1 - 5
schedule for train good & bad weather ×0.1 - 2
weight decay for detection - 1e-2
weight decay for tracking - 1e-5
# of GPUs - 1

two different colors). For each setting of K, we further in-
clude four ETR variants (denoted by different markers) with
different combinations of hyper-parameters of the number
of consecutive radar frames within one temporal window
U and the number of features within one patch M . Under
both settings, ETR provides more affordable temporal over
longer time horizons T than TempoRadar.

While (9) represents the complexity of the general ETR
module, [56] presents a special case of ETR with U = 2,
M = K/2 and a stride K/4 (a special sub-frame partition
with 50% overlapping). For this special case, the computa-
tional complexity is shown to be 2K2 (3T − 4)L.
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Figure 11. Comparison of computational complexities of Tempo-
Radar (solid) and ETR (dashed) as a function of the number of
frames T (along the x-axis) and the number of selected features
K (grouped in different colors).

14. Definition of MOT Metrics
We adopt the series of MOT metrics [32, 35] for evalu-
ation. We pick several key metrics in the experiments:
MOTA (Multiple Object Tracking Accuracy), IDF1, ID
switch (IDs), track fragmentations (Frag.), mostly tracked
(MT), and partially tracked (PT). The MOTA score is cal-
culated by

MOTA = 1−
∑

t(FNt + FPt + IDSWt)∑
t GTt

,

where t is the frame index, GT is the number of ground-
truth objects, and FN and FP refer to false negative and false
positive detection, respectively. The value of MOTA is in
the range (−∞, 100]. It can be deemed as the combination
of detection and tracking performance, and is widely used
as the main metric for accessing multiple object tracking
quality.



Table 6. Additional results of object detection on Radiate for
mAP@0.7. The number following the model name indicates the
# of layers in the ResNet, and the number in parentheses indicates
the # of frames T .

mAP@0.7 Train good weather Train good & bad weather

RetinaNet-18 (1) 8.46±0.61 6.97±1.24
CenterPoint-18 (1) 19.02±1.80 14.43±2.56
BBAVectors-18 (1) 19.72±1.10 15.07±1.76
TR-18 (2) 20.57±1.47 15.59±2.31
TR-18 (4) 19.59±0.78 19.62±1.33
SeTR-18 (4) 21.90±1.12 19.65±0.84
SIRA-18 (4) 21.95±1.72 19.66±1.87

RetinaNet-34 (1) 7.67±1.71 6.93±1.60
CenterPoint-34 (1) 18.93±1.46 13.43±1.92
BBAVectors-34 (1) 19.86±1.36 14.67±1.45
TR-34 (2) 21.08±1.66 14.35±2.15
TR-34 (4) 22.46±1.76 19.03±1.10
SeTR-34 (4) 21.68±1.24 19.63±1.29
SIRA-34 (4) 22.81±0.86 19.85±0.95

Table 7. Comparison on object detection with full size images.
Comparison on object detection with full size images.

Train good weather mAP@0.3 mAP@0.5

FasterRCNN-50 (1) [47] - 45.31
FasterRCNN-101 (1) [47] - 45.84
TR-18 (2) [27] - 48.02
TR-34 (2) [27] - 48.66

ETR-34 (4) 65.10 49.19
SIRA-34 (4) 65.67 51.49

ETR-34 (6) 67.19 49.37
SIRA-34 (6) 67.72 52.14

ETR-34 (8) 65.53 50.59
SIRA-34 (8) 67.82 52.55

ETR-34 (10) 64.24 50.12
SIRA-34 (10) 66.03 50.77

IDF1 evaluates the identity preservation ability and fo-
cuses on the association performance. Specifically, IDF1
calculates a bijective (one-to-one) mapping between the sets
of ground truth trajectories and predicted trajectories (un-
like MOTA at the detection level) and is a function of
• IDTPs (identity true positives): the matches in the over-

lapping sections of trajectories that are correctly associ-
ated with the same identity;

• IDFNs (identity false negatives): instances where the
ground truth has an identity that the prediction fails to
identify. This often occurs in non-overlapping sections of
matched trajectories or when the tracker loses track of an
object;

• IDFPs (identity false positives): instances where the pre-
diction assigns an identity that does not exist in the
ground truth. This often happens in the case of over-
segmentation or incorrect identity assignments;
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Figure 12. Tracking performance as a function of number of
frames T . Compared with the single-frame baseline (ResNet-34
CenterTrack), SIRA with T = 6 consecutive frames results in a
margin of +34.67 MOTA.
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Figure 13. Pseudo-direction smooth L1 loss in different time steps.

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
. (25)

The rest of these metrics all reflect the quality of predicted
tracklets. For detailed definitions and calculations of MOT
metrics, please refer to [35].

15. Additional Ablation Study
We present supplementary experimental results from our
ablation studies. Each experimental setting aligns with the
conditions detailed in Section 4.

Detection Results at mAP@0.7: For Table 1 in Sec-
tion 4.2, additional results for mAP@0.7 are shown in
Table 6. Compared to mAP@0.3 and mAP@0.5, all
mAP@0.7 values are lower as expected when the IoU
threshold increases. It is seen that SIRA provides consis-
tently better detection performance than the baseline meth-
ods.

Detection Results With Full Size Radar Frames: We
keep the original resolution with full size 1152 × 1152 to
make a fair comparison to the results from [47]. Regard-
ing variations in image size, a marginal decline in detection



Table 8. Experimental results of multiple object tracking on Radiate. The number following the model name indicates the # of layers in
the Resnet backbone, and the number in parentheses indicates the # of frames T .

Train good weather MOTA↑ MOTP↑ IDF1↑ IDs↓ FP↓ FN↓ Frag.↓ MT↑ ML↓ PT↑

ResNet-18 (1) CenterTrack 13.01 70.26 - 873 - - 920 269 - 254
ResNet-34 (1) CenterTrack 14.55 70.05 - 802 - - 831 282 - 279
TR-18 (2) CenterTrack 33.59 73.49 - 349 - - 498 145 - 330
TR-34 (2) CenterTrack 37.85 71.85 39.90 457 970 6114 511 108 422 246

TR-18 (4) CenterTrack 42.77 70.38 44.91 519 1061 5206 520 244 196 336
TR-34 (4) CenterTrack 43.64 71.58 44.17 503 854 5892 538 197 253 326
SeTR-18 (4) CenterTrack 42.11 68.71 50.33 658 1481 4672 561 261 198 317
SeTR-34 (4) CenterTrack 44.57 71.65 48.72 875 1511 4606 602 348 129 299

ETR-34 (4) CenterTrack 46.06 70.23 50.81 1832 1141 4904 613 345 126 305
ETR-34 (4) OC-SORT 47.11 70.08 50.04 540 1411 4523 481 343 120 313
SIRA-34 (4) CenterTrack* 47.30 70.19 50.16 1249 1218 4756 566 354 122 300
SIRA-34 (4) OC-SORT 47.79 70.09 51.13 523 1408 4513 488 342 120 314

* For CenterTrack, C tracklet is only used for association since this tracker is not based on SORT.

Table 9. Ablation study of various number of frames for multiple object tracking on train good weather. We used SIRA-34 OC-SORT.

# of frames T MOTA↑ MOTP↑ IDF1↑ IDs↓ FP↓ FN↓ Frag.↓ MT↑ ML↓ PT↑

4 47.79 70.09 51.13 523 1408 4513 488 342 120 314
6 49.22 71.70 51.87 399 1032 4692 306 255 172 349
8 46.12 69.55 50.21 487 1076 4746 449 312 139 325
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Figure 14. Performance variation due to different parameter λ.

performance is observed when dealing with larger scopes
from Table 7. However, empirical evidence has shown that
the utilization of SIRA consistently leads to superior perfor-
mance compared to the TemporRadar (TR).

Tracking Results with Complete MOT Metrics: In Sec-
tion 4.2, we showed tracking results in Table 2 with selected
metrics. Here, we show the tracking results with complete
metrics including MOTP, FP, FN and ML [35]. The track-
ing results are shown in Table 8 for comparison of the track-

ers. ID switches vary based on # of predicted BBox. With
increased false negatives (FNs), both # of BBoxes and ID
switches reduce. Table 8 suggests that TR generates more
FNs and SIRA fewer FNs, thus higher ID switches. Nev-
ertheless, we highlight the high IDF1 score in Table 2 and
Table 8 of SIRA.

Number of Frames on Tracking: According to Table 9,
considering longer time horizon contributes to the improve-
ment in tracking performance in metrics such as MOTA
and IDF1. These results clarify the significance of ex-
tending to longer time horizon while maintaining computa-
tional scalability. Fig. 12 illustrates the benefits of integrat-
ing more radar frames for the tracking performance over a
range of methods. Compared with the single-frame baseline
(ResNet-34 CenterTrack), SIRA with T = 6 consecutive
frames results in a margin of +34.67 MOTA.

Effect of λ in (11): Fig. 14 illustrates the results obtained
by varying λ in (11) in the main paper, which corresponds to
Cangle when λ = 1 and C tracklet when λ = 0. Fig. 14 appears
to suggest that a combination of Cangle and C tracklet, i.e., λ ∈
[0.3, 0.7], consistently improves the tracking performance.

Performance of the Pseudo-Direction Estimation: We
evaluated the pseudo-direction estimation performance in
the terms of the smooth L1 loss in (17) over the test dataset.
Fig. 13 shows the loss histogram for three time steps τ =
T − 1/T − 2/T − 3 and it confirms that the majority of
estimation errors are close to 0, indicating a high accuracy.



SI
R

A
-3

4 
(4

)
Te

m
po

R
ad

ar
-3

4

R
ai

n-
4-

0

Te
m

po
R

ad
ar

-3
4

N
ig

ht
-1

-4 SI
R

A
-3

4 
(4

)
SI

R
A

-3
4 

(4
)

Te
m

po
R

ad
ar

-3
4

Fo
g-

6-
0

Figure 15. Sampled detection results with cropped radar frames on three scenarios: Night-1-4 (Top 2 Rows), Fog-6-0 (Middle 2 Rows)
and Snow-4-0 (Bottom 2 Rows) on Radiate. For each scenario, we compare the SIRA and TempoRadar. Green boxes represent ground
truth and red ones are predictions. The column represents consecutive radar frames. TempoRadar shows more false positives (FNs as
unpaired red boxes) than SIRA, particularly in the first two scenarios.

16. Visualization Results

Detection with Cropped Radar Frames: Fig. 15 visu-
alizes the detection results of Table 1 in Section 4.2 in ad-
verse weather conditions: Night-1-4, Fog-6-0, and Rain-4-
0, where green boxes represent the ground truth and red
ones are the predictions. In this case, with T = 4 con-
secutive radar frames, SIRA allows for less FNs (unpaired
green boxes) and less FPs (unpaired red boxes) in the BBox
prediction than TempoRadar.

Detection with Full Size Radar Frames: Sampled de-
tection results of Table 7 are visualized in Fig. 16. SIRA
demonstrates robust performance even when applied to full
size radar frames. However, compared to the cropped
frames, there is a slight decline in performance with full
size radar frames. Upon closer investigation of this phe-

nomenon, it is observed that object shapes in regions dis-
tant from the radar appear blurred due to lower angular res-
olution, leading to a slight increase in both FPs and FNs.
Furthermore, this blurring increases the difficulty of pre-
dicting angles, resulting in a lower IoU. FP predictions are
also attributed to ghost objects present in the radar signal,
as pointed out by Li et al. [27].

Tracking: Fig. 17 is in good weather, and Fig. 18 and
Fig. 19 are in bad weather. From Fig. 17, TempoRadar faces
by numerous FNs and frequent ID switches. In contrast,
SIRA, leveraging longer temporal information for consid-
eration of spatio-temporal consistency, exhibits fewer FNs
and a reduced ID switches. As a result, SIRA consistently
achieves stable tracking. Moreover, Fig. 18 illustrates that
SIRA can detect and track objects even in adverse weather
conditions. Particularly in the Rain-4-0 environment, where
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Figure 16. Sampled detection results of SIRA-34 (6) with full size radar frames on three scenarios: Night-1-4 (Top), Rain-4-0 (Middle)
and Fog-6-0 (Bottom ) on Radiate. Green boxes represent ground truth and red ones are predictions. The column represents consecutive
radar frames.

vehicles exhibit nonlinear movement, the continuous track-
ing without interruptions underscores the effectiveness of
MCTrack. However, in Fig. 19, SIRA does exhibit a slight
presence of FPs, likely influenced by reflections from mul-
tipath or ghost objects, due to tracking across consecutive
frames. Addressing such false information poses an intrigu-
ing challenge.
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Figure 17. Sampled tracking results on three scenarios: City-3-7 (Top 3 Rows), City-7-0 (Middle 3 Rows) and Junction-1-10 (Bottom 3
Rows) on Radiate. For each scenario, we include ground truth (GT), SIRA (SIRA-34 (4)) and TempoRadar (TempoRadar-34). The color
of bounding boxes represents the object ID. The column represents consecutive radar frames.
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Figure 18. Sampled tracking results on three scenarios: Night-1-4 (Top 3 Rows), Fog-6-0 (Middle 3 Rows) and Rain-4-0 (Bottom 3
Rows) on Radiate. For each scenario, we include ground truth (GT), SIRA (SIRA-34 (4)) and TempoRadar (TempoRadar-34). The color
of bounding boxes represents the object ID. The column represents consecutive radar frames.
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Figure 19. Sampled tracking results on three scenarios: Rural-1-1 (Top 3 Rows), Snow-1-0 (Middle 3 Rows) and Night-1-2 (Bottom 3
Rows) on Radiate. For each scenario, we include ground truth (GT), SIRA (SIRA-34 (4)) and TempoRadar (TempoRadar-34). The color
of bounding boxes represents the object ID. The column represents consecutive radar frames.



17. KF-based Multiple Object Tracking for
Radar Perception

Kalman Filter KF is a linear estimator for discretized dy-
namical systems in the time domain. KF operates by utiliz-
ing state estimations from the previous time step and current
measurements to predict the target state at the next time
step. The filter maintains two key variables: the posterior
state estimate represented as x, and the posterior estimate
covariance matrix denoted as P.

In the context of object tracking, the KF process is de-
fined by several components, including the state transition
model F, the observation model H, the process noise co-
variance Q, and the measurement noise covariance R. In
each time step t, when presented with observations zt,
the KF operates through a sequence of predict and update
stages.

predict
{

x̂t|t−1 = Ftx̂t−1|t−1

Pt|t−1 = FtPt−1|t−1F
⊤
t +Qt,

(26)

update

 Kt = Pt|t−1G
⊤
t

(
GtPt|t−1G

⊤
t +Rt

)−1

x̂t|t = x̂t|t−1 +Kt

(
zt −Gtx̂t|t−1

)
Pt|t = (I−KtGt)Pt|t−1

.

(27)

The prediction stage involves calculating the state estima-
tions for the subsequent time step t. In contrast, the up-
date stage is focused on refining the posterior parameters
within the KF when presented with measurfor thents of tar-
get states for time step t. In many scenarios, this measure-
ment is derived from the observation model H and is com-
monly referred to as an observation.

KF parameters In MOT, KF-based typically consists of
five steps: Prediction, Association, Update, Deletion, and
Initialization. The prediction and update phases are handled
by KF. In our setting for radar perception, the KF’s state xt

and observation zt is defined as follows:

xt :=
(
xt, yt, st, rt, ϑt, ẋt, ẏt, ṡt, ϑ̇t

)⊤
, (28)

zt :=
(
xt, yt, ŵt, ĥt, ϑ̂t, ĉt

∣∣∣ ĉt > γ
)⊤

, (29)

where (xt, yt) is the two-dimensional coordinates of the ob-
ject center in the image. s = w × h is the bounding box
scale (area), r is the bounding box aspect ratio and ϑ is ob-
ject orientation, where w and h are the width and height of
the object. The aspect ratio r = w

float (h+1e−6) is assumed to

be constant. The other four variables, ẋ, ẏ, ṡ and ϑ̇ are the
corresponding time derivatives. The detection confidence is

c. The observation model is

Gt =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0

 (30)

We note the process noise as in practice: Qt =

diag
(
σ2
x, σ

2
y, σ

2
s , σ

2
r , σ

2
ϑ, σ

2
u̇, σ

2
v̇ , σ

2
ṡ , σ

2
ϑ̇

)
. In the practice of

SORT, we have to suppress the noise from velocity terms
because it is too sensitive. We achieve it by setting a proper
value for the process noise:

Qt = diag
(
0.1, 5, 1−4, 1−4, 10, 0.01, 0.01, 1−4, 0.1

)
.

(31)
We note the linear transition model as:

Ft =



1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


, (32)

We set the measurement noise covariance as:

Rt = 10I5. (33)

We need to choose an initial value for Pt−1|t−1, call it P0|0.
If we were absolutely certain that our initial state estimate
x0 = 0 was correct, we would let P0|0 = 0. However,
given the uncertainty in our initial estimate x0, choosing
P0|0 = 0 would cause the filter to initially and always be-
lieve xt = 0. Assuming some uncertainty in the initial
state, we set as follows:

P0|0 = diag (10, 10, 10, 10, 10, 10, 10, 10000, 10000) ,
(34)

where ϑ̇ and ṡ are set to a large value as the uncertainty is
particularly high. On the other hand, we use the estimated
pseudo-direction d̂T |T−1 as the initial value for u̇, v̇. There-
fore, we set small uncertainties for these.

18. Fundamentals of FMCW for Automotive
Radar

Radar technology offers a sensing solution that exhibits in-
creased resilience to adverse weather conditions such as
fog, rain, and snow. Typically, it generates low-resolution
imagery, presenting significant challenges for tasks like ob-
ject recognition and semantic segmentation. Contemporary



automotive radar systems are primarily based on the Mul-
tiple Input Multiple Output (MIMO) technique, which em-
ploys multiple transmitters and receivers to determine the
direction of arrival (DOA) [22]. Although this approach is
cost-effective, existing configurations often suffer from lim-
ited azimuth resolution. For example, a commercial radar
system with a 15◦ angular resolution produces a cross-range
image with an approximate span of 10 meters at a distance
of 20 meters. Consequently, radar imagery does not provide
the level of detail necessary for effective object recognition
and detailed scene mapping. On the contrary, the scan-
ning radar employs a mobile antenna to measure azimuth at
each point, leading to significantly improved azimuth reso-
lution [47].

Transmitter From [50], automotive radar predominantly
employs a frequency-modulated continuous waveform
(FMCW) for object detection, generating point clouds
across multiple physical domains. As shown in Fig. 20,
this is achieved by transmitting a series of K coded FMCW
pulses from one of its M Tx transmitting antennas, given
by the expression of the radio frequency (RF) wave form on
Tx antenna m:

sm(t) =

K−1∑
k=0

cm (k) sp (t− nTPRI) e
j2πfct, (35)

sp (t) =

{
ejπβt

2

0 ≤ t ≤ T

0 otherwise
, (36)

where sp (t) is the baseband FMCW waveform (chirp pulse)
with β denoting the chirp rate and T the pulse duration, and
is repeated K times. k is the index for pulse, and cm (k)
is the slow-time orthogonal code for the k-the pulse at the
m-th Tx antenna, which satisfies the following:

K−1∑
k=0

ci (k) cm (k) =

{
K if i = m

0 otherwise
. (37)

TPRI is pulse repetition interval and fc is the carrier fre-
quency, e.g., fc = 79 GHz. The bandwidth of the FMCW
waveform is B = βT . The baseband waveform is repeated
at each antenna before being multiplied by orthogonal codes
cm (k), for example, the Hadamard code.

Receiver An object at a range of R0 with a radial veloc-
ity v and a far-field spatial angle (i.e. azimuth, elevation,
or both) induces amplitude attenuation and phase modula-
tion to the received FMCW signal at each of N Rx receiver
RF chains (including the low noise amplifier (LNA), local
oscillator (LO), and analog-to-digital converter (ADC)) of
Fig. 20. The round-trip propagation delay from m-th Tx
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Figure 20. The slow-time FMCW automotive radar architecture
from [50]. On the left, a sequence of FMCW pulses with orthog-
onal slow-time (pulse) codes are sent from M transmitting anten-
nas while, on the right, each of N receivers uses the same source
FMCW waveform to sample the beat signal followed by range-
doppler processing and slow-time waveform separation for spatial
detection.

antenna to its n-th Rx antenna is

τmn (t) = 2
R0 + vt

c
+m

dt sin (θt)

c
+n

dr sin (θr)

c
, (38)

where dt, dr, θt and θr are the inter-element spacing and
azimuthal angle for the transmitting and receiving antennas,
respectively. We assume co-located radars and the far-field
approximation, i.e. θr = θt = θ. c is the speed of propa-
gation. In the presence of an object at angle θ, the n-th Rx
receiver receives the signal of a sum of M attenuated and
delayed transmitting waveforms:

xn (t) = α

M−1∑
m=0

sm (t− τmn) e
j2πfc(t−τmn). (39)

Subsequently, the baseband signal after LNA and carrier
frequency down conversion is as follows:

x̃n (t) = xn (t) e
−j2πfct (40)

≈ α̃

M−1∑
m=0

sm (t− τ0) e
−j2πfc

2vt
c e−j2π(mdt+ndr)

sin(θ)
λ ,

(41)

where τ0 = 2R0

c is the time taken from the transmission to
the reception, and λ = c

fc
is wave length. We assume that



sm (t− τmn) = sm (t− τ0), and α̃ absorbs constant phase
factors. By using LO, the signals at all receivers are mixed
with the source chirp to generate the analog beat signal:

bn (t) = x̃n (t)

K−1∑
k=0

s∗p (t− kTPRI) , (42)

where ∗ denotes its conjugate. This analog beat signal is
then sampled at t = kTPRI + l∆T with ADC sampling,
where ∆T and TPRI are the fast-time and slow-time sam-
pling intervals, respectively, and digital beat signal is repre-
sented as follows:

bn (l, k) = α̃

M−1∑
m=0

cm (k) e−j2πfrl︸ ︷︷ ︸
Range

e−j2πfdk︸ ︷︷ ︸
Doppler

e−j2π(ft
sm+fr

sn)︸ ︷︷ ︸
Virtual Spatial Array

,

(43)
where fr =

(
βτ0 + 2fc

v
c

)
∆T is normalized range (fast-

time) frequency, fd = 2fcTPRI
v
c is the normalized Doppler

(slow-time) frequency, and f t
s and fr

s are the normalized
spatial frequency at the transmitting and receiving anten-
nas. f t

s is usually different from fr
s due to different Tx/Rx

spacings. In other words, the beat signal bn (l, k) at n-th
receiver is the sum of the object responses originating from
all transmitted waveforms, coded using cm (k). The beat
signal at each of N Rx receiver forms a matrix:

Bn=


bn (1, 1) bn (2, 1) . . . bn (L, 1)
bn (1, 2) bn (2, 1) . . . bn (L, 2)

...
...

. . .
...

bn (1,K) bn (2, 2) . . . bn (L,K)

 . (44)

The induced modulation from the target is captured
by the baseband signal processing block (including fast
Fourier transforms (FFT) over range, Doppler, and spatial
domains). All these processes lead to a multi-dimensional
spectrum. With the constant false alarm rate (CFAR) de-
tection step that compares the spectrum with an adaptive
threshold, radar point clouds are generated in the range,
Doppler, azimuth, and elevation domains [5, 26, 27, 50].
Considering the computing and cost constraints, automo-
tive radar manufacturers may define the radar point clouds
in a subset of the full four dimensions. For example, tra-
ditional automotive radar generates detection points in the
range-Doppler domain, whereas some produce the points
in the range-Doppler azimuth plane [44]. In the Radiate
dataset [47] considered in this paper, the radar point cloud
is defined in the range azimuth plane with a 360◦ field
view. The resulting polar coordinate point cloud is fur-
ther transformed into an ego-centric Cartesian coordinate
system, then a standard voxelization can convert the point
cloud into a radar frame as It ∈ R1×H×W .
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