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Abstract

Encoding 3D points is one of the primary steps in
learning-based implicit scene representation. Using fea-
tures that gather information from neighbors with multi-
resolution grids has proven to be the best geometric en-
coder for this task. However, prior techniques do not ex-
ploit some characteristics of most objects or scenes, such
as surface normals and local smoothness. This paper is
the first to exploit those 3D characteristics in 3D geomet-
ric encoders explicitly. In contrast to prior work on us-
ing multiple levels of details, regular cube grids, and tri-
linear interpolation, we propose 3D-oriented grids with a
novel cylindrical volumetric interpolation for modeling lo-
cal planar invariance. In addition, we explicitly include
a local feature aggregation for feature regularization and
smoothing of the cylindrical interpolation features. We
evaluate our approach on ABC, Thingi10k, ShapeNet, and
Matterport3D, for object and scene representation. Com-
pared to the use of regular grids, our geometric encoder
is shown to converge in fewer steps and obtain sharper
3D surfaces. When compared to the prior techniques, our
method gets state-of-the-art results. The code is avail-
able at https://github.com/merlresearch/
oriented-implicit-representation.

1. Introduction

There are many different ways of representing 3D sur-
faces. Implicit surface representations tell us that a point
with coordinates x, y, and z belongs to an object surface
if F(x, y, z) = 0, which defines the object. This type of
3D representation is advantageous since it is concise and
guarantees continuity. Most learning-based 3D implicit rep-
resentations start with encoding 3D points, then decoding
their features into the chosen representation, defining F(.).
Two kinds of encoders are used, most of the times in par-
allel: i) mapping the 3D coordinates of each point alone
to a higher dimensional vector space, here denoted as po-
sitional encoder; and ii) 3D points gathering information
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Figure 1. Teaser. The proposed multi-resolution oriented grid
extends the octree representation with the object’s normal direc-
tions; cells are rotated to an orientation tree and the respective
LOD (left). During training, the feature of a sampled point within
the rotated cell is interpolated according to a new cylindrical inter-
polation scheme; neighboring cell features are aggregated with a
3DCNN. These features can be used in the current state-of-the-art
decoders for object representation, such as SDFs and Occupancy.
The object is rendered from the implicit representation (right).

about their neighbors, named grid-based. Multi-layer Per-
ceptrons (MLPs) are usually considered a suitable choice
for decoders. This paper focuses on the grid-based en-
coders, as illustrated in Fig. 1.

Although many neural implicit 3D surface representa-
tion methods have been proposed, such as [18,20,28,36,41,
52, 53], previous techniques using geometric encoders still
do not consider some of the object’s underlying geomet-
ric characteristics, like normals, and only utilize its spatial
localization. Since 3D surface representation is bound to
a specific object/scene, we should use all the object’s struc-
tural characteristics to model our geometric encoder. There-
fore, we propose a novel-oriented multiscale grid-based
encoder. We consider a tree representation with multiple
Levels-of-Detail (LOD) that capture different detail resolu-
tion [52, 64]. In contrast, the grids are constructed at each
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level using the object’s surface occupancy and normals’ ori-
entation. We then aim to answer the following research
question: Does geometrically aligning the cell to the sur-
face’s normal help in representation accuracy?

Our geometric encoder is the first to use surface ori-
entations explicitly. From a multi-resolution surface rep-
resentation, an abstract cell grid is aligned with the sur-
face’s normal (deeper LOD will have better-aligned nor-
mals). In addition to the surface alignment, we add the
assumption that regular (constructed) surfaces are locally
planar (smooth surfaces). Taking this assumption, the grid
alignment with the surface is locally defined up to a rota-
tion around its vector’s normal surface, which we explic-
itly use to encode smoothness. The grid orientation and
smoothness constraints are modeled by encoding features
using cylinder grids, as shown in Fig. 1. Given the nature of
the cylindrical coordinates (there are no corner-sharing fea-
tures between neighboring grid cells), the new grid structure
does not guarantee a smooth relationship between neighbor-
hood cells. Thus, we propose using a shared 3D convolu-
tional kernel for local feature aggregation. We summarize
our contributions next:

1. Oriented grids [Sec. 3.1]: A new sparse 3D tree rep-
resentation aligning cells to the surface normals;

2. Cylindrical interpolation [Sec. 3.2]: A novel cylin-
drical interpolation scheme for cells in item 1;

3. Local feature aggregation [Sec. 3.3]: The interpo-
lated feature vectors in item 2 are conditioned with a
shared 3D convolutional kernel;

4. Results show that our method obtains state-of-the-
art surface representation while capturing the object’s
structural regularity in more detail, lowering low-level
roughness, and obtaining sharper 3D renderings.

2. Related Work
This section provides an overview of the related work

on surface representation within the field of geometry pro-
cessing, specifically from the perspective of our proposed
method. We focus on geometric encoders, highlighting the
differences concerning our method. We discuss various in-
terpolation methods and list available pipelines for neural
implicit representations.
Grid-based encoders: 3D object neural encoders can be
represented as either feature-based or a combination of fea-
ture and grid-based. The feature-based methods [2, 4, 5, 7,
12,13,15,19,23,36,41,43,43–47,56,61–63], encode a fea-
ture representation of a dataset of objects from the input
point clouds and decode them to the desired output rep-
resentation. Typically, such encoders have a large mem-
ory requirement and are more applicable in generalizability

across all objects, often at the cost of quality. As a result,
these methods frequently generate overly smoothed objects
that lack intricate details. This paper focuses on 3D ob-
ject implicit representation [13, 28, 50, 53], that is, object
bounded and not a general object encoder.

Recent advancements in neural representations [37, 55]
have led to the widespread use of encoders that combine
grids and feature-based approaches. These grid-based en-
coders use a 3D grid to simplify the feature space and create
an explicit 3D embedding [36,44]. Recent works used grid-
based encoders for neural 3D representations [10,17,28,53].
These representations allowed the construction of a per-
object implicit representation while preserving far more de-
tails. More recent approaches have employed multiscale
representations, such as octrees [48, 52, 56–59, 64]. They
can a capture higher level of information in data struc-
tures [14,27]. Plenoctrees and NGLOD [52,64] leverage the
octree representation to achieve a smaller model and cap-
ture multiple resolutions of the 3D object. Instant-NGP [38]
employs the octree representation with hash encoding to
various tasks, including 3D object representation, and has
demonstrated improved training efficiency. Due to the suc-
cess of multiscale representation, we use a tree-based rep-
resentation, which decimates the original mesh into a set of
grids for each LOD, according to an octree.

Interpolation: Aggregating features to capture local or
global information about 3D objects is critical. Approaches
that require a grid representation often use interpolation as
an aggregating tool due to its simplicity and effectiveness.
For instance, [17, 24, 31, 32, 36, 40, 44, 51, 55] use trilin-
ear interpolation to obtain features per query inside a cell.
[17] discusses interpolation schemes, concluding the supe-
rior performance of trilinear interpolation over the nearest
neighbor approach leading to optimal training convergence
that is robust to different learning rate hyperparameters.

Similarly, multiscale grid features [38, 52, 64] are ob-
tained per LOD in an octree representation using trilinear
interpolation, following the same principle. The encoder
grid space can be trained in a coarse-to-fine fashion, i.e.
the features are trained using a per-level MLP for the same
query point, where the corners for each cell are shared
among levels. The common factor in these approaches is
that all exploit grids’ regularity, making trilinear interpola-
tion a natural choice. Due to the orientated cell property
of our geometric encoder, we propose a new cylindrical in-
terpolation scheme inspired by trilinear interpolation, along
with a 3D sparse convolutional kernel shared among all
LODs. The former warrants feature invariance between an-
chor rotations (since they are estimated up to a rotation) and
the latter smoothness between neighboring cells and levels.

Decoders and Tasks: The oriented-grid encoder proposed
in this paper can be applied to any type of decoder and
representation task for implicit representations of 3D ob-
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Figure 2. Oriented Grid Construction. Taking a 2D example
with only one DoF (θ), we model the structure of the object by us-
ing an octree, as shown in (a). However, for each level, we use an
orientation tree that searches for the appropriate rotation/anchor,
as shown in (c). From the orientation tree, we obtain the θl for
LOD l (as the middle point of limits δl) in a coarse-to-fine man-
ner that fits the object’s surface. At each level, for each possible
action, the query’s normal n produced angle is compared against
the angle range of each child. According to the result, we take the
appropriate action α, shown in bold in (c), to obtain the next level
anchor. The cells of the original octree in (a) are rotated according
to the chosen anchor per level, obtaining the results shown in (b).

jects. In neural implicit methods focusing on per-object
representation, the decoder typically consists of a small
number of MLPs and employs a geometric grid-based en-
coder [28, 33, 35, 40, 50, 52, 53, 55].

In this work, the goal is to model the 3D representation
to a surface mapping parameter. To this extent, the most
commonly used ones are SDFs [6, 11, 16, 22, 24, 30, 41, 55],
occupancies [7, 11, 29, 36, 39, 40, 44, 54], or unsigned dis-
tance fields [13, 19, 33]. Once modeled, the mesh is recon-
structed using the marching cubes algorithm [34] or ray-
tracing [1, 21] to render images from different viewpoints.
Once the oriented octree grid is built, we generate a mesh
representation from a point cloud. Our approach is agnostic
to any output representation.

3. Oriented grid encoder
In the 3D implicit representation pipeline, a single 3D

point passes through a geometric encoder, positional en-
coder, or both. The features are then injected into a decoder
that models the object’s surface, as in Fig. 1. Repeating the
process for all point cloud points obtains a sparse output
representation with respect to the modeled 3D surface.

The paper focuses mainly on the 3D grid encoder, specif-
ically, the geometric grid encoder (orange block in Fig. 3),
detailed in this section. The input is a point and the pre-
initialized trees that best fit the object. The output is a
set of LOD tree features. We start by constructing the
trees in Sec. 3.1. The features extracted from the trees
are aggregated locally, crossing neighboring information
(see Sec. 3.3). The aggregated features are used in the cylin-
drical interpolation scheme proposed in Sec. 3.2.

3.1. Oriented grids construction

Similar to previous works [14, 27, 52, 56, 57, 64], we
use an octree representation to model the grid-based 3D
encoder. However, in addition to the standard eight ac-
tions for splitting a grid into eight smaller ones in the sub-
sequent LODs, we include rotation actions to model cell
orientations, where at the higher levels a smaller (tighter)
grid and a finer alignment better represent the object, as
shown in Fig. 2. Instead of modeling each action individ-
ually, which would result in a branching factor of 56 —
8 (size) × 7 (orientation) – per subsequent LOD, and since
grid size and orientation are independent, we split them into
two trees:

Tree 1: Structured octree for modeling the sizes of the
grids; and

Tree 2: Orientation tree for modeling the cell orientation.

For the structured octree in Tree 1, its representation con-
sists of LODs l ∈ {1, . . . , L}, bounded within [−1, 1]3. We
followed the typical octree modeling [52, 64].
Orientation tree: For a normalized point x ∈ R3 taken
from the object’s surface point cloud, we associate a nor-
mal to this query1, denoted as n ∈ R3. The goal is to align
the cells along the surface in a coarse-to-fine manner. To
maintain consistency within the LODs, we construct a set
of normal anchors representing the finite possible set of ori-
entations per level. We then rotate the cells such that the
z-axis matches the anchor, which is the closest anchor to
the query normal n. To model a searching tree [49], one
needs to define: i) the node state, ii) the actions, iii) state
transition, and iv) initial state:

• The node state denoted as δ is defined by a set of three
2-tuple elements:

δ ≜ {(rx− , rx+), (ry− , ry+), (rz− , rz+)}, (1)

where superscripts − and + indicate the lower and
higher angle range limits.

• We have seven possible actions:

A ≜ {0, x−, x+, y−, y+, z−, z+}. (2)
1We can either get the normal from a 3D oriented point cloud or esti-

mate it from neighboring 3D points.
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Figure 3. 3D reconstruction pipeline. Graphical representation of a 3D surface reconstruction pipeline: grid-based and positional en-
coders are used, followed by a 3D reconstruction module. For each LOD l, the query point (in blue) is matched to a cell in the octree. The
corresponding cell at each level aligns with the object’s surface according to an anchor normal (Sec. 3.1). A local aggregation 3DCNN
computes the corresponding feature for each cell while considering its neighborhood (Sec. 3.3). From the proposed cylindrical representa-
tion, a feature is interpolated (Sec. 3.2) by evaluating the point’s position inside the cylinder and the aggregated features. The final object
is reconstructed from the interpolated feature, positional encoder, and normal encoder (Sec. 4.1). Light gray boxes are the learnable layers
in this figure, and the dark blocks represent the features.

• A state at LOD l+ 1 is obtained from a state at LOD l
after applying an action α ∈ A using a state transition
function δl+1

α = T (δl, α), such that:

T (δl, x−) =

{(
rl
x− ,

rl
x− + rl

x+

2

)
, (rl

y− , rl
y+ ), (rl

z− , rl
z+

)

}
(3)

T (δl, x+) =

{(
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x− + rl

x+

2
, rl

x+

)
, (rl

y− , rl
y+ ), (rl

z− , rl
z+

)

}
(4)

for actions x− and x+. Action 0 means no rotation;
δl+1
0 = δl. The remaining actions {y−, y+, z−, z+}

can be derived from Eqs. 3 and 4.

• The initial state is set as {(−π, π), (−π, π), (−π, π)}.

We conclude orientation tree modeling by defining rota-
tions. A rotation is obtained per LOD and cell from state δ.
The rotation anchor na is computed from the states’ Euler
angles range (rx, ry, rz), where ri = (ri+ + ri−)/2,∀i ∈
{x, y, z}. To compute the state δ for each cell, we allow
the rotation anchors to align the z–axis of the cell with the
surface normal, using cosine similarity, up to a rotation2.
Grid to query point association: Each cell in Tree 1 has a
fixed orientation computed from searching Tree 2. During
training and evaluation, a query point is associated with a
cell in Tree 1 (structured tree) on a particular LOD. Then,
the cell is rotated using the corresponding rotation anchor.
We note that a point may be outside all octree cells. In this
case, we discard the query.

2Multiple solutions from the search can align to the surface normal.
Since we restrict the alignment of the normal to the z–axis, the x and y
axes can move freely. An example of this can be seen in the supplementary
material.

We note that the normal of the input points is not used
in the model; the normals are only used to construct the
oriented grid. Also, the orientation tree, from low-to-high
LODs, will incorporate a coarse-to-fine approximation to
the input normals. This means that the orientation tree will
be mostly invariant to small noise levels. At lower LODs,
rotations obtained by noisy and noiseless normals might dif-
fer slightly. In addition, we highlight that this work aims to
build an implicit representation of an object. The normals
used to construct the encoder are typically accurate. During
training and evaluation, we use the cell’s anchor normal.

3.2. Cylindrical interpolation

While trilinear interpolation has been the typical way of
obtaining the features for regular grids [40, 52, 55, 64], for
oriented grids, using the same approach as regular grids is
not appropriate since the cells do not share corners between
neighbors (cells are rotated). There is rotation ambiguity
in the z–axis. So, we propose to use oriented cylinders, as
shown in Figs. 1 and 3, that can exploit the alignment of the
cells and mitigate the lack of invariance in defining the grid
orientation, as discussed above. An example can be seen in
the supplementary material. This rotation invariance adds
an explicit smoothness constraint to points inside the grid.

Given the query point, the objective is to compute rela-
tive spatial volumes for feature coefficients, considering the
point’s relative position within the cylinder. Cylindrical in-
terpolation coefficients measure the closeness of the point
to the extremities of the cylinder cell representation, as de-
picted in Fig. 4. A point closer to the top and the border
of the cylinder will produce a lower volume for that bound-
ary (yellow volume). Therefore, its distance from the op-
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Figure 4. Cylindrical interpolation. The input cell grid has a
corresponding anchor’s normal na obtained from Sec. 3.1. The
cylinder is aligned with the grid normal anchor, with a radius R
and height H . The interpolation scheme is of volumetric interpo-
lation type. It depends on the distance of the query point x to the
cylinder’s height boundaries h1 and h2, and the distance between
x and the cylindrical axis of symmetry, denoted as r. The first
coefficient c0 is computed from the distance of the point to the
top plane h1 and the difference in volumes considering R and the
point’s distance to the axis of symmetry r (orange). The coeffi-
cient c2 is computed from the distance to the bottom plane h2 and
the difference in volumes considering R and the point’s distance
to the axis of symmetry r (green). Finally, c1 is the remainder
cylinder (blue). Each coefficient as an associate learnable feature
ek for k = {0, 1, 2}. The interpolated feature f is the weighted
average of ek with ck weights.

posite face will be high, thus, a higher volume coefficient
(green volume). The highest coefficient in this example
will be the opposite according to the center axis (blue vol-
ume). Finally, the volumetric interpolation gives us three
coefficients, c0, c1, and c2 (see Fig. 4 for derivation). With
these coefficients, learnable features el ≜ {el0, el1, el2},
where elk ∈ RF , per cell3 and per LOD l, are used to
interpolate the query point features (linear combination):
f l =

c0e
l
0+c1e

l
1+c2e

l
2

c0+c1+c2
.

3.3. Local Feature Aggregation

The features obtained solely by the proposed interpola-
tion scheme lack neighborhood and LOD information. In
contrast to trilinear interpolation, where the features from
the corners of the interpolation cell are shared among neigh-
bors and levels, cylindrical interpolation does not inherently
incorporate knowledge between its neighborhood and other
LODs. Thus, we propose the usage of a shared across
levels 3DCNN for local feature aggregation, here denoted
as gθl(.). The convolutional kernel Kk per feature level
k = {0, 1, 2} is shared across the tree. For each feature
elk at each cell, there is an associated kernel Kk:

ēlk = gθl
(
elk,N l(x),Kk

)
, ∀l, (5)

3For simplicity, we omit the cell index.

where N l(·) is the set of neighborhood cells. We utilize
a 3D sparse convolution, i.e. the neighbor is ignored if it
is not present. The neighborhood comprises neighbor cells
within the kernel, with the current cell as the center.

At last, the interpolated features from the geometric en-
coder in Fig. 3 are the linear interpolation of the coefficients
and the local feature computed from the 3DCNN (Eq. 5):

f̄ =
c0ē0 + c1ē1 + c2ē2

c0 + c1 + c2
. (6)

4. Implementation

Sec. 4.1 presents the encoder creation, used decoder ar-
chitectures, and output representations. Section 4.2 de-
scribes the training and evaluation procedures, and Sec. 4.3
details the experiments.

4.1. Architecture encoder and decoders

Encoder: The dual-tree construction used to encode an ob-
ject is a pre-processing operation. Different noise levels
are added to the input points, following the standard proto-
col [52]. This representation retains the LOD cells to which
the object belongs and the respective anchor orientation.
Each cell has its corresponding features, as described in
Sec. 3.2. During training and evaluation, a point is queried,
and the features are extracted and passed to the decoder.

Decoders and output representations: We use an MLP-
based architecture as a decoder for the implicit representa-
tion. The decoder is trained at each level and shared across
all LODs. Besides the input interpolated feature, we add
a positional encoder [37] ϕp(·) on the point with Lp fre-
quencies, as well as ϕn(·) on the anchor’s normal with Ln

frequencies. The point and the normal are attached to each
positional encoder, with the size of P = 3×2×Lp+3 and
N = 3 × 2 × Ln + 3. We show our method for SDF and
occupancy as output representation.

4.2. Training and Evaluation

During the training stage, we sample Nq points from the
input point cloud, determine where they lie in each LOD,
and interpolate their features accordingly to the chosen vox-
els. We compute the sum of the squared errors of the pre-
dicted samples or the cross-entropy from the active LODs
for SDF and occupancy, respectively. Additionally, we es-
timate the normals from the gradient [39, 40]. Then, we
compute the L2-norm between the computed normals and
the anchor normals as a regularization term, weighted by
αn. The two terms are added to obtain the final loss.

During the evaluation, we obtain uniformly distributed
input samples from a unit cube with resolution Q = 5123.
We show results for the last LOD L, corresponding to finer
LOD. The input query gets discarded if it doesn’t match an



existing octree cell. Finally, we obtain the mesh from the
output using marching cubes [34].

4.3. Experimental Setup

Following prior works, we evaluate our 3D reconstruc-
tion quality using Chamfer Distance (CD), Normal Consis-
tency (NC), and Intersection over Union (IoU) for each ob-
ject. The CD is computed as the reciprocal minimum dis-
tance for the query point and its ground truth match. We
compute CD five times and show the mean. NC is the
corresponding normals computed from the cosine similar-
ity between the query normal (corresponding to the query
point obtained during CD calculation) and its correspond-
ing ground truth normal. We report the NC as a residual of
the cosine similarity between both normals. IoU quantifies
the overlap between two grid sets.

Datasets: We evaluate our method on three different
datasets, ABC [26], Thingi10k [65], and ShapeNet [9].
We sample 32 meshes each from Thingi10k and ABC and
150 from ShapeNet. We watertight ShapeNet meshes us-
ing [60]. This work is implemented in PyTorch [42].

Model: Our decoder architecture has one hidden layer of
dimension 128, with ReLU. Each voxel feature is repre-
sented as a F = 32 dimensional feature vector. The po-
sitional encoding for the query point and normal are repre-
sented with Lp = Ln = 6 frequencies. We consider the
sparse 3D convolutions for local feature aggregation, with
a kernel size Kk,∀l, k = 5. The cylinder radius R was
empirically set to R = (h1 + h2)/

√
2. Further parameter

investigations are shown in the supplementary material.
Using the Adam optimizer [25], we train our model for

up to 100 epochs, with a learning rate of 0.001 and αn =
0.1. An initial sample size of 5 × 106 points is considered,
with a batch size of 512. Resampling is done after every
epoch. The points are sampled from the surface and around
its vicinity in equal proportions. It is also ensured that each
voxel has at least 32 samples before surface sampling. We
consider the LODs L = {3, . . . , 7} for all the datasets.

Baselines: We compare our approach against state-of-
the-art approaches frequency-based encoders BACON [28],
SIREN [50] and Fourier Features (FF) [53], and 3D sparse
network NDF [13], which were trained with the supplied
settings. We simplify NDF [13] by voxelizing the point
cloud and obtain the surface using marching cubes, using
the same settings from Sec. 4.2, instead of their ball piv-
oting algorithm [3]. We also evaluate a regular grid direct
approach against our method, where we adapt [52], which
required smaller changes in our pipeline for a fair compari-
son against the oriented grids (see the supplementary mate-
rials for details). The surface reconstruction setup was the
same for all methods, described in Sec. 4.2.

Table 1. Ablation studies. The table shows different stages lead-
ing to the final encoder. Starting with oriented grids with trilinear
interpolation, proposed cylindrical interpolation, and finally, lo-
cal feature aggregation with 3DCNNs. The CD is multiplied with
10−5 and NC by 10−4.

Network options Results

Trilinear
Interpolation

Cylindrical
Interpolation

3DCNN
3x3x3

3DCNN
5x5x5

Normals
Regularization CD↓ NC↓ IoU↑

✓ 1.278 4.410 0.881
✓ 0.570 4.348 0.990
✓ ✓ 0.434 4.094 0.998
✓ ✓ 0.431 4.093 0.998
✓ ✓ ✓ 0.443 4.058 0.998

(a) (b) (c) (d) (e) (f)

Figure 5. Ablation example. Ablation effects in rendering (num-
bers in Tab. 1). (a) represent the oriented encoder with trilinear
interpolation; (b) adds cylindrical interpolation; (c) and (d) use
3× 3× 3 and 5× 5× 5 3DCNN kernels for feature aggregation,
respectively; and (e) adds normal regularization to (d). (f) shows
the ground-truth.

5. Experiments
Ablations are presented in Sec. 5.1, where we evaluate

the different stages of our method. Section 5.2 shows the
direct comparison between regular and oriented grids. Fi-
nally, we evaluate our method against methods using differ-
ent encoder strategies in Sec. 5.3.

5.1. Ablations

We gradually add changes to different pipeline blocks
to analyze each component’s relevance. Ten meshes from
ABC and Thingi10k datasets are randomly sampled for
training and testing. Figure 5 shows different cases listed
in Tab. 1, based on the changes made to encoder. We no-
tice that using oriented grids with trilinear interpolation re-
sults in many holes. Since cells are rotated per the anchor
normal, we use a rotation-invariant cylindrical representa-
tion for interpolation. Though rougher, this yields a more
adapted representation (significant improvement in CD).

We see a significant improvement in the mesh smooth-
ness (reflected in NC) with the addition of 3DCNN
(Fig. 5 (c) and (d)), effectively contributing to the local fea-



Table 2. Regular vs. oriented grids. Results for both types for
SDF and occupancy decoders. The CD is multiplied with 10−5

and NC by 10−4.

Network options Results

Regular
Grids

Oriented
Grids

SDF
Decoder

Occupancy
Decoder CD↓ NC↓ IoU↑

✓ ✓ 0.445 4.257 0.997
✓ ✓ 0.687 4.117 0.989

✓ ✓ 0.788 4.140 0.995
✓ ✓ 0.443 4.058 0.998

(a) Oriented grids (b) Regular grids

Figure 6. 3DMatterport oriented vs. regular grids. 3D scene
rendering from 3DMatterport dataset using oriented encoder in (a)
vs. regular encoder in (b). The oriented grid encoder adapts well
to different types of 3D representations. The occupancy decoder
from regular grids cannot produce smooth and accurate results due
to an unconstrained 3D representation. The objects presented are
mostly planar and have thin surfaces, where our method excels due
to the nature of the orientation grid and cylindrical interpolation.
The result is a less rough and detailed 3D render. (Visible stitching
effects from the scene splitting.)

(a) Oriented grids (b) Regular grids

Figure 7. Normal vizualization regular vs. oriented grids. Re-
construction of two objects – left ABC, right Thingi – after one
epoch, with SDF decoder (without regularization). The caustic-
like effect/surface noise reduction on the object’s surface is no-
ticeably visible, even in more detailed objects, after just one epoch
in the oriented grids.

ture aggregation step. Our experiments show that the kernel
of 5× 5× 5 achieves better performance, preferred for sub-
sequent experiments. The proposed normal regularization
enhances smoothness but sacrifices accuracy. Additional
ablations are discussed in the supplementary material.

5.2. Regular vs. Oriented grids

Table 2 compares the performance of our method with
regular grids on SDF and occupancy decoders. SDF and oc-
cupancies decoders are trained as explained in Sec. 4. Nor-
mal regularization remains the same for both cases. Our
method outperforms regular grids with an SDF decoder on
all fronts, yielding smoother results on structured surfaces.
Despite the underperformance of the occupancy framework,
we observe fewer holes and dents (with the latter having a
significant impact on the IoU), as shown in the supplemen-
tary material. These results show the adaptability of our
method to different decoder output representations.

To open possible extensions of our work to large-scale
scene representation, we show the render of our method on
a scene from Matterport3D [8]. We divide the scene into
4× 4 crops (with ground plane included) and train a model
with an occupancy decoder for each crop. During inference,
the mesh crops are rendered using marching cubes and fi-
nally fused to yield the scene, as shown in Fig. 6. Regular
grids render a rougher and muddled 3D representation. Our
method adapts well to thin surfaces and renders the scene
with less roughness and sharper quality. Additional scenes
are shown in the supplementary material.

As a consequence of the oriented grids, we observe that
the proposed encoder renders planar surfaces more effec-
tively in fewer training steps. Especially in more structural
regular objects, the regular grids produce a caustic-like ef-
fect (surface noise). We observe a noise reduction in the sur-
face reconstruction for the oriented grids, as seen in Fig. 7
as soon as the first epoch. More results per epoch can be
seen in the supplementary material.

5.3. Baselines

Quantitative Results: Table 3 details the experimental re-
sults of our method against the baselines. We infer that
grid-based methods outperform the baselines with signifi-
cant improvement on all fronts. In a simple dataset com-
posed of planar objects, like ABC, our encoder reconstructs
smoother planar surfaces due to the alignment of the ori-
ented grids. While rendering holistic details, most base-
lines often have over-smoothed surfaces. We also observe a
higher IoU for our method due to fewer holes in our mesh
and negligible splatting (many small mesh traces around the
sampling region). Overall, the oriented grids produce robust
3D representations with higher fidelity across all datasets.

We also provide the number of parameters required for
rendering the mesh. The advantage of multi-resolution grid
representations is that the decoder size can be reduced to
just an MLP with one hidden layer. This results in our ap-
proach getting meshes faster than other methods.

Qualitative Results: Illustrative examples from Thingi10k
and ShapeNet datasets are shown in Fig. 8. While BACON



SIREN [50] BACON [28] FF [53] NDF [13] Ours GT

Figure 8. Baselines reconstruction. This figure shows some examples of reconstructed meshes in the Thingi10k (above) and Shapenet
(below) datasets for the baselines.

Table 3. Baselines Experimental results for the oriented grid en-
coder against the baselines in three different datasets: ABC [26],
Thingi10k [65], and ShapeNet [9]. The CD is multiplied by 10−5.
The NC is multiplied by 10−4.

SIREN [50] BACON [28] FF [53] NDF [13] Ours

Results for the ABC dataset [26].
CD↓ 5.837 2.229 18.98 5.020 0.603
NC↓ 5.150 4.658 5.170 4.732 3.987
IoU ↑ 0.879 0.987 0.916 0.950 0.998

Results for the Thingi10k dataset [65].
CD↓ 62.85 60.72 67.93 4.421 0.608
NC↓ 49.11 5.052 58.31 4.636 4.413
IoU ↑ 0.716 0.928 0.877 0.920 0.995

Results for the ShapeNet dataset [9].
CD↓ – – – 4.125 0.392
NC↓ – – – 6.186 5.425
IoU ↑ – – – 0.984 0.999

Number of Inference Parameters
# Params. 199K 537K 527K 4.62M 388K

and FF can model the object with reasonable accuracy, it
registers a lot of splattering, giving rise to unwanted noisy
surfaces and artifacts. SIREN and BACON produce over-
smoothed surfaces, losing intricate details on the mesh.
NDF produces a lot of holes but manages to get compact
meshes without splattering. BACON, SIREN, and FF col-
lapse on the ShapeNet dataset. We note that we tried both
watertight and not watertight versions of ShapeNet, but we
obtained similar results for the failing baselines. We sus-
pect these methods fail on ShapeNet due to their reliance
on frequency-based encoding, which fails in high-frequency
shape settings, e.g. the small gaps in the chair.

Limitations: Small holes can arise from non-watertight
planar surfaces that affect both oriented and regular grids.
The oriented grid, however, fills holes more adequately than

the regular counterpart. A more general multi-resolution
grid representation issue is the difficulty of modeling thin
surfaces. Despite the limitation, our method substantially
improves from the regular grid. We provide meshes for such
cases in the supplementary material. We hope to study and
mitigate the above limitations in subsequent works.

6. Conclusion
This paper proposes a novel approach for a 3D grid-

based encoder for 3D representation. The encoder consid-
ers the inherent structural regularities in objects by aligning
the grids with the object surface normal and aggregating the
cell features from a newly developed cylindrical interpola-
tion technique and local aggregation scheme that mitigates
the issues caused by the alignment. Oriented grids yielded
state-of-the-art results while being more robust and accurate
to decoder representation changes, answering the paper’s
research question. Future work lies in extending the work
for neural radiance fields and scene and object reconstruc-
tion where the object implicit representation is unknown.
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Cláudio Silva, and Gabriel Taubin. The ball-pivoting algo-
rithm for surface reconstruction. IEEE Trans. on Visualiza-
tion and Computer Graphics, 5(4):349–359, 1999. 6

[4] Alexandre Boulch and Renaud Marlet. Poco: Point convo-
lution for surface reconstruction. In IEEE/CVF Conf. Com-
puter Vision and Pattern Recognition (CVPR), pages 6302–
6314, 2022. 2

[5] Michael Broxton, John Flynn, Ryan Overbeck, Daniel Erick-
son, Peter Hedman, Matthew Duvall, Jason Dourgarian, Jay
Busch, Matt Whalen, and Paul Debevec. Immersive light
field video with a layered mesh representation. ACM Trans-
actions on Graphics (TOG), 39(4):86–1, 2020. 2

[6] Jonathan C Carr, Richard K Beatson, Jon B Cherrie, Tim J
Mitchell, W Richard Fright, Bruce C McCallum, and Tim R
Evans. Reconstruction and representation of 3d objects with
radial basis functions. In ACM on Computer Graphics and
Interactive Techniques, pages 67–76, 2001. 3

[7] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt,
Julian Straub, Steven Lovegrove, and Richard Newcombe.
Deep local shapes: Learning local sdf priors for detailed 3d
reconstruction. In European Conf. Computer Vision (ECCV),
pages 608–625. Springer, 2020. 2, 3

[8] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niebner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d
data in indoor environments. In Int’l Conf. 3D Vision (3DV),
pages 667–676, 2017. 7

[9] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. https://
shapenet.org/, 2015. 6, 8

[10] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In European
Conf. Computer Vision (ECCV), pages 333–350, 2022. 2

[11] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In IEEE/CVF Conf. Computer
Vision and Pattern Recognition (CVPR), pages 5939–5948,
2019. 3

[12] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll.
Implicit functions in feature space for 3d shape reconstruc-
tion and completion. In IEEE/CVF Conf. Computer Vision
and Pattern Recognition (CVPR), pages 6970–6981, 2020. 2

[13] Julian Chibane, Aymen Mir, and Gerard Pons-Moll. Neural
unsigned distance fields for implicit function learning. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2020. 2, 3, 6, 8, 13

[14] Chiun-Hong Chien and Jake K Aggarwal. Volume/surface
octrees for the representation of three-dimensional ob-
jects. Computer Vision, Graphics, and Image Processing,
36(1):100–113, 1986. 2, 3

[15] Peng Dai, Yinda Zhang, Zhuwen Li, Shuaicheng Liu, and
Bing Zeng. Neural point cloud rendering via multi-plane
projection. In IEEE/CVF Conf. Computer Vision and Pattern
Recognition (CVPR), pages 7830–7839, 2020. 2

[16] Yueqi Duan, Haidong Zhu, He Wang, Li Yi, Ram Nevatia,
and Leonidas J Guibas. Curriculum deepsdf. In European
Conf. Computer Vision (ECCV), pages 51–67, 2020. 3

[17] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In IEEE/CVF Conf.
Computer Vision and Pattern Recognition (CVPR), pages
5501–5510, 2022. 2

[18] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. A papier-mâché ap-
proach to learning 3d surface generation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 216–224, 2018. 1

[19] Benoit Guillard, Federico Stella, and Pascal Fua. Meshudf:
Fast and differentiable meshing of unsigned distance field
networks. In European Conf. Computer Vision (ECCV),
2022. 2, 3
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A. Cylindrical interpolation
This section shows how the cylindrical interpolation mit-

igates the issue caused by the alignment of the oriented cell
to the z–axis. While searching through the Orientation tree,
since no other constraints are set, consecutive cells can have
different rotations pointing aligned to the z–axis but with
different x and y-axis rotations since the tree estimation is
up to a rotation. Therefore, trilinear interpolation (ftri(·))
is not well-suited to our oriented cells. This issue is mit-
igated by the proposed cylindrical interpolation (fcyl(·)),
where the same point has the same feature, no matter what
the rotation around the z–axis, as shown in Fig. A.9.

B. Ablations
This section focuses on providing further understand-

ing of the construction of an oriented-grid encoder. Ap-
pendix B.1 investigates the different hyperparameters and
an additional output representation, while Appendix B.2 the
development of the interpolation scheme and the radii cho-

z

P
r

z

P

r

1 2

f 1tri(P ) ̸= f 2tri(P )

f 1cyl(P ) = f 2cyl(P )

Figure A.9. Invariant Features This figure shows, from the z–
axis (top view of a cylinder), two possible rotation anchors that
can be obtained from the orientation tree. Suppose trilinear in-
terpolation, marked as dashed red, is used for the query point P .
In that case, we obtain two different interpolated features for the
same point in space, which causes discontinuity issues, as shown
in Fig. 5 in the paper. However, using the proposed cylindrical
interpolation, marked as dashed blue, the same point will have the
same feature, regardless of the rotation around the z–axis.
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Table B.4. Ablations Experimental results of Oriented Grids for
ABC and Thingi10k. The CD is multiplied by 10−5. The NC is
multiplied by 10−4.

Batch Size Kernel Size Hidden
Dimension

Normal
Weights

3PSDF
Represent.

256 1024 53 73 64 256 1 0.01 [13]

CD↓ 0.485 0.497 0.431 0.476 0.484 0.464 0.452 0.452 175.7
NC↓ 4.116 4.106 4.093 4.113 4.103 4.098 4.092 4.057 37.5
IoU ↑ 0.998 0.998 0.998 0.998 0.998 0.998 0.997 0.998 0.845

sen.

B.1. Hyperparameter Tuning

Table B.4 shows additional ablations relating to the train-
ing batch size, sparse convolution kernel size, decoder hid-
den dimension size, normal regularization coefficient, and
3PSDF output representation [13]. These ablations have the
same experimental setup as the ones presented in the main
paper. Different hyperparameters do not make much dif-
ference in the stability of the proposed encoder. However,
as we saw in the paper, the output representation is an es-
sential part of modeling objects’ surfaces. In the case of
3PSDF, we implement the output representation developed
in [13] since the authors do not provide the code for their ap-
proach. We note that 3PSDF does not rely solely on the out-
put representation, which explains the differences between
the output we obtained with our encoder and their result.
Nevertheless, the representation obtains object meshes with
more surface noise and extra blobs around the object than
the ordinary occupancy solution.

B.2. Cylinder radius

Since cylindrical interpolation depends on the chosen
cell radius R, we provide insights into choosing the op-
timal cylinder radius for the irregular grids. Specifically,
we consider the following cases for radius: Inscription –
R = (h1+h2)

2 ; and Circumscription – R = (h1+h2)√
2

.
Using a smaller radius that does not circumscribe the

whole cell (interpreting it as a cube) results in holes, as
shown in Fig. B.11. If full circumscription is not met, some
query points that lie near the voxel boundaries but are not
enclosed by the cylinder, i.e. the projection to the axis
of symmetry will be higher than the radius, r > R, thus
c0 = 0, and c2 = 0. If multiple queries are sampled in
these conditions in the same voxel, their interpolated fea-
ture f̄ = ēl1 is the same, which leads to classification incon-
sistencies, resulting in holes.

Circumscription minimizes this issue since it is the mini-
mum distance where all query points are within the cylinder.
Further, an increase in radius doesn’t provide any benefit
during training and evaluation. Since with a higher radius,
overlap can occur between cylinders during interpolation.

Table C.5. Regular vs Oriented: Convergence The CD is multi-
plied by 10−5. The NC is multiplied by 10−4.

Epoch 1 Epoch 5 Epoch 10 Epoch 30

Oriented Regular Oriented Regular Oriented Regular Oriented Regular

CD↓ 0.481 0.494 0.468 0.453 0.459 0.452 0.443 0.445
NC↓ 4.100 4.118 4.100 4.259 4.097 4.258 4.058 4.256
IoU ↑ 0.996 0.996 0.998 0.996 0.998 0.997 0.998 0.997

Since feature aggregation between cells and LODs occurs
before that step, the overlap does not affect the interpolation
scheme. Thus it does not affect neighboring cells’ interpo-
lation.

B.3. Per LOD results

In consensus with coarse-to-fine approach for training,
we show outputs from LODs 3 – 7 in Fig. B.10 (with
L = {3, . . . , 7}. As expected, with an increase in the LOD,
greater details emerge. Lower LODs show grid artifacts cor-
responding to octree voxels. However, as the LOD level
increases, the artifacts disappear, sharpening the edges and
smoothing the object’s surface.

C. Experiments
This section presents additional results for the experi-

ments shown in the main paper. Appendix C.1 elaborates
on the differences between oriented and regular grids dur-
ing training. Appendix C.2 adds additional meshes against
baselines, Appendix C.3 examples for the current limita-
tions, and Appendix C.4 other scene reconstructions using
the proposed encoder.

C.1. Oriented vs Regular grids across training

For regular grids, we solely consider an octree represen-
tation for the structure tree with trilinear interpolation. The
decoder used is the same as ours and was trained with the
same settings. This approach contrasts with NGLOD [52]
in the decoder, where we use an MLP per LOD instead of a
shared decoder across LODs, and the output representation
(NGLOD uses raycasting to compute occupancy according
to sampled cameras, which we change to get occupancies
and SDFs directly). When we switched the output repre-
sentation, NGLOD performance was significantly degraded
without these changes.

Our approach surpasses regular grids that use an SDF
decoder in every aspect. Even though the occupancy frame-
work doesn’t perform as well, in both approaches, we no-
tice fewer gaps and artifacts on our meshes, as shown
in Fig. C.12.

Table C.5 presents results for our method against regu-
lar grids at different epochs. We can see a general trend of
improvement for both approaches. However, oriented grids
outperform regular grids at the first epoch, as shown in Fig.



LOD 3 LOD 4 LOD 5 LOD 6 LOD 7

Figure B.10. LOD results This figure shows some examples of reconstructed meshes in the ABC (above) and Thingi10k (below) datasets
for the baselines.

(a) Circumscription (b) Inscription

Figure B.11. Circumscription vs Inscription This figure shows
one mesh from Thingi10K while using circumscription (a) and in-
scription (b).

(a) Oriented (b) Regular (c) Oriented (d) Regular

Figure C.12. Oriented vs. regular grids in 3D object rendering
with normal visualization using Occupancy networks in (a) and
(b), and using SDFs in (c) and (d). SDFs grant a more accurate
object surface than occupancy. The oriented encoder produces
fewer holes and smoother surfaces than the regular one for oc-
cupancy. For SDFs, oriented produces less roughness and sharper
edges over the regular grid.

7 and Fig. C.13. Subsequent epochs yield fewer training
steps than regular grids; however, oriented grids again out-
perform regular grids at epoch 30. The normal consistency
for oriented grids is consistently better than the ones ob-
tained from regular grids, primarily attributed to smoother
planar surfaces and fewer holes in general for our method.
This indicates that our method can be used at the first epoch
for rendering high-quality meshes.

C.2. Additional baseline meshes

Figure C.15 shows additional meshes from ABC and
Thingi10K for oriented grids vs. baselines.

(a) (b)

(c) (d)

Figure C.13. Epochs This figure shows one mesh from Thingi10K
taken at the first epoch from oriented grids (a) and regular grids (b)
and at 30th epoch from oriented grids (c) and regular grids (d).

(a) Oriented (b) Regular

Figure C.14. Limitations This figure shows some of the issues we
might encounter using a similar decoding strategy. Nonetheless,
the proposed encoder (a) improves qualitatively on the regular grid
solution (b).

C.3. Limitation cases

We provide some general visualization cases of the lim-
itations of our method and regular grids with SDFs. Due to
the normal alignment of our octree and the developed inter-
polation scheme, the oriented-grid encoder still outperforms
the regular grid one. Since both methods have the same type
of decoder, similar problems arise. However, our architec-
ture mitigates some of those issues. Fig. C.14 shows fewer
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Figure C.15. Additional Baselines. This figure shows reconstructed meshes in the ABC (above) and Thingi10k (below) datasets for the
baselines.

Figure C.16. Matterport3D scenes. Matterport sequences mJXqzFtmKg4 and r47D5H71a5s. Stitching effects are caused by scene
splitting.



holes and more robustness for thinner surfaces for oriented
grids, which can also be seen for occupancy output in Fig.
6 in the main paper.

C.4. Additional Matterport3D scenes

We show two additional scenes from Matterport3D with
oriented grids in Fig. C.16. The proposed encoder can reli-
ably obtain high detail in challenging scenes with thin sur-
faces and complex environments.
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