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ABSTRACT
Head-related transfer functions (HRTFs) are important for im-

mersive audio, and their spatial interpolation has been studied to up-
sample finite measurements. Recently, neural fields (NFs) which
map from sound source direction to HRTF have gained attention.
Existing NF-based methods focused on estimating the magnitude of
the HRTF from a given sound source direction, and the magnitude
is converted to a finite impulse response (FIR) filter. We propose
the neural infinite impulse response filter field (NIIRF) method that
instead estimates the coefficients of cascaded IIR filters. IIR filters
mimic the modal nature of HRTFs, thus needing fewer coefficients
to approximate them well compared to FIR filters. We find that our
method can match the performance of existing NF-based methods
on multiple datasets, even outperforming them when measurements
are sparse. We also explore approaches to personalize the NF to a
subject and experimentally find low-rank adaptation to be effective.

Index Terms— Head-related transfer function, neural field, im-
plicit neural representations, differentiable digital signal processing,
parameter efficient fine-tuning

1. INTRODUCTION

Head-related transfer functions (HRTFs) capture the sound transmis-
sion from a sound source to to both ears. They are essential to many
applications, including telepresence systems [1] and virtual reality
technologies [2, 3]. As HRTFs depend on the shape of the pin-
nae, head, and upper torso, they vary from person to person, and
individual HRTFs may lead to high-quality immersive audio expe-
riences [4, 5]. When the individual HRTFs for all possible source
directions are available, we can generate an immersive binaural sig-
nal by convolving the HRTFs with the source signals. The ideal
approach is to measure a sufficient number of HRTFs for each per-
son, but it requires much time and effort because HRTFs are usu-
ally measured sequentially over several hundreds of directions [6].
Hence, both spatial upsampling and personalization of HRTFs have
been the focus of intense study [7–9].

To upsample the HRTF measurements, various techniques have
been developed such as panning-based methods [10, 11] and the
spatial decomposition approach [12–14]. The former approach per-
forms a weighted sum of the measured HRTFs for neighboring di-
rections. For instance, vector-base amplitude panning (VBAP) [10]
has been widely used due to its low computational complexity, and it
was adopted by the ISO/IEC MPEG-H 3D Audio standard [15]. The
latter approach expands the HRTFs to spatial basis functions, e.g.,
spherical harmonics [13, 14], and uses a global representation to es-
timate the HRTF for the target direction. This approach can be inter-
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Fig. 1. Illustration of the proposed NF-based HRTF modeling
method named NIIRF. The cascade of IIR filters consist of K peak-
ing filters and two shelf filters for both left and right channels.

preted as an optimization problem of the spatial coefficients [12,13],
which becomes underdetermined when the number of measurements
is limited.

Recently, the machine learning approach has gained increasing
attention since this approach can flexibly exploit anthropometric fea-
tures [16, 17] and HRTFs for multiple subjects [18–21]. Despite re-
cent progress, challenges remain regarding how to exploit a variable
number of HRTF measurements and how to estimate HRTFs at ar-
bitrary directions. To tackle these challenges, several works have
leveraged the neural field (NF), or implicit neural representation,
where the HRTF is represented as a function of the sound source
direction [17, 20, 21]. NFs have been developed in computer vision
to reconstruct 3D scenes from multiple 2D views [22,23] and applied
to spatial audio modeling [24, 25]. In HRTF modeling by NFs, prior
works have shown the potential to estimate the magnitude response
of the HRTFs [17,21]. In these methods, the interpolated HRTFs are
converted to time-domain finite impulse response (FIR) filters by the
inverse discrete Fourier transform (DFT) with minimum phase [26].

Meanwhile, infinite impulse response (IIR) filters are advanta-
geous for approximating HRTFs with fewer coefficients than FIR
filters [27, 28]. This is preferable in terms of computational com-
plexity and memory footprint. While various algorithms are ap-
plicable to optimize the filter coefficients, back-propagation has re-
cently been used to leverage powerful automatic differentiation li-
braries [29–31]. This approach is in the family of differentiable dig-
ital signal processing (DDSP) [32] and has been applied to HRTF
modeling [33]. In addition, a neural network that estimates an IIR
filter from a HRTF magnitude response was trained with DDSP [34].
These previous studies focused on approximating HRTFs only for
certain directions and were not aimed at spatial upsampling.

In this paper, we propose to integrate NF-based spatial upsam-



pling with differentiable IIR filters as a neural IIR filter field (NI-
IRF). As depicted in Fig. 1, our NF estimates the parameters of
the cascaded IIR filters instead of the magnitude response or the
time-domain FIR filter. Building upon DDSP, we optimize the NF
to minimize the error of the generated binaural filter responses by
back-propagation. Furthermore, we explore various conditioning
approaches for personalizing the NF to new subjects. Our exper-
imental results confirm that the proposed method outperforms the
classical panning-based baseline. In addition, the proposed method
improves the upsampling accuracy upon existing NF-based meth-
ods [21], when the number of measurements is limited.

2. PROPOSED METHOD: NIIRF

2.1. General formulation of HRTF modeling via NF

Defining θ as the azimuth in [0, 2π) with θ = 0 in front of the sub-
ject, and ϕ as the elevation in [−π/2, π/2] with ϕ = 0 on the equato-
rial plane, we aim to continuously interpolate HRTFs at any direction
(θ, ϕ). Each HRTF consists of a left-right pair of discrete-time fil-
ters, but our modeling does not include the interaural time difference
(ITD) information, as our phase-insensitive loss allows for dealing
with it independently similar to previous studies1 [21, 27].

In practice, the neural field NF has been used to map directions
to intermediary parameters Ψθ,ϕ that are then mapped onto an HRTF
through a DSP algorithm. This can be formulated as:

Hθ,ϕ = DSP ◦ NF(θ, ϕ) = DSP(Ψθ,ϕ), (1)

where Hθ,ϕ is a filter representation of HRTF. In prior works [17,
21], Ψθ,ϕ is the magnitude of the DFT coefficients |Hθ,ϕ[m]|, where
m = 0, . . . ,M−1 is the frequency bin index. To train NF which es-
timates the magnitude response, we use the following mean squared
error (MSE) [21]:

L =
1

|D|M
∑

(θ,ϕ)∈D

M−1∑
m=0

(
20 log10

∣∣∣∣∣Hθ,ϕ[m]

H̃θ,ϕ[m]

∣∣∣∣∣
)2

, (2)

where H̃θ,ϕ is the DFT of the measured HRTF, and |D| is the size
of the dataset D. In prior works following (1), DSP is a phase es-
timation followed by an inverse DFT to estimate an FIR filter. The
phase is commonly recovered through minimum-phase reconstruc-
tion [26].

2.2. Proposed integration of NF and DDSP

Instead of estimating the DFT magnitude of the HRTF, we exploit an
NF to estimate parameters of IIR filters as depicted in Fig. 1. This
can be formulated as follows:

Hθ,ϕ = DDSP ◦ NFIIR(θ, ϕ) = DDSP(Ψθ,ϕ). (3)

In the proposed method, Hθ,ϕ is obtained via a DDSP module as a
cascade of K + 2 IIR filters for each ear, Ψθ,ϕ denoting a tuple of
parameters for the IIR filters.

More precisely, the DDSP module in (3) converts the IIR param-
eters Ψθ,ϕ into a cascade of a first-order low-shelf (LFS) filter, K
second-order peaking filters, and a first-order high-shelf (HFS) filter
as illustrated in Fig. 2. Using filter index k = 0, . . . ,K+1, the LFS
and HFS filters are parameterized by their cut frequency f

(k)
c in Hz

and their gain g(k) in dB, and the peaking filters are parameterized

1The ITD can be estimated using several methods [26, 27].
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Fig. 2. Illustration of the cascade of parametric IIR filters.

by their center frequency f
(k)
c , their bandwidth f

(k)
b , and their gain

g(k) following [33, 35]. From these parameters, we can compute fil-
ter coefficients b

(k)
n and a

(k)
n as shown in the Appendix, where all

operations are fully differentiable. The transfer function of the kth
filter is given by

H(k)(z) =
b
(k)
0 z0 + · · ·+ b

(k)
N z−N

1 + · · ·+ a
(k)
N z−N

, (4)

where N = 1 for the shelf filters and N = 2 for the peaking filters.
Instead of directly estimating the filter coefficients, we use paramet-
ric IIR filters to guarantee the stability of the estimated filters.

To train NFIIR with the loss function in (2), we use the
frequency-sampling method, i.e., uniformly sample the frequency
axis into M steps to get DFT coefficients as follows:

Hθ,ϕ[m] =

K+1∏
k=0

H
(k)
θ,ϕ(zm), (5)

where zm = exp(2πjm/M), and j is the imaginary unit2.
Once NFIIR is trained, we can compute the IIR filters for arbi-

trary directions and apply the filters in the time domain. The pro-
posed method has the potential to reduce the memory footprint be-
cause IIR filters can better model acoustic systems with fewer coef-
ficients than FIR filters, such as those obtained through the existing
NF-based method [21]. We also expect the parameters of the IIR
filters to be easier to interpolate than the magnitude response.

2.3. NF for estimating IIR filter parameters

For NFIIR in (3), we use a multi-layer perceptron (MLP) with
the GeLU activation functions on the random Fourier features
(RFF) [37]. In detail, the sound source direction (θ, ϕ) is converted
to the RFF as follows:

e = [cos([pT
0d), sin(p

T
0d), . . . , cos(p

T
C−1d), sin(p

T
C−1d)]

T, (6)

where d = [θ−π, ϕ]T, pc ∈ R2 is sampled from an isotropic Gaus-
sian distribution, c = 0, . . . , C−1 is the channel index, and (·)T de-
notes the transpose. In our preliminary experiments, the use of RFF
stabilized the learning curve compared with SIREN [38] and slightly
improved the performance from the vanilla positional encoding [22].

2DFT coefficients in (5) technically correspond to a time-aliased version of
the filter response [36]. That error can however be well mitigated by using
a large enough M .



At the last layer of the MLP, we employ the sigmoid function to
control the frequency range of f (k)

c as follows:

f (k)
c (x(k)

c ) = (f (k)
max − f

(k)
min ) sigmoid(x(k)

c ) + f
(k)
min , (7)

where x(k)
c is an element of the output of the last affine layer. We de-

sign ranges [f
(k)
min , f

(k)
max ] by first finding the frequencies of all peaks

and notches in the magnitude response of all HRTFs in a training
dataset, sorting these frequencies, and using quantiles to split the
interval in equally distributed ranges while ensuring neighboring
ranges have 50% overlap. By assigning different frequency ranges to
each of the K peak filters, we avoid having a filter cascade with sev-
eral peaking filters clustered around the same spectral peak. Mean-
while, the range of f (k)

b is fixed as

f
(k)
b (x

(k)
b ) = (f̃max − f̃min) sigmoid(x

(k)
b ) + f̃min, (8)

where x(k)
b is another element of the last affine layer’s output. We do

not use any activation functions to obtain g(k) as it is unconstrained.

2.4. Efficient adaption of NF to new subjects

We have so far described an NF for a single subject. As HRTFs are
similar across different subjects, we expect that an NF with a small
number of subject-specific parameters can efficiently represent the
HRTFs of multiple subjects, and define

Ψθ,ϕ = NFIIR(θ, ϕ | i), (9)

where i is introduced as a subject index to change subject-specific
parameters. A popular approach to conditioning NFs is conditioning
by concatenation (CbC) [23]. CbC introduces a subject embedding
zi and concatenates it to the model input; it has been used in HRTF
spatial upsampling [21]. Another approach is feature-wise linear
modulation (FiLM) [39], which uses another neural network to com-
pute modulation parameters (µl,i,σl,i) for each layer l from zi. The
output of layer l is then modified from GeLU(Alxl + bl) to

FiLM(xl | i) = σl,i ⊙GeLU(Alxl + bl) + µl,i, (10)

where ⊙ denotes the Hadamard product, xl is the input of the layer
l, and Al and bl are parameters of the MLP shared across subjects.

The subject embedding zi can be optimized by back-propagation
similar to other parameters, a method referred to as auto-decoding
[23]. To personalize the NF to a new subject, we optimize only zi
to minimize the MSE in (2) while freezing the shared parameters.
Auto-decoding can easily handle an arbitrary number of measure-
ments of the target subject because it does not need additional neural
networks to extract zi from the measurements.

We also explore two parameter-efficient fine-tuning meth-
ods: bias-terms fine-tuning (BitFit) [40] and low-rank adapta-
tion (LoRA) [41]. BitFit adapts a neural network to a new do-
main by fine-tuning the bias term bl instead of all parameters.
Here, we introduce a different bias term bl,i for each subject:
BitFit(xl | i) = GeLU(Alxl + bl,i). LoRA introduces an
additional rank-1 matrix for each layer as a product of two vectors3:

LoRA(xl | i) = GeLU(Alxl + ul,iv
T
l,ixl + bl), (11)

where ul,i and vl,i are the subject-specific vectors for building the
rank-1 matrix. After optimizing the rank-1 matrix for each target

3In general, LoRA can also leverage low-rank matrices whose rank is higher
than 1. In this paper, we focus on the case with rank-1 for simplicity.

Fig. 3. LSD with different number of measurements for training.

subject, we can add it to the original weight Al, which reduces the
computational cost to obtain the HRTFs for the same subject.

3. EXPERIMENTS

3.1. Comparison with existing single-subject methods

We first validate the interpolation accuracy of the proposed method
under a single-subject setting. We used the CIPIC dataset [42], which
includes 45 subjects and 1250 measurements per subject. The mea-
surements were randomly split into three sets: 1000 for evaluation,
100 for validation, and 150 for training. The sampling frequency
was 44.1 kHz, and we used the DFT with 512 points to compute
H̃θ,ϕ[m] in (2). The log-spectral distortion (LSD), defined as the
square root of L in (2) measured from 20 Hz to 20 kHz, was used to
perform evaluation on the audible frequency range (lower is better).

Our NF (“NIIRF”) consists of four hidden layers with 512 units
and an output layer whose size depends on the number of peaking
filters K. The NF was trained using the RAdam optimizer [43] with
a learning rate of 5 × 10−4. We used the model with the best loss
L on the validation set for evaluation. We compared the proposed
method with two baselines: the nearest neighbor algorithm (“Nearest
neighbor”) and a variant of VBAP [11] (“Mag. VBAP”). In the latter
baseline, we performed a weighted sum of the magnitude responses
in the training dataset, where the weight is calculated following [11].
NF-based methods estimating the magnitude response [21] (“Mag.
NF”) and the time-domain FIR filter (“FIR NF”) were also evaluated.
They differ from the proposed method only by the output layer.

Figure 3 illustrates the variations in the LSD averaged over 45
subjects depending on the number of HRTF measurements available
for training. The proposed method with 8 filters achieved compa-
rable performance with “Mag. VBAP,” even outperforming it when
measurements are sparse. The NF-based method for the FIR filter
performed poorly compared with that for the magnitude response.
This is likely because variation in time domain impulse responses
across different directions is much harder to approximate with a fixed
model size compared to variations in their spectra. As a result of
changing the estimation target to the parameters of the IIR filters,
the proposed method with 32 peaking filters slightly improved the
performance when the number of HRTF measurements was limited.

Figure 4 shows examples of the responses of the left-channel IIR
filter in the frequency and time domains, where we used the model
trained for subject 3 with 150 measurements4. The time-domain fil-

4In Fig. 4, we shift the estimated filter response so that its correlation with the
target impulse response is maximized, which corresponds to compensating
for the transmission delay from a sound source to the ear [27]. Several
methods have been developed to interpolate the delay [44].



Fig. 4. Estimated filter response in the frequency and time domains.

Table 1. LSD [dB] for different numbers of measurements for adap-
tation. The number of the subject-specific parameters adapted to the
target subject is indicated by Q.

Number of measurements

Method Adaptation Q 10 20 30 50 100

Directions seen in pre-training (Test1)

Mag. NF

CoC [21] 32 4.8 4.7 4.6 4.6 4.5
FiLM 32 4.3 4.2 4.2 4.1 4.1
BitFit 2562 4.3 4.0 3.9 3.7 3.5
LoRA 5122 4.3 4.0 3.8 3.6 3.5

NIIRF (K = 32)
Proposed

CoC 32 4.8 4.7 4.7 4.6 4.6
FiLM 32 4.3 4.2 4.2 4.2 4.2
BitFit 2248 4.3 4.0 3.9 3.7 3.5
LoRA 4808 4.3 4.0 3.9 3.7 3.5

Directions unseen completely (Test2)

Mag. NF

CoC [21] 32 4.9 4.8 4.8 4.8 4.7
FiLM 32 4.5 4.4 4.4 4.4 4.3
BitFit 2562 5.0 4.8 4.6 4.4 4.4
LoRA 5122 5.2 5.0 4.9 4.8 4.6

NIIRF (K=32)
Proposed

CoC 32 5.0 4.9 4.9 4.8 4.7
FiLM 32 4.5 4.5 4.4 4.4 4.4
BitFit 2248 4.8 4.5 4.4 4.2 4.1
LoRA 4808 4.7 4.4 4.2 4.1 4.0

ter response captured the shape of the head-related impulse response
even though the NF was trained on the phase insensitive loss in (2).
This is a favorable feature of the cascaded IIR filters [27, 28].

3.2. Adaptation of multi-subject NF to new subjects

We use the HUTUBS dataset [45] for evaluating adaptation of an
NF pre-trained on multiple subjects to new subjects. The dataset
contains 94 subjects excluding two repeated subjects [18], and 440
measurements per subject. The first 87 subjects were used for pre-
training, and the remaining 7 subjects were used for evaluating the
adaptation capability. 100 randomly selected directions are held out
from all 94 subjects, and used to form an unseen direction test set
(“Test2”). An additional 100 directions are held out from the 7 adap-
tation subjects to form a seen direction test set (“Test 1”), and also
held out from 10 of the training subjects for use as a validation set.
All remaining directions are used for either pre-training or adapta-
tion. The NFs were pre-trained on the HRTFs of multiple subjects
using the RAdam optimizer, and then the subject-specific parameters
were optimized for each target subject with the AdamW optimizer.

Table 1 presents the LSD with different adaptation methods. As
a point of comparison, we trained a single-subject model as used
in Section 3.1 for each of the 7 target subjects. For the directions
included in the multi-subject pre-training (Test1), the average per-
formance over all subjects was 7.5 dB when training on 10 measure-
ments, and 5.1 dB when training on 100 measurements. We see from
Table 1 that all the adaptation methods are effective for HRTF per-
sonalization and dramatically improve upon these results. NF-based
methods estimating the magnitude response and the parametric IIR
filters resulted in a similar performance on Test1, with BitFit and
LoRA performing best. However, the proposed NIIRF with LoRA
outperformed the existing NF-based method in most cases on Test2.
We hypothesize that generalization is better for NIIRF because val-
ues specifying parametric filters such as filter center frequencies and
gains are more predictable across directions than spectra.

4. CONCLUSION

We proposed to integrate an NF approach and a cascade of differen-
tiable IIR filters for HRTF modeling. The NF is trained to minimize
the error of the magnitude response based on DDSP. We demonstrate
that the proposed method improves the upsampling accuracy when
the number of HRTF measurements is limited. We also investigate
various adaptation methods to personalize the NF to a new subject.
Our source code is available online5.

5. APPENDIX: IIR COEFFICIENT COMPUTATION

Following [33, 35], the transfer functions of the first-order LFS and
HFS filters are defined as in Table 2, where η(k) = (ρ(k) − 1)/2,
ρ(k) = 10g

(k)/20, and fs is the sampling rate. The transfer function
of the second-order peaking filter is summarized in Table 3.

Table 2. Coefficients of the first-order shelf filters.

LFS HFS

b
(k)
0 1 + η(k)(1 + α(k)) 1 + η(k)(1− α(k))

b
(k)
1 α(k) + η(k)(α(k) + 1) α(k) + η(k)(α(k) − 1)

a
(k)
1 α(k) α(k)

α(k)

if g(k) ≥ 0
tan(πf

(k)
c /fs)−1

tan(πf
(k)
c /fs)+1

tan(πf
(k)
c /fs)−1

tan(πf
(k)
c /fs)+1

α(k)

if g(k) < 0
tan(πf

(k)
c /fs)−ρ(k)

tan(πf
(k)
c /fs)+ρ(k)

ρ(k) tan(πf
(k)
c /fs)−1

ρ(k) tan(πf
(k)
c /fs)+1

Table 3. Coefficients of the second-order peaking filters.

Peaking filter

b
(k)
0 1 + η(k)(1 + β(k))

b
(k)
1 γ(k)(1− β(k))

b
(k)
2 −β(k) − η(k)(1 + β(k))

a
(k)
1 γ(k)(1− β(k))

a
(k)
2 −β(k)

β(k)

if g(k) ≥ 0

tan(πf
(k)
b

/fs)−1

tan(πf
(k)
b

/fs)+1

β(k)

if g(k) < 0

tan(πf
(k)
b

/fs)−ρ(k)

tan(πf
(k)
b

/fs)+ρ(k)

γ(k) − cos
(
2π f

(k)
c
fs

)
5https://github.com/merlresearch/neural-IIR-field
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