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Abstract
Numerical simulations in the HVAC&R industries are crucial for optimizing advanced prod-
ucts, reducing costs, and meeting high-energy efficiency standards. Vapor compression sys-
tem simulations can be broadly categorized into steady-state or transient. While steady-state
evaluations determine system capacity and size, dynamic models offer a more realistic repre-
sentation of system responses. Traditional dynamic models, based on the conservation laws,
often lead to a complicated set of Differential Algebraic Equations (DAEs) that are chal-
lenging to solve numerically, especially for large-scale systems like variable refrigerant flow
systems. Conversely, black-box models, derived directly from data, offer simplicity and accu-
racy within a specific operating range but lack flexibility when system architecture changes.
In this paper, we propose a physically- constrained hybrid modeling framework for vapor
compression systems. This approach adopts a modular based solution scheme so that arbi-
trary system configurations can be handled, i.e., components can be modeled with flexibility
to use either data-driven or physics-based approach. In particular, we train and evaluate the
Gated Recurrent Units (GRUs) component models for heat exchangers while use physics-
based models for other components. A generic system solver is developed to evaluate the
system configuration, formulate, and solve the resulting equations, fulfilling the conservation
laws on the system level. A comprehensive comparison between this novel hybrid modeling
framework and the traditional physics-based modeling approach is conducted, focusing on
the aspects of system dynamics, prediction accuracy, and simulation speed.
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ABSTRACT

Numerical simulations in the HVAC&R industries are crucial for optimizing advanced products, reducing
costs, and meeting high-energy efficiency standards. Vapor compression system simulations can be broadly
categorized into steady-state or transient. While steady-state evaluations determine system capacity and size,
dynamic models offer a more realistic representation of system responses. Traditional dynamic models, based
on the conservation laws, often lead to a complicated set of Differential Algebraic Equations (DAEs) that are
challenging to solve numerically, especially for large-scale systems like variable refrigerant flow systems.
Conversely, black-box models, derived directly from data, offer simplicity and accuracy within a specific
operating range but lack flexibility when system architecture changes. In this paper, we propose a physically-
constrained hybrid modeling framework for vapor compression systems. This approach adopts a modular
based solution scheme so that arbitrary system configurations can be handled, i.e., components can be mod-
eled with flexibility to use either data-driven or physics-based approach. In particular, we train and evaluate
the Gated Recurrent Units (GRUs) component models for heat exchangers while use physics-based models
for other components. A generic system solver is developed to evaluate the system configuration, formulate,
and solve the resulting equations, fulfilling the conservation laws on the system level. A comprehensive com-
parison between this novel hybrid modeling framework and the traditional physics-based modeling approach
is conducted, focusing on the aspects of system dynamics, prediction accuracy, and simulation speed.

KEY WORDS: vapor compression system, hybrid modeling, physics-based simulation, data-driven, recurrent neural
network, dynamics

NOMENCLATURE

Symbols
CV flow coefficient ( - )
f frequency (Hz)
Fres residual function ( - )
h specific enthalpy (J · kg−1)
ṁ mass flow rate (kg · s−1)
M mass (kg)

p pressure (Pa)
Q thermal energy (J)
RH relative humidity ( - )
T temperature (K)
V Volume (m−3)

Greek Letters
α mass flow rate model coefficient ( - )
η efficiency ( - )

ρ density (kg ·m−3)
ϕ(·) function
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Subscripts
a air
atm atmosphere
com compressor
con condenser
dis discharge
disp displacement
eva evaporator
in inlet
isen isentropic

lat latent
out outlet
ref refrigerant
res residual
suc suction
t time
tot total
val valve

1. INTRODUCTION

Contemporary architectural designs often feature buildings with high ceilings, operable windows, and ex-
tensive perimeter exposure. While improving aesthetic appeal and functionality, these designs significantly
impact occupant comfort, indoor air quality, and energy consumption. To address the challenges and meet
high-performance green buildings standards, a growing trend is to develop energy-efficient HVAC&R (Heat-
ing, Ventilation, Air Conditioning and Refrigeration) systems, which offers separate controls for temperature,
ventilation, and dehumidification.

Optimizing the HVAC&R systems requires an understanding of building thermal properties and climatic varia-
tions. Due to the inherent complexities of HVAC&R systems, mathematical modeling and simulation become
indispensable tools in design, eliminating the need for expensive and slow experimental setups. The vapor
compression cycle-based HVAC&R systems, prevalent in contemporary commercial buildings, exhibit dy-
namical behaviors due to interaction physics across various time and length scales. Governed by conservation
laws of physics, including mass, energy, and momentum [1], the mathematical models for these systems con-
sist of numerous differential algebraic equations (DAEs), inherently nonlinear and stiff, posing challenges in
finding the solution. Additionally, detailed fluid dynamics and heat transfer analysis, essential for physical
modeling, are computationally intensive, unsuitable for real-time operations and control. As a result, achiev-
ing a balance between accuracy and computational efficiency becomes crucial for HVAC&R system models.

In contrast, black-box models, built directly from data without explicit knowledge of the underlying mecha-
nisms, possess the advantage of simplicity and quantitative accuracy within the data ranges. Data-driven mod-
eling techniques, especially artificial neural networks, have found applications in the evaluation and analysis
of vapor compression systems [2–5] and the performance mapping of individual HVAC&R components [6–9].
However, existing literature of data-driven approaches for HVAC&R systems largely focuses on steady-state
behavior or equilibrium, leading to insufficient representation of the intricate nonlinear dynamics between
different HVAC&R components and the underlying transient states.

The drawback becomes more obvious when the data-driven approaches are applied directly at the system
level. The data-driven models built from system data could not account for inner dynamics between different
HVAC&R components. Moreover, these models demand extensive inputs and training data, especially for
large-scale HVAC&R systems with complex heat exchanger (HEX) networks. Even slight changes in system
architecture can render the data-driven model obsolete, requiring a time-consuming re-training with increased
model dimensions. Given these challenges, a necessity emerges for a modeling approach that captures the non-
linear dynamic behavior and handles varying system configurations without requiring additional re-training.
Therefore, our paper attempts to address this gap by proposing a hybrid modeling approach that leverages the
advantages of both physics-based and data-driven modeling.

Our proposed hybrid modeling approach offers a novel solution, which:
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• Adopts a Modular-Based Scheme: This provides flexibility in component modeling, allowing for choos-
ing between data-driven or physics-based methods as needed. In this paper, we train autoregressive GRU
models to capture the dynamics of HEXs, while using physics-based models to represent other components.

• Ensures System-Level Conservation Laws: A generic system solver guarantees that conservation laws are
fulfilled, ensuring the reliability of the model.

• Improves Adaptability: The modular nature of the approach allows capabilities for handling arbitrary sys-
tem configurations, addressing the limitations of traditional data-driven models.

Integrating the strengths of physics-based and data-driven modeling, our approach aims to inspire potential
applications in the design and analysis of HVAC&R systems. Subsequent sections delve into component
model and system solvers (Section 2), simulation results (Section 3), and conclusions (Section 4).

2. MODEL DEVELOPMENT

Our proposed method integrates physics-based models with data-driven techniques for vapor compression
system simulations. This section starts with foundational physics-based models used for the compressor and
expansion valve. Then we introduce data-driven approaches using Gated Recurrent Units (GRUs) for dynamic
modeling of HEXs. Combining the component models, an iterative system solver is developed for our hybrid
modeling framework. This section aims to elucidate the modeling choice of each component and the setup of
hybrid modeling framework.

2.1 Physics-Based Compressor Modeling

In this work, the compressor is modeled by physical laws. Here we consider a variable-speed high-side rotary
compressor, where the motor is cooled by compressed high-pressure discharge refrigerant [10].

The mass flow rate delivered by the compressor takes the following form
ṁcom = ηV fρsucVdisp (1)

where ηV is the volumetric efficiency of the compressor model. Here the refrigerant density ρsuc is computed
from the suction pressure psuc and enthalpy hsuc.

The actual discharge enthalpy hdis is derived from the idealized performance of the compressor,
hdis = hsuc + (h(dis,isen) − hsuc)/ηisen (2)

where ηisen represents the isentropic efficiency
ηisen = (h(dis,isen) − hsuc)/(hdis − hsuc) (3)

and h(dis,isen) denotes the ideal discharge enthalpy after isentropic expansion, determined by psuc, hsuc, pdis.

2.2 Physics-Based Expansion Valve Modeling

The expansion valve is also modeled physically. In our system, we consider a linear electronic expansion
valve [10]. It can be described using a standard orifice-type relationship between the mass flow rate ṁval and
pressure drop ∆p across the valve,

ṁval = CV

√
ρin∆p (4)

where CV is the flow coefficient determined using experimental data and the pressure drop ∆p = pcon−peva.

2.3 GRU-Based Data-Driven Modeling For HEXs

Problem formulation. The vapor compression cycle in this work contains both the condensing and evaporat-
ing HEXs. As the refrigerant flows through the HEXs, heat is transferred between HEXs and air, while the
matter and momentum are exchanged between HEXs and other devices. The behavior of HEXs over time can
then be considered as a function of matter, momentum, and energy exchanged through the interface between
HEXs and the environment, such as air or refrigerant pipes. On the system-level, HEX components can be
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viewed as black-box functions without solving the internal dynamics. Considering the time discretization, the
behavior of HEXs can be modeled as

yt = ϕ(u0;xt, xt−1, . . . , x0) ≡ ϕ(u0, x0:t) (5)
However, tracking x values over the entire period is both time and storage-intensive. Given that HEXs are
highly dynamical and that their response at any given time step primarily depends on recent variations, the
observable outputs y at time t can then be approximated using a history of N previous time steps as

yt = ϕ′(xt−N :t, yt−N :t−1) (6)
Here, N denotes the number of past time steps considered to influence the current state. This approximation
allows us to frame the problem for a data-driven autoregressive model, utilizing recent input-output data for
predictions.

For the above formulations, the terms are defined as
• yt: the observable outputs of the system at time t

• xt0:t: the time-varying boundary conditions (BCs) and the actuated state inputs through the period [t0, t]

• u0: the initial internal state of the system at t = 0.

Parametrization. To effectively capture the dynamics of HEXs, the input x and output y are defined as follows
x = [ Ta,in RHa,in ṁa,in patm︸ ︷︷ ︸

air-side BCs

ṁref,in href,in href,out pref,out︸ ︷︷ ︸
refrigerant-side BCs

Mref,tot ]

y = [ p1 pN h1 hN Qtot Qlat ∆ṁref ]

(7)

Here Mref,tot represents the total refrigerant mass inside the HEX tube, and ∆ṁref = ṁref,out − ṁref,in

represents the change-in mass flow rate of refrigerant through the HEX. Subscripts ·1 and ·N respectively
denotes a quantity at the first unit and last unit of the HEX tube.

For simplicity, we adopt the notation
x = [xair xref ] (8)

with the definitions
xair ≡ [Ta,in RHa,in ṁa,in patm] , xref ≡ [ṁref,in href,in href,out pref,out Mref,tot] (9)

GRU architecture. Gated Recurrent Units (GRUs) serve as an effective architecture for approximating the
underlying relationship ϕ′ between inputs x and outputs y [11]. Building upon earlier parametrization and
problem formulation, we model HEX dynamics using GRU architecture as inspired by Bhattacharya’s previ-
ous work [12].

A GRU cell embodies three primary gate vectors: the reset gate rt, the update gate zt, and the new gate nt.
These gates contribute to updating the hidden state ht as follows

rt = σ(Wirst + bir +Whrht−1 + bhr)

zt = σ(Wizst + biz +Whzht−1 + bhz)

nt = tanh(Winst + bin + rt ∗ (Whnht−1 + bhn))

ht = (1− zt) ∗ nt + zt ∗ ht−1

(10)

Here W denotes neural weights, σ is the sigmoid function, and ∗ stands for the Hadamard product.

Fig. 1 provides a comprehensive overview of the GRU-based neural network structure. It involves 2 GRU
layers, each with a pre-defined context length N and prediction length N ′, followed by a fully connected
layer. To initialize a N ′-step prediction starting at T , both input features x and outputs y of past time series
are passed to the network. At each time step t of the prediction phase, the hidden state ht is produced by
the GRU layers from the network input st and the previous hidden state ht−1. Then the predicted output ỹt,
obtained from the transformation of ht through a fully connected layer, is subsequently concatenated with
xt+1 as next network input st+1. This procedure is repeated until the final prediction length is reached.

Each sample in the dataset has a time length of N + N ′ with size N of context and size N ′ for prediction.
During training, the mean-squared error between predicted outputs and ground truths are computed from all
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Fig. 1 An illustration on the GRU architecture and the procedure of multi-step prediction.

samples as the total training loss

total training loss =
∑

sample

T+N ′−1∑
t=T

∥yt − ỹt∥2 (11)

For multi-step inferences, a sliding window selects time series data input for each prediction iteration, with
the GRU-based model forecasting the subsequent time step. This continues until the entire series prediction
ends.

Overall, the adopted GRU architecture provides flexible context and prediction lengths, which can be adjusted
across training and inference stages. The usage of student forcing mechanism ensures multi-step prediction
accuracy. These features indicate the potential of GRU-based models for accurate HEX component dynamics
simulation at the system level.

2.4 Hybrid Modeling Framework For System Integration

A vapor compression cycle operates on the principle of transferring heat from a low-temperature region to a
high-temperature region using a refrigerant. This system consists of four basic components: the compressor,
condenser, expansion valve, and evaporator, as depicted in Fig. 2(a).

In this study, we adopt a hybrid modeling framework using a modular-based scheme that combines data-
driven techniques with traditional physics-based approaches, to leverage the strengths of both methodolo-
gies. Our approach, as discussed in the introduction, is potentially powerful because it provides flexibility
in model selection for individual components and overall system configuration while ensuring system-level
consistency. Specifically, the HEX components (condenser and evaporator) are modeled using GRU-based
models, whereas the compressor and expansion valve are modeled using physical laws. At the system level,
first principles are maintained by imposing conservation laws at the junctions between components. Dynamic
mathematical relationships are established accordingly to handle arbitrary system configurations. An iterative
system solver updates the thermodynamic states of each component, while preserving the conservation of
mass, energy, and momentum throughout the system.

The detailed algorithm is shown in Fig. 2(b). Beginning at time t0, all components are initialized with specified
physical coefficients. At each time step t, the GRU models for the condenser and evaporator are activated
with their respective inputs xt and contexts xt−N :t−1, yt−N :t−1, generating one-step inference. Based on the
GRU outputs ycon,t, yeva,t, the conservation laws of momentum and energy at the junctions update pdis, peva
and hsuc, hcon, thereby providing inputs for the compressor and valve. The physics-based models for the
compressor and valve, together with the mass conservation laws, then contribute to determining the refrigerant
parameters for the subsequent GRU inputs at time t+ 1,

xcon,ref,t+1 = [ṁcom hdis hcon,out pcon Mcon,tot,t+1]

xeva,ref,t+1 = [ṁval heva heva,out psuc Meva,tot,t+1]
(12)
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Fig. 2 Hybrid modeling framework. (a) An example of the vapor compression system. (b) Flowchart illustrat-
ing the update mechanism of the hybrid modeling algorithm

Here ṁcom, ṁval, psuc, pcon and hdis, heva are solved using root-finding algorithms, while Mtot,con,Mtot,eva

and the context for GRU models are both updated based on mass consistency, as detailed in the following
paragraphs. With air-side BCs provided concurrently, this process is then repeated until the system reaches a
steady state.

Root-finding solver. In order to determine outputs ṁcom, psuc, hdis from the compressor and ṁval, pcon, heva

from the valve, the root-finding algorithm using Newton’s method is applied to solve the residual equations
based upon the conservation of mass flows through junctions.

(Compressor) Fres(psuc) = ṁref,out,eva(psuc, pN,eva)− ṁcom(psuc, hsuc)

(Valve) Fres(pcon) = ṁref,out,con(pcon, pN,con)− ṁval(pc, pe, hc)
(13)

Here ṁcom and ṁval are computed using physics-based models of the compressor and valve (as described
in Section 2.1 and 2.2). ṁout denotes the outlet mass flow rate from the HEX component (evaporator or
condenser), which is calculated using the following equation,

ṁref,out(pout, pN ) = ṁ0,out(
∆p

∆p0
)α,∆p = pN − pout (14)

Here m0,out and p0 are respectively reference values for the mass flow rate and pressure drop at the end unit
of the HEX tube, and α is a unitless factor selected as the best fit of the equation.

Mass consistency. To further maintain mass consistency through the system, ṁcom and ṁval solved from the
root-finding solver are used to update the change-in mass flow rates ∆m in the context of GRU models, as
well as to compute the total masses Mtot for the next input using the first order finite difference. Specifically,

∆ṁcon,t = ṁcom − ṁval

∆ṁeva,t = ṁval − ṁcom

Mcon,tot,t+1 = Mcon,tot,t +∆ṁcon,t ·∆t

Meva,tot,t+1 = Meva,tot,t +∆ṁeva,t ·∆t

(15)

In summary, our hybrid modeling framework combines GRU-based models with traditional physics-based
models for vapor compression systems, which benefits from the improvements in the predictive power, the
consistency with conservation laws and system flexibility. By employing an iterative system solver and a
root-finding approach, the framework maintains mass, energy, and momentum conservation across system
components and junctions, inspiring accurate and efficient vapor compression system simulations.
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3. MODELING RESULTS AND DISCUSSION

3.1 GRU Model For HEXs

Experiment setup. To data-driven models for HEX components, GRU architecture are adopted due to their
auto-regressive nature in modeling time series, exhibiting potentials in understanding the dynamic behavior
of HEXs. Separate GRU models were trained for the condenser and evaporator, utilizing datasets simulated
with a library of thermofluid component models in Modelica, processed by the Dymola 2020x compiler. The
refrigerant selected for this study was R134A, based on its common usage.

The condenser and evaporator datasets consist of 16000 and 8000 data points, respectively, with each data
point spanning 100s and sampling with step size 1s. To mimic the dynamic behavior of the refrigerant within
the HEXs, three refrigerant-side BCs — ṁref,in, href,in and pref,out — were varied by random ramp changes
at arbitrary intervals. Simultaneously, Mref,tot fluctuated accordingly with these BCs, while href,out was
maintained at a constant 330kJ/kg, under the assumption of no reverse flow. The air-side BCs were kept
constant, simulating a stable external environment, as detailed below:

(Condenser) Ta,in = 35.0◦C, RHa,in = 0.8, ṁa,in = 0.8, patm = 1.0133 ∗ 105Pa,
(Evaporator) Ta,in = 24.4◦C, RHa,in = 0.8, ṁa,in = 0.8, patm = 1.0133 ∗ 105Pa

(16)

Our GRU models configured with a context length of N = 2 or N = 20 and a prediction size of N ′ = 2
were trained with a 9:1 train-to-validation split and normalized variable ranges. Each GRU layer consists of
128 latent features, in order to fully capture complex dynamics within the hidden space. The Adam optimizer
is deployed to optimize training employed the Adam optimizer, initialized with a learning rate of 5e-4, which
decreased tenfold upon observing no metric improvement over three epochs.

Results and discussion. The performance of GRU models, illustrate in Fig. 3, proves their ability to predict
system behavior accurately, where ṁref,out is plotted instead of ∆ṁref for better comparison with the inlet
quantity ṁref,in. In particular, the models exhibit relative errors within 1% during transient states and a
remarkable 0.1% during steady states, revealing the accuracy of the GRU models in multi-step inference.

Fig. 3 Multi-step inference and evaluation of the GRU models of HEXs for a time series in test set. (a)
Condenser. (b) Evaporator.

7



Table 1 Comparison between CNNGRU [12] and our GRU architecture on the average percentage error
evaluated with the condenser and evaporator test sets.

Component Model p1 pN h1 hN Qtot Qlat ṁout

Condenser CNN-GRU [12] 0.09% 0.38% 0.03% 0.33% 2.04% - 15.10%
Ours 0.09% 0.06% 0.04% 0.40% 2.04% - 16.10%

Evaporator CNN-GRU [12] 0.13% 0.50% 0.02% 0.05% 0.83% 1.49% 0.52%
Ours 0.06% 0.07% 0.07% 0.05% 0.59% 0.81% 0.34%

A comparative analysis detailed in Table 1 highlights the performance of our GRU models relative to Chan-
drachur’s CNN-GRU approach [12] for nonlinear HEX dynamics. Our GRU architecture not only matches but
frequently beats CNN-GRU performance, especially in predicting evaporators and the pressures of condenser.
The improvement in accuracy originates from our design choices, specifically the flexible context/prediction
length and the usage of a student enforcing mechanism. Moreover, the inference on all the time series of the
test set using our GRU architecture took only 2 minutes, greatly outbeating CNN-GRU’s inference duration
of 2 hr 33 minutes. It indicates that our GRU architecture possesses high capabilities for efficient individual
HEX and system-level dynamic simulations compared to existing models.

However, predictions for the condenser ṁref,out,con during transient phases deviate from the ground truth,
probably caused by the abrupt dynamic nature of condenser, resulting a wide and non-uniform range in ṁ
values and increasing the model training complexity. A potential solution involves designing a nonlinear nor-
malization technique tailored for the feature ∆ṁ, thereby modifying its distribution and improving prediction
accuracy.

3.2 Hybrid Modeling For Vapor Compression System

Experiment setup. We then extended the boundaries of our research beyond individual components to study
the full vapor compression cycle, through the adoption of a hybrid modeling framework developed in Section
2.4. The hybrid system model was set up with a simulation duration of 500s and a uniform time step of 1s,
utilizing R134A as the working fluid. Our validation process involved two different system configurations,
based on compressor speeds, to test the adaptability of the hybrid system model. Specifically:
• Normal-speed compressor system: compressor frequency f = 55Hz, valve coefficient CV = 0.01

• High-speed compressor system: compressor frequency f = 65Hz, valve coefficient CV = 0.008

Besides, both system configurations shared identical initial conditions as below:
(Compressor) Vdisp = 1.14 ∗ 10−5m3, ηV = 0.95, ηisen = 0.8

(Condenser) p1,con = 1.3 ∗ 106Pa, pN,con = 1.28 ∗ 106Pa, h1,con = 4.3 ∗ 105J/kg, hN,con = 2.7 ∗ 105J/kg
(Evaporator) p1,con = 4 ∗ 105Pa, pN,con = 3.98 ∗ 105Pa, h1,con = 2.9 ∗ 105J/kg, hN,con = 4.2 ∗ 105J/kg

(17)

During the simulation, the context lengths for the GRU models within the condenser and evaporator were
initially set at N=2 and later increased to N=20 after t=20s, allowing broader historical data to be evaluated
and thereby improving the transient state predictions. As the system stabilizes towards equilibrium, the context
lengths were reverted to N=2, optimizing the simulation efficiency. For benchmarking, we generated physics-
based simulation data using the Dymola 2020x compiler, mirroring the coefficient setup of the hybrid system
model.

Results and discussion. The hybrid modeling simulation results for representative physical quantities are pre-
sented with benchmarking in Fig. 4 and Table 2. Fig. 4 represents the evolution of key physical parameters
within two different system configurations, reflecting the dynamics of momentum, mass and energy through-
out both transient and steady-state phases. Table 2 quantitatively provides a comparison of the hybrid and
physics-based simulations, indicating high accuracy of the hybrid model, particularly in steady-state phases.
Among two system configurations with different compressor speeds as shown in Fig. 4, most of the physical
quantities in the hybrid model exhibited the similar trends as the physics-based model. Besides, the compar-
ative analysis shown in Table 2 demonstrates that most physical quantities from the hybrid model simulation
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Fig. 4 Hybrid modeling results of key physical quantities for the vapor compression cycle with (a) normal
speed compressor (b) high speed compressor. Solid lines represent the hybrid modeling prediction values,
while dashed lines represent the simulated ground truth form physics-based models.

Table 2 Hybrid modeling results of key physical quantities in vapor compression cycle with normal and high
speed compressor, respectively corresponding to Fig. 4(a,b). Rows from top to bottom stand for ‘root mean-
squared error of entire series’, ‘average percentage error of entire series’, ‘steady state percentage error’.

Config. Metrics mcom mval psuc pdis hdis ho,con Qtot,con Qtot,eva Qlat,eva Mtot,con Mtot,eva

Normal Speed
Compressor

RMSE 1.09E-04 1.17E-04 3.46E+03 1.43E+04 6.60E+02 7.25E+02 1.47E+01 1.15E+01 6.84E+00 8.17E-04 5.10E-04
Avg Error 0.66% 0.60% 0.61% 0.4069% 0.11% 0.14% 0.32% 0.53% 0.62% 0.46% 1.52%
SS Error 0.45% 0.45% 0.48% 0.11% 0.07% 0.06% 0.07% 0.35% 0.42% 0.43% 0.83%

High Speed
Compressor

RMSE 1.74E-04 1.33E-04 3.60E+03 3.86E+04 2.88E+02 1.66E+03 5.24E+01 1.69E+01 1.18E+01 4.06E-04 2.70E-04
Avg Error 1.11% 0.99% 0.74% 1.96% 0.04% 0.57% 1.62% 0.57% 1.08% 0.10% 1.12%
SS Error 0.87% 0.92% 0.61% 1.99% 0.02% 0.80% 0.51% 0.37% 0.93% 0.05% 0.79%

entered the steady state with above 99% accuracy, including normal and high compressor speed scenarios.
However, the model encounters certain challenges during transient phases, especially in the aspect of mass
flow rate predictions. These results indicate the potential of the hybrid modeling framework in simulating ac-
curate dynamics of the vapor compression system, but also highlight specific areas where further refinement
is needed.

Another advantage of the hybrid model lies in the simulation speed, which reduces the simulation duration
from 1 minute in the physics-based model down to 5s with our hybrid model, resulting from the efficiency
of using GRU-based data-driven models within the hybrid framework. Moreover, the design of dynamically
adjusting the context length during simulation — from a context length of N=2 to N=20 after 20s into the
simulation and reverting to N=2 as the system approached steady state — allows a more comprehensive data
context for the GRU model during transient states while not significantly sacrificing the simulation speed,
improving the predictive accuracy and flexibility during these critical phases.

Besides, the conservation of mass is proven to be satisfied by the evidence of the constant total refrigerant
mass Mtot,sys and the equality of mass flow rates through various components at equilibrium. This is a direct
outcome of the design of the hybrid modeling framework, which accounts for the conservation of mass not
only in the development of root-finding solver, but also by the updates of total masses and change-in mass
flow rates in the HEX components during each time step. These special design allows our proposed hybrid
model to not only predict accurately at the system level but also adheres to fundamental physics principles.
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Despite its strengths, our proposed hybrid model reveals certain limitations, with notable inaccuracies and lag
in predicting the discharge pressure pdis during transient phases. This issue suggests a reassessment on the
assumption of transferring potentially unchanged physical quantities between consecutive time steps, which
can introduce and amplify errors into the GRU models. One solution is to revise the update mechanism,
solving all physical quantities simultaneously rather than decomposing in two steps. This approach, though
more computationally intensive, may improve accuracy. Alternatively, a smart optimization on the dynamic
adjustment of the context length during the simulation might improve transient predictions. Further strategies
could involve re-parameterizing the autoregressive models for HEX components or developing new data-
driven models for other system elements.

4. CONCLUSIONS AND FUTURE WORK

In this study, we proposed a novel hybrid modeling framework, combining data-driven autoregressive models
with physical constraints of conservation laws, to simulate vapor compression system dynamics. Compared to
conventional physics-based models, our method significantly accelerates computation while preserving strong
accuracy. However, improving transient state prediction remains an aspect for refinement.

Future efforts will focus on boosting the transient accuracy of our hybrid modeling framework. We also plan
to extend the system configuration by including additional components, further enhancing our model abil-
ity in handling arbitrary configurations. Those improvements will push the boundaries of current simulation
methodologies, inspiring the innovation in large-scale HVAC&R systems, revealing the potential of the hybrid
modeling framework.
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