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ABSTRACT
The introduction of audio latent diffusion models possessing the
ability to generate realistic sound clips on demand from a text de-
scription has the potential to revolutionize how we work with audio.
In this work, we make an initial attempt at understanding the inner
workings of audio latent diffusion models by investigating how their
audio outputs compare with the training data, similar to how a doctor
auscultates a patient by listening to the sounds of their organs. Us-
ing text-to-audio latent diffusion models trained on the AudioCaps
dataset, we systematically analyze memorization behavior as a func-
tion of training set size. We also evaluate different retrieval metrics
for evidence of training data memorization, finding the similarity
between mel spectrograms to be more robust in detecting matches
than learned embedding vectors. In the process of analyzing mem-
orization in audio latent diffusion models, we also discover a large
amount of duplicated audio clips within the AudioCaps database.

Index Terms— audio latent diffusion model, audio synthesis,
memorization, acoustic similarity

1. INTRODUCTION

Diffusion models [1,2] have quickly become a powerful class of gen-
erative models, and are based on an elegant theoretical formulation
that only requires a simple denoising network to iteratively gener-
ate complex data such as images and sound. Perhaps their most
successful application is in training large scale models that gener-
ate images from text captions [3]. Text-to-image models based on
latent diffusion [4], which perform the iterative diffusion process in
a low-dimensional latent space, provide a good trade-off in terms of
generation quality and computational cost. However, because text-
to-image models are so easy to use, thanks to their control by natural
language, and produce realistic images, concerns over the intellec-
tual property rights of the data used to train these models has recently
begun to emerge.

While many legal and ethical issues remain open, research at-
tempting to answer the technical question of how diffusion models
may memorize and/or copy their training data has begun to appear
for the case of images [5–7]. While precisely defining replication in
generative models is difficult, evidence that deep networks memorize
training data has emerged through work related to the generalization
and overfitting of deep neural networks [8, 9], along with research
on membership inference attacks [10, 11], which determine whether
a particular sample was part of a model’s training set. At the same
time, we note that another somewhat counterintuitive by-product of
that research is duplicate detection, as recent work found duplicated
samples in the training set to be more likely to be replicated [12].

This work was performed while D. Bralios was an intern at MERL.
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Something zooms by before
 exploding in the distance

Generation Prompt:

Explosions occur multiple times
Match Caption:

A man speaks and an
 audience gives applause

Generation Prompt:

Person is speaking and people
 are cheering

Match Caption:

Fig. 1. Samples generated using TANGO [13] and their top matches
in the AudioCaps [14] training set along with the corresponding
prompts and captions. Found using our proposed method employing
mel descriptors. Notice that despite not being identical to the gen-
erations, the matches contain semantically identical acoustic events
that temporally coincide.

Diffusion models have also recently found many uses in au-
dio generation for speech [15, 16], music [17, 18], and general
sounds [13, 19–21]. The audio latent diffusion model (Audi-
oLDM) [20], which generates mel spectrograms from a text de-
scription and then resynthesizes audio waveforms using a separately
trained HiFi-GAN network [22], is a particularly promising ap-
proach. In a recent public challenge on Foley sound synthesis [23],
a technique based on AudioLDM ranked first in terms of subjec-
tive quality. While recent works on text-to-music generation have
uncovered evidence of training data memorization for transformer-
based [24] models, and the novelty of generated samples from a
diffusion-based model [18], they do not systematically analyze why
memorization occurs, or compare the ability of different signal
representations to detect replicated training data.

In this work, we make an attempt at quantifying training data
replication for audio latent diffusion models trained on general
sounds. We define a generated sound file as replicating train-
ing data when it contains nearly-identical complex spectro-temporal
patterns. Certain sounds, such as stationary noise and constant tones,
are easily replicated but excluded by this definition since they do not
contain such complex patterns. While the term “nearly-identical”



lacks precision, we believe it is appropriate for this exploratory
work, and we propose techniques based on both mel spectrograms
and contrastive language audio pre-training (CLAP) [25, 26] de-
scriptors for finding these potential replications. Our experiments
utilize TANGO [13], a text-to-audio model descended from Au-
dioLDM but using a different text encoder and with its diffusion
core trained on AudioCaps [14] dataset. We find a small, but not
insignificant number of replicated training samples (see Fig. 1 for
examples), and validate our ability to find training data replications
by decreasing the size of the training set to a small enough level
that memorization is very likely to occur. We also discover a large
amount of duplicated audio clips within the AudioCaps database.
Audio examples of potentially replicated training data and identified
AudioCaps duplicates are available on our demo page 1.

2. SEARCHING FOR REPLICATIONS

In order to detect generations which potentially are replications of
training samples, we frame the problem as a copy detection prob-
lem. Specifically, the generated samples are regarded as queries and
the training samples as a reference set. For each pair of a query q
and a reference r, a similarity score is computed, resulting in a pair-
wise similarity matrix. We can then follow a two stage semi-manual
approach consisting of a retrieval stage and a verification stage. In
the retrieval stage, we retrieve the queries q whose top-1 match sim-
ilarity score is above a certain threshold τ . In the verification stage,
we manually examine each retrieved query and reference pair.

The similarity score s(q, r) between query q and reference r is
computed based on a similarity score between descriptors q, r ∈ Rd

extracted from q and r, in our case their cosine similarity:

s(q, r) = sim(q, r) =
q⊤r

∥q∥∥r∥ . (1)

We investigate the use of a low-dimensional log mel spectrogram
as a sample descriptor, a natural choice since most audio models
employing latent diffusion extract the latent representation from a
mel one. We also experiment with a CLAP [25] descriptor.

Additionally, since we threshold based on the similarity score
in the retrieval stage, it is important to have comparable similarity
scores across queries. Depending on the metric, some sounds may
be inherently more similar to all other sounds, thus, we employ sim-
ilarity normalization [27,28]. For each query q, we discount its sim-
ilarity with each reference r using a bias term based on the average
similarity between q and its K nearest neighbors in a background set
of other samples, resulting in the normalized similarity score:

ŝ(q, r) = s(q, r)− β · bias(q),

bias(q) =
1

K

K∑
k=1

s(q, bk),
(2)

where bk is the k-th nearest neighbour of q in the background set
(based on the similarity of their descriptors), and β a scalar. There-
fore, in the retrieval stage, we retrieve the following set of queries:

{q : max
r

ŝ(q, r) ≥ τ}, (3)

which are then inspected along with their top-1 matches in the veri-
fication stage, based on the definition of Section 1.

1https://www.merl.com/demos/auscultating-diffusion

3. EXPERIMENTAL FRAMEWORK

The model we focus on and experiment with is Tango [13], firstly
because its code (including training scripts) and model checkpoints
are available online. Secondly, it maintains near state-of-the-art per-
formance while being trained on AudioCaps [14], which is a signif-
icantly smaller training set compared to similar models, containing
around 45k audio and text pairs, thus making the search for replica-
tions more tractable. We note however that, despite the small train-
ing set size, level-weighted mixing augmentation of two sounds with
concatenated captions is performed during training. Every sample
generation is performed using 200 diffusion steps and classifier-free
guidance [29] with a scale of 3.

All sounds have a sampling frequency of 16 kHz and are zero-
padded to 10.242 s to match the length of the generated samples.
The mel spectrogram is computed using 16 mel bins and a 128ms
long Hann window with 25% overlap. It is then normalized by divid-
ing it by its maximum value, converted to decibel, and clipped with
a lower value of −40 dB. By flattening, we get a 1712-dimensional
descriptor. In order to compute CLAP [25] descriptors, we use the
publicly available laion/clap-htsat-unfusedmodel check-
point on Hugging Face, resulting in 512-dimensional descriptors.
For the calculation of the normalized similarity score, we use a back-
ground set consisting of 1000 samples randomly selected from the
balanced train segment of the AudioSet dataset [30], which has no
overlap with AudioCaps. We set β = 0.5 and use the top-5 nearest
neighbors from the background set, i.e., K = 5.

4. RESULTS & DISCUSSION

4.1. Comparison of Descriptors

First, we compare the mel and CLAP descriptors in terms of detect-
ing replicated samples. Thus, we train two additional Tango models
on small, random subsets of the AudioCaps training set, while still
performing the mixing augmentation. The first model was trained
on 1000 audio and text pairs, and the second on 5000. Each model
is trained for 62200 steps, the maximum number of training steps of
the pre-trained checkpoint. With each model, we generate using the
same training set prompts, resulting in as many generated samples as
the size of each training set. We observe extreme overfitting, in terms
of difference between the validation and training loss in the case of
the first model, and slight overfitting in the case of the second.

As expected, we observe widespread replication in the genera-
tions of the first model, with over 90% of them being almost identical
replications of training samples. Two examples of memorized gener-
ations are shown in the top of Fig. 2, together with their matches suc-
cessfully identified by both mel and CLAP methods. Memorization
can also be seen in the first row of Fig. 3, where we observe clear sep-
aration of the distributions of the top-1 normalized similarity scores
of the generations to the training set, and of the training set to it-
self. We note that the mel method achieves better separation, which
can translate into better precision in replication detection. Based on
these histograms, we select the threshold value τmel = 0.5005 for
the following analyses of the two other models.

For the second model trained on 5000 training samples, we fol-
low the methodology outlined in Section 2 using mel and CLAP
descriptors. We set τmel = 0.5005, resulting in 178 pairs, and we ap-
propriately set τCLAP to get the same number of pairs. Out of those,
following manual verification using the definition from Section 1,
just 31 out of 178 are replicated in the case of mel descriptors and
28 out of 178 in the case of CLAP, with only 2 being in both sets.

https://www.merl.com/demos/auscultating-diffusion


Generated mel Match CLAP Match
Model trained on 1k Samples

Model trained on 5k Samples

Model trained on full AudioCaps

Fig. 2. Spectrograms of generated samples (left column) along
with their top-1 matches using mel descriptors (middle column) and
CLAP descriptors (right column) for each model. Green dashed out-
lines indicate successful match detection, while the blue dotted out-
lines indicate detection of a potential match.

We find that mel descriptors tend to pay attention to similar
spectro-temporal energy presence, while CLAP descriptors focus
mostly on similar semantic content. In Fig. 2 (middle), we see a fail-
ure case for each method. Also, in contrast to the previous model,
replication pairs here are not always exact copies, but contain certain
complex spectro-temporal patterns that are nearly identical. Finally,
Fig. 3 (middle) confirms that replication is limited in comparison to
the previous case, with the mel histograms more closely correspond-
ing to our empirical observations (i.e, few replicated samples).

4.2. Investigation of Replication

We now shift our attention to the model trained on the whole Au-
dioCaps dataset. As before, we generate around 45k samples using
the text prompts of the training set and we then search for poten-
tial matches following the methodology described in Section 2. We
use the threshold τmel = 0.5005 that retrieves 2278 samples and the
appropriate τCLAP that results in the same number of pairs. After
manually inspecting those samples, the number of samples that po-
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Fig. 3. Histograms of the top-1 normalized similarity scores, using
both descriptors, between the generated samples and the correspond-
ing training samples (blue), as well as between the training samples
and themselves (orange) essentially describing the self-similarity of
the training set. The vertical axis is in logarithmic scale.

tentially fit our replication definition is quite limited, around a dozen
for each method with mel descriptors detecting slightly more.

We show in Fig. 2 (bottom) a few generations and their closest
mel and CLAP matches, demonstrating how both methods operate.
In the first case, both methods do not return a match, with the mel
method returning a sample with similar spectro-temporal distribu-
tion of energy and the CLAP method returning a semantically simi-
lar sample. In the second case, the CLAP method detects a training
set sample containing a sneeze sound that temporally coincides with
the first one in the generation, while the mel method returns a burp
sound occurring at that same timestep. In the third and final case, we
have a snoring sound, where the mel method finds a very close albeit
not identical sample, while the CLAP method returns a semantically
similar sample also consisting of snoring.

In Fig. 4, we showcase some detected potential replication
matches using the mel and CLAP methods. In the case of mel, we
have very similar spectro-temporal patterns coinciding, especially
in the temporal dimension. In the case of CLAP, we have semantic
matches whose acoustic components are very similarly structured.
Minor variations between the matches could be attributed to parts of
the models (e.g., the vocoder) that are pre-trained on other datasets.
Additionally, the presence of additional acoustic events in the gen-
erations might be a result of the augmentation used during training.
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Fig. 4. Matches found using mel descriptors in the top two rows. Matches found using CLAP descriptors in the bottom two rows.

4.3. Duplication in the AudioCaps Training Set

The presence of training samples that form a tail of high self-
similarity in the histogram in Fig. 3 (bottom row) prompts us to
investigate duplication in the AudioCaps dataset. First, we compute
the pairwise normalized self-similarity matrix S between the audio
data of the AudioCaps training set, using mel descriptors. Second,
we zero out the diagonal of S. Next, we compute the binary matrix
Aij = 1 [Sij > τ and Sji > τ ] where τ = 0.5025 and 1 [·] repre-
sents the indicator function. The resulting symmetric matrix A can
be viewed as a graph adjacency matrix and we can find its connected
components. Finally, we manually examine each found connected
component and select ones that correspond to clusters of duplicated
samples in the training set.

We find 276 connected components where 88 of them are in-
deed duplicated clusters containing 257 samples in total. We present
these findings in Fig. 5. Examples include audio files extracted from
different YouTube videos containing the same intro audio effects.
However, despite the presence of duplicate audio files in the training
set, we did not find generations replicating them.

5. CONCLUSIONS AND FUTURE WORK

We performed an initial analysis of training data replication in
TANGO, a recently proposed state-of-the-art text-to-audio latent dif-
fusion model. While we only manually verified a small number of
replications on the model trained on the full dataset (approximately
5-10 per every 10,000 training samples), we have provided some ev-
idence of training data memorization. We believe studies such as this
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Fig. 5. Clusters of audio duplicates found in the AudioCaps training
set.

one are important to help technically inform many of the outstanding
legal issues related to generative modeling. While we compared mel
and CLAP descriptors for finding replications, there are countless
additional techniques to be explored, e.g., mel+CLAP ensembles,
audio fingerprinting [31, 32], self-supervised learning [33], etc. We
also surprisingly found duplicate sound files in AudioCaps, a curated
subset of AudioSet. It has recently been observed that de-duplicated
training data can improve performance in language models [12, 34],
and a similar analysis for audio is an interesting area for further
study.
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