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Abstract
This paper considers object detection with millimeter-wave (mmWave) Wi-Fi beam training
frames, e.g., beacon frames, in a monostatic passive directional multi-gigabit (DMG) sensing
configuration. We derive an explicit signal model that accounts for the preamble, frame-to-
frame antenna gains, and clutter. Given the signal model, we develop a hypothesis testing-
based object detection that directly leverages symbol-level preamble waveforms and explores
the Kronecker structure between the range steering vector and the Doppler steering vector
weighted by the antenna gain. Numerical results confirm the effectiveness of the proposed
detector and evaluate the impact of frame-to-frame antenna gains due to the beam scanning.
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ABSTRACT

This paper considers object detection with millimeter-wave (mmWave)
Wi-Fi beam training frames, e.g., beacon frames, in a monostatic
passive directional multi-gigabit (DMG) sensing configuration. We
derive an explicit signal model that accounts for the preamble,
frame-to-frame antenna gains, and clutter. Given the signal model,
we develop a hypothesis testing-based object detection that directly
leverages symbol-level preamble waveforms and explores the Kro-
necker structure between the range steering vector and the Doppler
steering vector weighted by the antenna gain. Numerical results
confirm the effectiveness of the proposed detector and evaluate the
impact of frame-to-frame antenna gains due to the beam scanning.

Index Terms— Wi-Fi sensing, Directional Multi-Gigabit (DMG),
beam training, WLAN Sensing, 802.11bf, passive sensing.

1. INTRODUCTION

Wi-Fi has become an integral part of our daily lives, serving as
the backbone for communication, entertainment, remote working,
virtual reality, industry-level IoT, and social connectivity. With
the massive deployment of Wi-Fi devices and anticipated market
growth, enabling sensing functionalities to future Wi-Fi technolo-
gies has attracted interest from academia and industry.

In on-going IEEE 802.11bf WLAN Sensing standard develop-
ments, Wi-Fi sensing can be categorized into sub-7-GHz Wi-Fi sens-
ing and directional multi-gigabit (DMG) Wi-Fi sensing at frequen-
cies over 45 GHz [1–4]. At a typical range of 10 meters, Wi-Fi sig-
nal at 60 GHz may experience an additional 22-dB attenuation over
the propagation loss at 5 GHz [5–8]. Therefore, it is critical to use
directional beamforming to compensate for such a large path loss.
As a unique feature of 802.11ad/ay, DMG beam training is usually
initiated by the AP during the beacon transmission interval (BTI),
where directional frames are transmitted over sector-level beampat-
terns to probe the environment; see Step 1 of Fig. 1(a). Multiple
users can simultaneously compute their own received beam SNRs
corresponding to each of the transmitted beampatterns and identify
their respective best beam for downlink data transmission. In the
subsequent association beamforming training (A-BFT), users can
train its beampatterns by sending directional frames to the AP; see
Step 2 of Fig. 1(a). Once the best pair of downlink-uplink beampat-
terns are identified, high-throughput data transmission then follows
during data transmission interval (DTI); see Step 3 of Fig. 1(a).

Assuming full-duplex operation with sufficient self-interference
cancellation [9,10], repurposing DMG Wi-Fi frames for sensing was
first studied in [11, 12], where the Golay sequence-based pream-
ble including short training field (STF) and channel estimation field
(CEF), of single-carrier physical layer (SCPHY) data frames in Step
3 of Fig. 1(a). [13] proposed a modified Doppler-resilient Golay se-
quence for robust performance particularly on detecting moving ob-

(a) DMG beam training in 802.11ad/ay for data transmission

(b) Monostatic DMG passive sensing

Fig. 1: Existing DMG beam training (a) in 802.11 ad/ay and mono-
static DMG passive sensing (b) that reuses the same beacon frames
for sensing.

jects. Beam training measurements at earlier stages (Steps 1 and
2 of Fig. 1(a)) were also considered for sensing. [14] proposed to
reuse the control PHY (CPHY) frames during BTI and/or A-BFT
sector-level beam training intervals. and utilized the generalized
likelihood ratio test (GLRT) to detect single object from noise. This
was further extended in [15] to handle the presence of multiple ob-
jects and [16] with a subspace approach over the delay-Doppler do-
main. However, this frame-to-frame TX-RX antenna gain introduc-
ing additional phase change on top of the Doppler modulation was
not considered in [14–16]. Different from the above studies focus-
ing on outdoor automotive applications, 802.11bf WLAN Sensing
considers an optional feature of DMG passive sensing that reuses
directional beacon frames within BTI; see Fig. 1(b). Under this set-
ting, [17] utilized traditional communication-based frame detection
and channel impulse response (CIR) estimation blocks that rely on
the correlation properties of Golay preamble, and adopted the classi-
cal MUSIC algorithm for both angle and delay parameter estimation.

In this paper, we are interested in the DMG passive sensing in
a monostatic setting where additional sensing RX is deployed at the
AP to capture the reflected beacon frames. Explicitly, we account for
the frame-to-frame TX-RX antenna gain (due to the misalignment
between the probing sector beampatterns and the object steering vec-
tor) to the frame-based slow-time samples for Doppler steering vec-
tor. We show that the joint TX-RX steering vector has a Kronecker
structure between the range-domain steering vector (formed by the
delayed preamble matched filter output) and the Doppler steering



vector element-wise weighted by antenna gains. Following that,
rather than a sequential approach of , we directly formulate object
detection as a binary hypothesis testing where both preamble and
Doppler steering vector are utilized. According to the developed
signal model, a subspace-based object detector and a computational
implementation are proposed according to the principle of general-
ized likelihood ratio test (GLRT).

2. SIGNAL MODEL

For each beacon frame within the BTI subinterval, the transmitter
sends a preamble of length L

sg(t) =
√
Es

L−1∑
l=0

slgTX (t− lTs) , (1)

where Es is the symbol energy, sl is the modulated symbol after
π/2-BPSK modulation with alphabet of {±1,±i}, gTX(t) is the
baseband pulse, and Ts = 1/B is the symbol interval with B de-
noting the channel bandwidth. Note that gTX(t) includes the effect
of a spectral mask, e.g., a pair of TX and RX filter for error vec-
tor magnitude measurement as a root-raised cosine (RRC) filter with
a roll-off factor of 0.25, for the transmit waveform to limit inter-
symbol interference (ISI).

Consider the upconversion to the carrier frequency fc, TX ana-
log beamforming angle/sector at θk for the k-th packet, and a coher-
ent processing interval of K packets, we have

xT (t) =

K−1∑
k=0

fTX(θk)sg(t− kTp)ej2πfct, (2)

where Tp is the pulse repetition interval (PRI), fc is the carrier fre-
quency, and fTX(θk) is the sector beamforming pattern pointing at
θk at the k-th frame; see the top plot of Fig. 2 for an illustration of
K = 5 sector-level (a mainlobe of 30◦) beam scanning.

The monostatic sensing channel is modeled to be a sum of P
reflections including both objects of interest and background scat-
terers such as reflectors from the wall, ground, ceiling and furni-
ture. For each reflection, we parameterize its sensing channel using
its azimuth (ignoring elevation without losing generality), round-trip
delay τp = 2Rp/c with c is the speed of light, small-scale complex-
valued channel gain βp, large-scale channel gain Gp, and Doppler
shift νp = 2vp/λ with vp denoting the radial velocity and λ = c/fc
the wavelength. With the colocated TX/RX, we have

H(t) =

P∑
p=1

H(t; τp, θp, νp)

=

P∑
p=1

αpe
j2πνptδ(t− τp)sRX(θp)s

H
TX(θp), (3)

where αp =
√
Gpβp with Gp = λ2σRCS,p/(64π2R4

p) and σRCS,p is
the RCS corresponding to the p-th object, sRX(θp) and sTX(θp) are,
respectively, the angular channel vector at Tx and Rx. In the case
of uniform linear array (ULA) with M transmitting antennas and N
receiving antennas, we have

sTX(θ) =
1√
M

[
1, ej2πfTX(θ), · · · , ej2π(M−1)fTX(θ)

]
,

sRX(θ) =
1√
N

[
1, ej2πfRX(θ), · · · , ej2π(N−1)fTX(θ)

]
, (4)

Fig. 2: Top: An example of K = 5 sector-level beamforming pat-
terns at TX; Bottom: joint TX-RX antenna gains for K = 16 beam
directions (red lines) for an object-of-interest at 20 degree (black
line).

where fTX(θ) = dt sin(θ)/λ and fRX(θ) = dr sin(θ)/λ. With the
analog receiver combining at k-th frame interval fRX(θk), the tap-
delay channel response is given as

h(t, τ, θk) =

P∑
p=1

fHRX(θk)H(t; τp, θp, νp)fTX(θk)

=

P∑
p=1

ap(θk)ej2πνptδ(t− τp) (5)

where ap(θk) = αpsk(θp) = apf
H
RX(θk)sRX(θp)s

H
TX(θp)fTX(θk) is

the effective amplitude of the p-th object for the k-th packet. In the
bottom plot of Fig. 2, we show the joint TX-RX antenna gain sk(θp)
when K = 16 sector-level beam scanning patterns are used and the
object-of-interest is at θp = 20 degree. It is seen that only the beam
sector closing to the object yields strong antenna gains, while other
beam sectors may give an antenna gain of −30 dB. For all K = 16
beacon frames, the frame-to-frame antenna gain fluctuation results
in not only the effective SNR changes per frame but also the phase
modulation over frames.

At the receiver side, the analog combined signal for the k-th
packet is given as yk(t) =

∑P
p=1 ap(θk)ej2πνptsg(t − τp). Then

the combined signal is matched filtered with gRX(t) as

rk(t) =yk(t) ∗ gRX(t) =

P∑
p=1

ap(θk)[ej2πνptsg(t− τp)] ∗ gRX(t)

× gTX (t− lTs − τp − z) dz

≈
√
Es

P∑
p=1

ap(θk)e2πjνpt
L−1∑
l=0

sl

∫ +∞

−∞
gRX(z)

× gTX (t− lTs − τp − z) dz

=

P∑
p=1

√
Esap(θk)e2πjνptxg(t− lTs − τp) (6)

where the approximation holds due to the fact that the relative
Doppler shift νp is much smaller than the bandwidthB = 1.76 GHz,



xg(t− τp) =
L−1∑
l=0

slg(t− lTs − τp) is the matched filter output for

the preamble of the p-th packet, and g(t− τ) = gTX(t− τ) ∗ gRX(t)
is the matched pulse shaping at a given delay.

The analog signal is then sampled at t = kTp + nTs, where
Ts and Tp are, respectively, the fast-time and slow-time sampling
intervals. The discrete-time representation of the received signal is
given as

y[n, k] =y(t)t=kTp+nTs

=
√
Es

P∑
p=1

ap(θk)ej2πνp(kTp+nTs)xg(nTs − τp)

≈
√
Es

P∑
p=1

ap(θk)ej2πνpkTpxg(nTs − τp) (7)

where xg(nTs−τp) = xg((kTp+nTs)−τp) and the approximation
holds by assuming a standard motion speed of indoor object and its
negligible effect on the phase.

Grouping all the fast-time samples (n) first and then the slow-
time sample (k), we have the following signal model

y =
√
Esα0[sa(θ0)� sd(ν0)]⊗ xg(τ0)

+

P∑
p=1

√
Esαp[sa(θp)� sd(νp)]⊗ xg(τp) + w (8)

where the subindex 0 denotes the object of interest, sa(θp) =
[s1(θp), · · · , sK(θp)]

T denotes the steering vector of the p-th ob-
ject responding to the K transmit-receive beam training directions
{θk}Kk=0, sd(νp) = [1, · · · , e−j2πνpTp(K−1)]T denotes the Doppler
steering vector of the p-th object, xg(τp) is the delay steering vector
of the p-th object with a dimensionN×1, and w ∼ CN (0, σ2INK)
is the noise. We consider the scenario that all other reflections
(p 6= 0) from the indoor environment such as wall, ceiling, ground,
furniture construct the background clutter. Particularly, we assume
the clutter-related path delays (τp) and angles (θp) stay the same but
their amplitudes [α1, · · · , αP ]T ∼ CN (0,CP ) are random with a
covariance distribution CP .

From (8), it is seen that the object steering vector has a Kro-
necker structure between the slow-time and the fast-time. It is inter-
esting to see that, sine the beam training in the DMG passive sens-
ing is designed for later data transmission, the mismatch between
the transmit-receive beam direction and the object direction results
in additional slow-time phase perturbation on top of the slow-time
Doppler modulation. As a result, the problem of interest is to detect
the object of interest from the environmental clutter and noise.

3. JOINT RANGE-ANGLE-DOPPLER ADAPTIVE
DETECTION FOR MONOSTATIC DMG PASSIVE SENSING

Given the above signal model of (8), we develop a joint range-angle-
Doppler (RAD) adaptive detector for DMG passive sensing.

3.1. Hypothesis Testing

To formulate the binary hypothesis test we consider the object signal,
and the disturbance including the background clutter and thermal
noise. More specifically,

H0 : y = Hc + w,

H1 : y = αsrad + Hc + w, (9)

where srad = [sa(θ0) � sd(ν0)] ⊗ sr is the object angle-Doppler
steering vector to be tested at a given angle-Doppler grid (θ0, ν0),
sr = xg(τ0) is the range steering vector at the delay τ0, the back-
ground clutter steering matrix is given as

H = [ssad(τ1, θ1, ν1), · · · , srad(τP , θP , νP )] ∈ CNK×P (10)

with corresponding clutter coefficient c = [α1, · · · , αP ]T ∈ CP×1,
and the noise w. Note that, due to the sparse channel characteristics
at the mmWave frequency bands, we have P � NK.

In addition to the test signal y, we also assume training sig-
nals yt that are object-free and the range-angle-Doppler parameters
(θp, τp, νp)

P
p=1 for each clutter component remain the same. How-

ever, the clutter coefficients ct and the noise variance σ2 vary from
the training data to the test data. For instance, in the context of
DMG passive sensing, the object-free training signals can be col-
lected when there are no presence of the object of interest in the
environment. Given this assumption, one can use the training data to
estimate the channel parameters (θp, τp, νp)

P
p=1 of the clutter. As a

result, H is known in advance and c is unknown but deterministic.

3.2. Joint Range-Angle-Doppler Detection

Given a known Clutter steering matrix H, the unknown parameters
are the object amplitude α0, the clutter coefficient c, the noise vari-
ance σ2 under H1 and the clutter coefficient c, the noise variance
σ2 under H0. The GLRT can be derived as the ratio of maximized
likelihoods under the two hypotheses

T =

max
α0,c,σ2

f1(y
∣∣α, c, σ2 )

max
c,σ2

f0(y|c, σ2)
, (11)

where T is the test statistic, and f0(y|σ2) and f1(y|α,η, σ2) are,
respectively, the likelihood functions of the whitened signal

f0|1(y
∣∣α, c, σ2 ) =

e
− 1
σ2
‖y−αsrad−Hc‖2

(πσ2)NK
|α=0|α 6=0.

By differentiating ln f1(y
∣∣α,η, σ2 ) w.r.t. σ2 and setting to zero,

the ML estimate of σ2 under H1

σ̂2
1 =

1

NK
‖y − αsrad −Hc‖2. (12)

Then it is equivalent to minimizing the following cost function
for the clutter coefficient c: ‖ȳ0|1 − Hc‖2, where ȳ0|1 = (y −
αsrad)|α=0|α6=0, which leads to

ĉ = (HHH)−1HH ȳ0|1. (13)

Substituting ĉ back to the cost function, we have the following
cost function (ignoring the constant 1/(NK))

ȳH0|1P
⊥
Hȳ0|1 =

{
(y − α0srad)

HP⊥H(y − α0srad) under H1

yHP⊥Hy under H0

(14)

where P⊥H = I −H(HHH)−1HH is the projection matrix to the
orthogonal complement of the range of clutter steering matrix H. As
a result, the object amplitude under H1 can be estimated as

α̂0 =
sHradP

⊥
Hy

sHradP
⊥
Hsrad

. (15)



And the cost function under H1 reduces to

yHP⊥Hy − ‖s
H
radP

⊥
Hy‖2

sHradP
⊥
Hsrad

. (16)

Putting the likelihood back to the GLRT in (11) and invoking the
monotonic property of the function f(x) = 1/(1− x), we have

T =
‖sHradP⊥Hy‖2

(sHradP
⊥
Hsrad)(yHP⊥Hy)

(17)

It is seen that the joint RAD detector takes the ratio of the energy of
the clutter-free signal projected onto a subspace and its orthogonal
complement, where the subspace is spanned by the Kronecker prod-
uct of the column space of whitened transmitting steering vector s̃
and the whitened subspace H̃t for the waveform residuals.

3.3. Non-coherent Combining of Partial-Preamble-Based RAD
Detection

It is noted that the joint range-angle-Doppler steering vector srad
is of dimension KN × 1 where K � N . In the case of DMG
beacon-based beam training, K = 128 and N = 7752, resulting in
KN ≈ 1e+6 and the fully adaptive joint RAD detector (19) is not
computationally affordable. Alternatively, we propose to decompose
the range steering vector sr into small segments each corresponding
to a segment of preamble matched filter output with a proper delay
under test.

H0 : yi = Hici + wi,

H1 : yi = αsrad,i + Hici + wi, (18)

where srad,i = [sa(θ0) � sd(ν0)] ⊗ sr,i is the object range-
angle-Doppler steering vector to be tested at a given angle-Doppler
grid (θ0, ν0) and the partial-preamble range steering vector sri =
xg,i(τ0). And the non-coherent combination of partial-preamble
RAD detection is given as

T =
∑
i

Ti =
∑
i

‖sHrad,iP⊥Hiyi‖
2

(sHrad,iP
⊥
Hi

srad,i)(yHi P⊥Hiyi)
. (19)

4. NUMERICAL EXAMPLES

To evaluate the performance of the proposed detector and compare
two baseline methods that employ the all-one (“no BF”) and Fourier-
based beamforming patterns. In all simulations, we define the signal-
to-noise ratio (SNR) and clutter-to-noise ratio (CNR) as

SNR = |α|2(sHradsrad)/σ
2, (20)

CNR = (cHHHHc)/σ2. (21)

In our setting, the number of beacon frames is K = 16 with the
sector-level beam pattern given in the top plot of Fig. 2. The object
is at θ = 20◦ while the clutter subspace is formed by Nc = 6
reflections uniformly sampled in [−90◦, 90◦]. We use two pairs
of transmitting and receiving antenna number: (M,N) = (16, 8)
and (M,N) = (32, 32). The detection performance is evaluated in
terms of the receiver operating characteristic (ROC) by using Monte-
Carlo trials.

We first consider a case of (M,N) = (16, 8). In this case,
the joint TX-RX antenna gains over three considered beam scan-
ning schemes are shown in Fig. 3 (a). It is seen that Fourier-based

(a) TX-RX antenna gains (b) ROC

Fig. 3: Joint TX-RX antenna gains (a) and ROC curves when
(M,N) = (16, 8), SNR = −20 dB, and CNR = 15 dB.

(a) TX-RX antenna gains (b) ROC

Fig. 4: Joint TX-RX antenna gains (a) and ROC curves when
(M,N) = (32, 32), SNR = −20 dB, and CNR = 15 dB.

beamforming can achieve the optimal antenna gain when its point-
ing direction is aligned with the object at 20◦. The sector-level beam
scanning provides, in average, larger antenna gains than the Fourier-
based one except at those angles close to the object. On the other
hand, the all-one beam scanning provide no antenna gain over all
directions. The corresponding ROC in Fig. 3 (b) shows that the
Fourier-based one gives the best results while the sector-level beam
scanning performs second. It is expected that, with a relatively small
number of antennas, the Fourier-based beam scanning may still hit
the object direction in high probability. If this happens, this results in
a preamble sequence with an optimality-approaching SNR and leads
to better detection performance than the sector-level beam scanning.

Next, we increase the number of TX and RX antennas to
(M,N) = (32, 32), the joint TX-RX antenna gain in Fig. 4 (a)
becomes finer in the angle domain and larger mainlobe-sidelobe
difference. Keeping the number of probing beacon frames the same,
i.e., K = 16, the Fourier-based beam scanning has larger chances
to “miss” the object within its mainlobe. The joint TX-RX antenna
gain also reveals higher gain difference from the sector-level scan-
ning to the all-one scanning. The corresponding ROC in Fig. 4 (b)
confirms that the the sector-level beam scanning outperforms the
Fourier-based scanning which provides sharper but may miss the
object due to beam misalignment.

5. CONCLUSIONS

This paper considered DMG monostatic passive object detection
with millimeter-wave (mmWave) Wi-Fi beacon frames. With an
explicit signal model including preamble, antenna gains and clutter,
we develop a GLRT detector that explores the Kronecker structure
between the range steering vector and the Doppler steering vector.
We further evaluate the impact of frame-to-frame antenna gains to
the detection performance due to the beam scanning.
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