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Abstract
In single photon lidar (SPL), the laser repetition rate sets the maxi- mum distance that
can be recovered unambiguously. Conventional SPL extends this maximum recordable depth
by reducing the repetition rate; however, the slower acquisition speed limits the number of
received photons, which may be insufficient to track fast-moving objects. Inspired by recent
successes in modulo sensing, we lever- age the smoothness of typical trajectories to achieve
long-range tracking beyond the unambiguous range. Although SPL naturally acquires modulo
time-of-flight measurements, it introduces several challenges—including random sampling
times, multiple noise sources, and absolute distance uncertainty—that are not addressed
by the current modulo sensing literature. Hence, we propose an interpolation and denoising
method that operates directly over the modulo samples. We further disambiguate the absolute
distance based on the changing reflectivity fall-off. Monte Carlo simulations considering
realistic trajectories under practical conditions show that, when properly unwrapped, the
normalized mean squared error of our depth estimate decreases by over 20 dB with respect
to a lidar setup whose repetition period leads to no ambiguity.
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ABSTRACT

In single photon lidar (SPL), the laser repetition rate sets the maxi-
mum distance that can be recovered unambiguously. Conventional
SPL extends this maximum recordable depth by reducing the repe-
tition rate; however, the slower acquisition speed limits the number
of received photons, which may be insufficient to track fast-moving
objects. Inspired by recent successes in modulo sensing, we lever-
age the smoothness of typical trajectories to achieve long-range
tracking beyond the unambiguous range. Although SPL naturally
acquires modulo time-of-flight measurements, it introduces sev-
eral challenges—including random sampling times, multiple noise
sources, and absolute distance uncertainty—that are not addressed
by the current modulo sensing literature. Hence, we propose an
interpolation and denoising method that operates directly over the
modulo samples. We further disambiguate the absolute distance
based on the changing reflectivity fall-off. Monte Carlo simulations
considering realistic trajectories under practical conditions show
that, when properly unwrapped, the normalized mean squared error
of our depth estimate decreases by over 20 dB with respect to a lidar
setup whose repetition period leads to no ambiguity.

Index Terms— Lidar, modulo sensing, single-photon detection,
non-uniform sampling, modulo single-photon lidar

1. INTRODUCTION

Conventional single-photon lidar (SPL) systems operate by illumi-
nating a scene with a periodically pulsed laser and detecting the pho-
tons scattered back using a time-resolved single-photon avalanche
diode (SPAD). Photon detection times are measured with respect to
the most recent pulse emission time, which enables direct time-of-
flight depth imaging from as little as one photon per scene pixel [1,
2]. Importantly, the periodic illumination causes a tradeoff: a higher
repetition rate results in more photon detections but decreases the
depth range that can be measured unambiguously. This trade-off be-
comes critical in tracking applications [3] such as autonomous driv-
ing [4] that require both a high frame rate and long-distance tracking
capability.

Most SPL approaches set the unambiguous range to be larger
than an expected upper bound on the depth [2, 5], or they measure
only relative depths for a scene that is at a long distance but lies
entirely within one unambiguous range [6, 7]. Alternatively, some
methods aim to make absolute distance measurements by modifying
the hardware to illuminate with either non-periodic pulse trains [8,
9], multiple repetition rates [7], or different repetition rates for each
pixel [10]. Unfortunately, these approaches are designed for imaging
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static scenes and are unsuitable for single-point tracking of a moving
object.

In this paper, we explore the feasibility of modulo SPL oper-
ation, i.e., maximizing the illumination rate at the expense of the
depth aliasing that occurs when recording detection times that are
modulo the repetition period. To track targets beyond the unambigu-
ous range, we can take advantage of the continuity of realistic tra-
jectories to unwrap the modulo by applying existing methods from
the modulo sensing literature [11, 12, 13]. However, modulo SPL
measurements introduce several key challenges: 1) samples of the
trajectory are non-uniformly spaced in time, 2) not all samples are
informative due to ambient light, and informative samples are them-
selves noisy, and 3) modulo sensing methods unwrap sequences up
to a constant ambiguity equal to an integer multiple of the modulo
threshold. In this work, we address these problems through the fol-
lowing contributions:

1. We generalize the SPL acquisition model to account for target
motion and modulo detection times;

2. We propose an interpolation and denoising algorithm that op-
erates over modulo samples, allowing recovery of uniform,
denoised modulo samples of the trajectory for use with exist-
ing unwrapping methods;

3. We demonstrate recovery of the absolute target position by
finding the global offset that best fits the inverse-squared fall-
off of reflectivity with distance.

Monte Carlo simulations show that for signal-to-background ratio
(SBR) as low as 1 and targets moving at up to 40m/s, our algo-
rithm unwraps the shape of the underlying signal in 99.75% of trials
and finds the absolute depth in 99.5% of trials. Conditioned on cor-
rect unwrapping, our method reduces the normalized mean-squared
error (NMSE) by over 20 dB compared to a full-range lidar whose
repetition period leads to no ambiguity.

2. DATA ACQUISITION AND MODELING

We consider a target moving in one dimension and aim to acquire its
position over time. Our basic setup is depicted in Fig. 1(a).

2.1. Acquisition system

Illumination. The laser illuminates the target with pulses at times
ntr, n = 0, . . . , nr−1. The laser pulse shape s(t) is approximately
Gaussian with root mean square (RMS) duration tp ≪ tr. The un-
ambiguous range is zr = ctr/2, where c ≈ 3×108 m/s is the speed
of light.
Detection. For each photon the SPAD detects, the absolute detec-
tion time Tℓ, for ℓ = 0, . . . , Nd − 1, is recorded with time-stamping
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Fig. 1: Overview of modulo SPL acquisition and processing. (a) The
target occupies a time-varying position z(t). The laser illuminates
the target with a sequence of nr pulses with repetition period tr. (b)
Only a small fraction of pulses generate a photon detection. The
time of flight t̄n of a photon emitted at ntr and detected at time Tℓ

may be longer than tr/2 but can only be recorded as a wrapped time-
stamp Wℓ. (c) Because the detection sequence is noisy and random,
we group detection times into uniformly-spaced frames of duration
tf , and for each frame we construct a histogram, which is used for
denoising. (d) We unwrap the trajectory from the uniform modulo
samples and estimate the global offset from the reflectivity fall-off.

electronics as illustrated in Fig. 1(b). The output of the SPL system
is then the detection time sequence {Tℓ}Nd−1

ℓ=0 , where the total num-
ber of detections Nd is a random variable. Since there is no way
to determine which illumination pulse generated a detected photon,
the usual assumption that no aliasing occurs encourages the use of
the wrapped detection time sequence {Wℓ}Nd−1

ℓ=0 , where Wℓ = Tℓ

mod tr, i.e., the time measured with respect to the most recent il-
lumination time. The absolute detection times are typically ignored
unless detector dead times are considered because they cause a time
dependence in the sequence {Tℓ}Nd−1

ℓ=0 [14, 15].

2.2. Target

Depth. The target occupies the position z(t) at time t. We define
the time-of-flight (TOF) t̄n as the time it takes the nth pulse to reach
the object, so z(ntr + t̄n) = ct̄n.

We model a one-dimensional trajectory with its position z(t),
velocity v(t), and acceleration a(t). We assume the trajectory fol-
lows a Singer model [16], where a(t) is a correlated random pro-
cess, whose correlation profile can be adjusted to mimic different
maneuvers by changing the power of the innovation σ2

s and the de-
cay β. Typical trajectories, including those following the Singer
model, cannot be expected to be bandlimited. However, given the
high sampling rate of lidar systems, we assume that the lack of ban-
dlimitedness has negligible impact.

Reflectivity. We assume the beam divergence is negligible, so equal
laser power hits the target regardless of its distance. Furthermore, we

consider a Lambertian surface albedo, which implies that the light
reflects isotropically, producing fall-off proportional to the inverse-
square of the distance [17]. Then, the reflectivity for the nth pulse
is

αn := αref/(t̄n)
2, (1)

where αref includes constant attenuation effects from the albedo,
view angle, detector efficiency, and fall-off measured with respect
to reference TOF, t̄ref . In some scenarios, e.g., with a known target,
it may be possible to calibrate αref in advance of tracking.

2.3. Generalized probabilistic measurement model

Photons arrive at the detector as a realization of a Poisson pro-
cess, but existing modeling (e.g., [2, 5]) assumes a static scene
and z < zr. Accounting for aliasing and motion, the illumination∑nr−1

n=0 s(t− ntr) results in a Poisson process intensity function

ϕ(t) := b+

nr−1∑
n=0

αns(t− ntr − 2t̄n), (2)

where b is the background intensity that combines ambient light and
dark counts, i.e., false detections due to thermal noise in the SPAD.
Assuming the target moves sufficiently slowly so there is approxi-
mately one (potentially wrapped) pulse s(t) in each repetition pe-
riod, then during the nth illumination period, the photon detection
rate is

Φn :=

∫ (n+1)tr

ntr

ϕ(t) dt = αqS +B, q ≤ n, (3)

where S :=
∫ tr
0
s(t) dt, B := btr, and αqS/B is the SBR. Note

that a detection in period n may be produced by a photon from a
previous illumination q ≤ n. We assume operation in the low-
flux regime, i.e., Φn ≪ 1 ∀n, so that SPAD dead times can be
ignored [14]. Thus, photon detection constitutes an inhomogenous
Poisson process with time-varying rate function ϕ(t). Wrapped de-
tection times are random variables with density f (n)

W (t) = ϕ(t)/Φn,
for t ∈ [ntr, (n + 1)tr). Both reflectivity and TOF vary as a func-
tion of n, so these random variables are not identically distributed,
but we assume they are independent.

Unlike conventional modeling, the formulation (2) allows not
only for the case when t̄n > tr/2, but also when the pulse shape s(t)
lies across a wrapping boundary. These events represent the points
when the detector introduces the modulo discontinuity. Although the
distribution of the detection times has to be modified to account for
the wrapping effect [18], since we assume tp ≪ tr, the effect of the
pulse wrapping onto itself is negligible.

3. MODULO SENSING

Modulo sensing aims to acquire samples of a signal minimizing
quantization noise [12, 19] and clipping distortion [11]. Since
the noise introduced by the detection-time quantization is negli-
gible compared to other sources of uncertainty, we focus on the
latter. Consider a signal g(t) and an analog-to-digital converter
with dynamic range [−λ, λ]. The goal is to recover g(t) from its
uniform and modulo reduced samples Mλ (g[n]) := (g[n] + λ
mod 2λ) − λ. The recovery process comprises two steps: 1) re-
covering the unwrapped samples from the wrapped samples and 2)
applying classical reconstruction techniques to recover g(t). Theo-
retical results show that recovery of noiseless bandlimited signals is



guaranteed with sufficient oversampling [11], while in practice the
oversampling requirement depends on the noise power and recovery
algorithm used [13].

Unwrapping algorithms follow two main approaches. Temporal
domain techniques exploit the redundancy between samples [12, 20];
for instance, unlimited sampling [11, 21, 22] computes higher-order
finite differences between samples and generalizes classical phase
unwrapping using the first-order difference (FDPU) [23, 24]. Joint
temporal-spectral domain techniques exploit finite support in both
the temporal and the frequency domains [25, 13, 26]. Several works
have demonstrated depth estimation with modulo measurements [27,
28, 29], but these methods encode depth in the phase or frequency
of a signal while the modulo is applied to the amplitude.
Limitations for SPL. In modulo SPL, the modulo is applied di-
rectly to the TOF. Furthermore, target tracking via SPL introduces
a set of differences with respect to the typical modulo sensing setup.
First, existing unwrapping methods assume and often require uni-
form samples, e.g., for a well-characterized spectrum; however, the
stochastic nature of photon detection yields samples in SPL that are
non-uniformly spaced in time. Second, SPL measurements contain
uninformative background detections as well as pulse-shape uncer-
tainty for signal photons. Finally, the modulo operator leaves an off-
set ambiguity equal to an integer multiple of the modulo threshold.
Existing solutions limit applicability to signals with no DC com-
ponent [13] or ensure the first few samples are unaffected by the
modulo operation [12], which cannot be guaranteed in a tracking
scenario.

4. MODULO SINGLE PHOTON LIDAR

4.1. Interpolation and Denoising of Modulo Samples

Although we aim to track moving targets, we assume that the dis-
placement is negligible within short time frames of size tf . Since the
RMS duration of s(t) already induces some uncertainty, we set the
duration tf = pf ctp/vmax, where vmax is an upper bound on the
maximum speed of the target and pf is a parameter controlling the
bias-variance trade-off. We split the original sequence into nf possi-
bly overlapping frames of length tf . Inside the mth frame, we have
Km identically distributed samples, whereKm is a random variable.

As shown in Fig. 1(c), we form a histogram of detection
times in each frame to estimate the depth. In conventional SPL,
the maximum-likelihood (ML) depth is approximated by the log-
matched filter assuming B = 0 [30, 2]. Applying a censoring ap-
proach that uses a window to reject likely background counts before
filtering typically improves results [5]. To account for the modulo,
we update the censoring to wrap around the modulo boundary, and
the log-matched filter becomes

Dm := argmax
t∈(0,tr]

∑
ℓ∈Im

log

(
∞∑

i=−∞

s(Wℓ − t− itr)

)
, (4)

where Im contains the indices of the detections within the mth
frame. Since tp ≪ tr, we approximate (4) by the index of the
maximum of the circular convolution between the pulse and the
histogram of the photons received during the frame.

By assigning the estimate Dm to the center of frame m and re-
peating the process for m = 0, . . . , nf − 1, we obtain a uniformly
spaced sequence of nf samples whose amplitude lies in [0, tr), as
shown by the purple dots in Fig. 1(d). This sequence represents
the modulo samples denoised and interpolated from the raw detec-
tions. Thus, we can apply conventional unwrapping algorithms and

denote the unwrapped measurements as {Ũm}nf−1
m=0 (green circles

in Fig. 1(d)). Although we focus on SPL, many existing modulo
unwrapping algorithms may benefit from our approach to denoising
and interpolating by grouping samples together, in particular if noise
power is large and oversampling factor is high.

4.2. Recovering Absolute Position via Reflectivity

Modulo sensing algorithms are able to unwrap a sequence only up
to an integer multiple of tr. We recall, however, that the reflectivity
fall-off in (1) depends on the absolute TOF. Although the reflectiv-
ity estimate alone is too noisy to reconstruct the trajectory, we can
leverage the changing fall-off to recover the global offset without
constraining the signal, e.g., to have finite energy. As with the depth,
we perform censoring and reflectivity estimation for a sequence of
nα frames, although the frame duration, amount of overlap, and cen-
soring window length may differ. We obtain a sequence of values α̂j ,
for j = 0, . . . , nα − 1, and interpolate the unwrapped TOF to the
same temporal positions, which we denote by Ũj with some abuse of
notation. We then define a set of candidate TOFs asUj,k = Ũj+ktr,
where k ∈ N sets the global offset of the signal. For each k, we com-
pute the reflectivity decay as θj,k = 1/U2

j,k. When the noise in the
estimated TOFs is negligible compared to the error in the estimated
reflectivity, and modeling the latter as a Gaussian i.i.d. process, we
compute

k̂ := argmin
k=0,1,...

nα−1∑
j=0

(α̂j − αrefθj,k)
2 . (5)

Then, we reconstruct the final, fully unwrapped estimates of the
TOFs by adding k̂tr to the unwrapped sequence before interpolation,
Um := Ũm+ k̂tr. If αref is known, it can be used directly in Eq. (5);
otherwise, we estimate it as α̂ref,k =

∑nα−1
j=0 α̂jθj,k

/∑nα−1
j=0 θ2j,k,

which requires target motion to resolve the ambiguity.

5. EXPERIMENTAL VALIDATION

Metrics. We compute the proportion of correct unwrappings as

CU :=

∑nf−1
m=0 min(ψm(t̄m), ψm(Um))∑nf−1
m=0 max(ψm(t̄m), ψm(Um))

, (6)

where ψm(x) := |∆[(t̄m mod tr)/tr − x/tr]| computes disconti-
nuities with respect to the true TOF at the center of the mth frame,
which we denote by t̄m with some abuse of notation. The operator
[·] rounds its argument and ∆ denotes the first-order difference. We
also compute the fraction of times that k̂ was correct (success rate,
SR). We assess distortion via the normalized mean squared error:

NMSE := 10 log10

(
nf−1∑
m=0

(t̄m − Um)2
/nf−1∑

m=0

(t̄m)2
)
, (7)

which summarizes the error for both TOF and distance. We also
compute the conditional NMSE when both CU = 1 and k̂ is correct.

Results. To simulate measurements, we use a short repetition pe-
riod, tr = 7.5 ns. Following [2], we also set tp = 270 ps and
αref = 0.315, which accounts for quantum efficiency and the reflec-
tivity of the object. Furthermore, we set t̄ref = 3.75 ns, S = 10−2,
B = αrefS/SBR0, and we vary SBR0 for different realizations.
We consider a set of 4 Singer models, combining β ∈ {5, 75} with
σs ∈ {5× 103, 4× 103}. The target switches between models with
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Fig. 2: (a) One realization of a Singer trajectory and its mod-
ulo samples. (b) True and estimated SBR during the acquisition
period. (c) Acquired samples, denoised samples, and depth esti-
mates using modulo SPL with tr = 7.5 ns. (d) Acquired samples
and depth estimates using a full-range lidar that avoids ambiguity
(tr = 330.92 ns). The maximum distance to the target is 41.36m,
its maximum speed is 16.60m/s, and the minimum SBR is 0.58.
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Fig. 3: True reflectivity, estimate of the reflectivity, and candidates
θm,k, each of them scaled by (left) their estimate of αref and (right)
the true value of αref . The true offset is k = 8. While it is possible
to recover the global offset in both scenarios, the simultaneous opti-
mization in both αref and k when the former is unknown shrinks the
gap between candidates.

probability 2.5× 10−3. We use first-order difference phase unwrap-
ping (FDPU) to recover the sequence.

To compute the depth, we allow for overlapping frames so that
the number of samples is the same before and after processing, i.e.,
nf = Nd, while we consider no overlapping to estimate the reflec-
tivity. Empirically, we observed the best results with overlapping
frames and a censoring window of 3tp for depth estimation. For re-
flectivity, we obtained the best results using non-overlapping frames
of length equal to the maximum between ctp/vmax and 0.015 s, to-
gether with a censoring window of 10tp. We assume αref is un-
known unless otherwise specified.

Fig. 2 shows an example of how modulo SPL acquisition can
lead to lower overall distortion. We plot an instance of a Singer tra-
jectory and compare its recovery using modulo SPL and a full-range
(FR) lidar whose laser repetition period is 44× larger (330.92 ns)
so that the trajectory lies within the unambiguous range. We use the
same frame-based censoring and estimation for both lidars, but to
compute tf , we set pf = 1 for modulo SPL; for the FR lidar, we use
pf = 50 to compensate for the higher variance due to fewer signal
photon detections. We also depict the true SBR and our estimate,
obtained by following the procedure in Sec. 4.2 to recover the re-
flectivity based on the values of S and B detailed above. Using the
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Fig. 4: Results for Monte Carlo simulations (2000 trials) using mod-
ulo SPL and a full range lidar (FR) that avoids ambiguity (repetition
period 8.62× longer). We varied the minimum SBR of the trajec-
tory and assumed αref was unknown. We provide (left) the ratio of
correct unwrappings (CU, Eq. (6)), and the success rate (SR) for k̂,
and (right) the normalized mean squared error (NMSE), both uncon-
ditional (Uncond.) and conditional on CU = 1 and SR = 1 (Cond.).
We also provide the NMSE and SR of k̂ when αref is known. Aver-
age maximum speed is 40m/s.

same trajectory, we further illustrate estimation of the global offset
k̂ when αref is unknown and known (Fig. 3). The offset recovery is
significantly easier when αref is known.

In Fig. 4 we evaluate the modulo SPL performance obtained via
Monte Carlo simulations with 2000 trials, for a range of minimum
SBR values over the trajectory. We compare the NMSE against a
FR lidar with 8.62× longer repetition period. We compute tf using
pf = 1 for modulo SPL and pf = 10 for the FR lidar, which min-
imizes the NMSE for the FR system. We also provide the NMSE
(conditional on CU = 1 and correct offset recovery) and the success
rate for k̂ when αref is known. To ensure the FR lidar can track the
trajectory unambiguously, we scale the depth excursion so that it is
never folded. The average maximum speed of the target across the
trajectories is approximately 40m/s. At very low SBR, unwrapping
errors cause modulo SPL to perform worse than FR lidar. However,
as the SBR increases, unwrapping and offset recovery both improve,
resulting in less distortion (lower NMSE) for the modulo SPL on av-
erage. The performance bottleneck becomes offset recovery, which
is further improved if αref is known in advance. Finally, conditioned
on cases in which unwrapping and offset recovery are both correct,
the performance is dramatically better than FR lidar, with more than
20 dB improvement in trajectory recovery.

6. CONCLUSION

In this paper, we addressed the problem of using an SPL system to
track a target in one dimension beyond the unambiguous range im-
posed by the repetition period of the laser. We introduced a method
to denoise and interpolate samples that leverages the scenario where
the oversampling factor is high. We demonstrated that computa-
tional reconstruction of the trajectory from its modulo samples is
possible, and that using shorter repetition periods can reduce the dis-
tortion in the depth estimates at the expense of slightly more com-
plicated processing. Future work may focus on improving the offset
recovery success rate.
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