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Abstract
Precise perception of contact interactions is essential for the design of very precise and fine
manipulation skills for robots. In this paper, we present the design of feedback skills for
robots that must learn to stack complex-shaped objects on top of each other (see Fig. 1).
To design such a system, a robot should be able to reason about the stability of placement
from very gentle contact interactions. Our results demonstrate that it is possible to infer the
stability of object placement based on tactile readings during contact formation between the
object and its environment. In particular, we estimate the contact patch between a grasped
object and its environment using force and tactile observations to estimate the stability of the
object during a contact formation. The contact patch could be used to estimate the stability
of the object up on release of grasp. The proposed method is demonstrated on various pairs
of objects that are used in a very popular board game.
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Abstract— Precise perception of contact interactions is essen-
tial for the design of very precise and fine manipulation skills
for robots. In this paper, we present the design of feedback skills
for robots that must learn to stack complex-shaped objects on
top of each other (see Fig. 1). To design such a system, a robot
should be able to reason about the stability of placement from
very gentle contact interactions. Our results demonstrate that
it is possible to infer the stability of object placement based on
tactile readings during contact formation between the object
and its environment. In particular, we estimate the contact
patch between a grasped object and its environment using force
and tactile observations to estimate the stability of the object
during a contact formation. The contact patch could be used to
estimate the stability of the object up on release of grasp. The
proposed method is demonstrated on various pairs of objects
that are used in a very popular board game.

I. INTRODUCTION

Humans can perform very complex and precise manipula-
tion tasks effortlessly. The human vision and tactile perception
system is very advanced, and we can perform physical
reasoning of different objects in various complex contact
formations very efficiently. We can monitor and control
complex contact formation in a closed-loop fashion during
various manipulation tasks. Designing such reactive and
closed-loop robotic systems remains elusive. Consider, for
example, the stacking task shown in Fig. 1. To do this, a
robot should have the ability to estimate the stability of
the object as it is trying to place the grasped object on the
bottom object so that it can release the object in a stable
configuration. Estimating the stability from vision alone could
be insufficient due to occlusions from other objects during
placement. Thus, we present a closed-loop system that can
reason about the stability of the object using tactile signals
from extrinsic contact formation during placement.

We believe that object stability could be estimated from
the contact forces experienced by an object during placement.
The stability of an object is governed by the relative location
of the environmental contact and the center of mass location
of the object. The forces experienced by a force-torque
sensor mounted on the wrist of the robot depend on the
contact patch between the object and its environment, as
well as the geometric and physical properties of the object.
As a simplification, we assume that the geometry of the
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Fig. 1: In this work, we try to understand the local contact
phenomena during placement of an object in an environment
with partial support. Since stability of the object depends on
the contact formation between the object and the environment,
we propose a method to estimate contact patch given force
as well as tactile observations during the contact phenomena.
This is very similar to how a human would perform this task
under partial observability.

objects is fixed, so the robot works with known pieces.
Under this assumption, we estimate the stability of the object
during placement using tactile signals. In particular, we try
to estimate the contact patch between the object and the
environment using tactile signals. The robot can then attempt
to maximize the contact patch to achieve a stable placement
of the object. This is demonstrated using several pairs of
objects from a popular board game where the objective is
to incorporate a new block on an existing tower without
destabilizing the tower.

II. RELATED WORK

Robot stacking. Several studies have addressed the prob-
lem of robot stacking through various approaches. These
include learning to schedule auxiliary tasks for reinforcement
learning (RL) [1], combining demonstrations and RL [2],
[3], employing sim-to-real transfer [2], [4], [5], and using
task-and-motion planning [6]. The focus of these works
primarily revolves around stacking simple cubes. Lee et
al. [7] propose a benchmark that introduces relatively irregular
rectangles generated by deforming cubes. However, these
objects still maintain convexity and simplicity. Furrer et
al. [8] and Yifang et al. [9] have explored the stacking of
irregular stones. Nonetheless, these studies make assumptions
about known geometries and assume that the stones possess
wide support and high friction, simplifying the problem and
enabling basic pick-and-place strategies. In contrast, our
research considers the local contact phenomenon where the
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Fig. 2: Our proposed method comprises of three components. First, a robot uses a probing action to establish contact between
the grasped and its environment. During probing, it acquires a sequence of force/torque measurements and tactile images.
Based on the collected data, we estimate the contact patch between the grasped object and the bottom object. Subsequently,
we estimate stability from the estimated contact patch. The robot can then maximize the contact patch during the probing
attempt and release the object based on estimate of stability of the object up on release.

object can topple and fall, if not placed with proper support.
Moreover, we remove assumptions regarding geometries of
underlying objects, necessitating the estimation of stability
through interactions.

External contact localization Prior works represent con-
tacts as a set of points [10], [11] and lines [12], [13]. Although
line contacts give us more information compared to point
contacts, they require active exploration involving changes in
the orientation of the gripper [12], [13], making it difficult to
apply them in our setting where the tower is very unstable.
The closest work to ours is the neural contact fields (NCF)
of Higuera et al. [14], where the authors estimate the contact
patch between a grasped object and its environment. While
NCF is evaluated on a simulation and a limited number
of objects, we tested our method on unknown geometries
of the environment which can be used for an appropriate
downstream task.

III. PROBLEM STATEMENT

We consider the problem of estimating the stability of a
grasped object when in contact with its environment, in an
attempt to release and place the object in a stable pose during
a task. This happens to be a partially observable task as we
can not observe the full state of the system, and thus stability
needs to be estimated from sensor observations. We assume
that the robot has access to tactile sensors co-located at the
gripper fingers as well as a Force/Torque (F/T) sensor at the
wrist of the robot. A certain contact formation is stable if the
object can stay stable after release from the grasp.

The stability of a contact formation depends on the relative
position of the center of mass of the object and the contact
patch between the object and the environment. However,
this can not be directly observed during a contact formation,
and thus leads to partial-observability. A robot usually can
observe force-torque signals and/or tactile images during the
interaction. The observed signals depend not only on the
contact formation but also on the geometry and physical
parameters of the grasped object. Thus, although these data

have a lot of information, these are all entangled and thus it
is very difficult to extract specific information, e.g. estimate
contact patch. To simplify the estimation problem, we make
the following assumptions to limit the scope of current study:

1) Geometry and physical parameters of the grasped
objects are fixed.

2) All objects are rigid and have flat surfaces.
It is important to emphasize that the robot is unfamiliar with
the shape of the underlying objects and needs to explore a
stable configuration through several probing attempts.

IV. METHOD

The main idea here is to estimate the contact patch between
an object and its environment using force and tactile measure-
ments. This is based on the fact that sensor observations are
generated by the contact formation between the object and
its environment. We propose a method consisting of three
key parts. First, the robot estimates the contact patch between
the grasped object and the bottom object. Then it can assess
the stability from the estimated contact patch. Finally, the
robot selects an action based on the estimated contact patch
and stability; and releases the grasped object if the current
configuration is stable; otherwise, moves the object towards a
position that can improve stability. In this section, we describe
more details on these three modules.

A. Contact Patch Estimation

As described in Sec. III, we explicitly estimate the extrinsic
contact patch from a sequence of tactile images and force-
torque measurements. During a duration of T seconds, the
robot applies a downward force along the negative Z axis
for d mm, while collecting data sTac

i,0:T , s
FT
i,0:T from tactile and

force-torque sensors at a frequency of 10 Hz with i denoting
an index of data. We use a suitable impedance control to
prevent the object from falling down by using excessive
force. Specifically, sTac

i,0:T = {sTac
i,t }Tt=0, where sTac

i,t ∈ R63 and
63 = 7 × 9 are the number of markers in column and row
(see Fig. 2), which can be obtained by post-processing the
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Fig. 3: Definition of the probabilistic contact surface. The left
coordinate defines the displacements when data collection.
The displacements (xB

i , y
B
i ) are manually added from the

origin of the bottom object OB . This displacement and ground
truth contact surfaces of the two objects give the ground-truth
contact surface Si. We try to estimate the contact patch Ŝi

using a neural network, which consists of a set of points pj
that represents the probability of contact or uncontacted.

tactile image ITac
i,t . In addition, sFT

i,0:T = {sFT
i,t}Tt=0, sFT

i,t ∈ R6

are the force-torque measurements.
In the data collection process, we add displacements in the

XY plane such as xB
i ∼ {xmin, xmax} and yBi ∼ {ymin, ymax}

whose origin is the center position of the contact surface
of the lower object OB (see Fig. 3), and the minimum and
maximum positions are defined to ensure contact between
the flat surfaces of the upper and lower objects. Since the
top and bottom objects used for data collection are known
in advance, it is possible to obtain a contact patch between
the two surfaces based on the displacements xB

i and yBi . To
estimate the contact patch, we discretize the contact surface
of the grasped object into N points pj , j ∈ {1, ..., N} each of
these points corresponds to a specific location on the contact
surface of the grasped object and represents the probability of
being in contact or remaining uncontacted. Consequently, this
process yields the representation of the estimated probabilistic
contact surface denoted as Ŝi = {p1, ..., pN} between the
two objects.

Finally, we train a model f contact that takes the observed
data sFT

i,0:T , s
Tac
i,0:T to generate the probability of contacts Ŝi

by minimizing the binary cross entropy loss for each data
point pj .

B. Stability Estimation

Utilizing the estimated contact patch Ŝi, denoted as a set
of points {pj}, we use it to assess the stability of the current
configuration. This assessment process begins by constructing
a convex hull Ci ∈ Conv(Ŝi) using points whose associated
probability exceeds a predefined threshold denoted δ, thus
effectively isolating reliable contact points. Subsequently, an
evaluation is performed to ascertain whether this convex hull
encompasses the position of the center of mass of the grasped
object. In the affirmative case, the gripper releases the grasped
object. Conversely, if this evaluation yields a negative result,

Fig. 4: The Bandu pieces employed in our experiments consist
of five distinct shapes. The first two pieces on the left serve as
the bottom objects (or the environment), while the subsequent
three on the right are designated as the (top) objects. These
pieces have been assigned the following names, proceeding
from left to right: Short, Long, Mushroom, Barrel, and Pot.

the gripper moves towards a position to enhance stability by
a policy described below.

C. Action Selection

We formulate a policy aimed at increasing the contact
area in the subsequent step, guided by the estimated contact
patch. This policy begins by calculating the central position
of the convex hull, denoted as p̄, and subsequently directs
the robot to navigate in the negative direction relative to p̄.
Additionally, to mitigate a large movement at each step, we
restrict movement within dmove mm if the norm exceeds dmove.
We specifically set dmove = 3 [mm].

V. EXPERIMENTS

A. Settings

Tactile sensor. We use a commercially available GelSight
Mini [20] tactile sensor, which provides 320×240 compressed
RGB images at a rate of approximately 25 Hz, with a field
of view of 18.6 × 14.3 millimeters. We use gels that have
63 tracking markers so that the data from the tactile sensor
are xTac

t ∈ R63.
Robot platform. The MELFA RV-5AS-D Assista robot,

a collaborative robot with 6 DoF, is used in this study. The
tactile sensor is mounted on the WSG-32 gripper (see Fig. 2).
We use a Force-Torque (F/T) sensor, which is mounted on the
wrist of the robot. The F/T sensor is used for two-fold: data
collection for estimating the contact patch, and the stiffness
control of the position-controlled robot.

Bandu We use pieces from Bandu for our experiment.
Bandu is a toy game that involves stacking objects onto
a base plate. The players take turns stacking these objects
and compete to see who can stack the most. Each piece
has a highly irregular shape, requiring robots to estimate
stable placements based on the shape of the objects. Figure 4
illustrates the Bandu pieces used in this experiment. The
challenge in the game is to accommodate an irregular piece
into an existing tower without destabilizing the existing tower.



TABLE I: Comparison of the contact patch estimation
performance on different input modalities measured by IoU
(higher is better). Bold numbers show the best results among
the three different input modalities. The S and L of the bottom
object correspond to the Short and Long objects, respectively
(see Fig. 4).

Mushroom Barrel Pot MeanS L S L S L

ID
FT 76.2 92.2 79.9 88.1 82.1 94.4 85.5

Tac 66.6 82.4 76.8 79.7 78.5 86.8 78.5
FT+Tac 75.7 94.0 86.3 91.6 86.8 94.7 88.2

OOD
FT 43.0 41.4 36.4 39.3 40.9 38.4 39.9

Tac 48.2 36.6 33.9 47.9 37.0 44.3 41.3
FT+Tac 43.6 43.2 34.9 41.0 46.9 39.1 41.4

B. Contact patch estimation

Settings As described in Sec. IV-A and illustrated in Fig. 4,
we used three top pieces and two bottom pieces for data
collection. The data acquisition process involved incremental
movements of the top piece at intervals of 0.5 mm, originating
from the center position and spanning a range of −10 mm to
10 mm in both the X and Y directions, as defined in Fig. 3.
Consequently, the total dataset encompasses 41× 41 = 1681
individual data points. Subsequently, for each pair of top and
bottom objects, we trained the model f contact. Performance
evaluation of this model was performed using the intersection
over union (IoU) metric. We tested the model with different
input modalities, only force torque sensor, tactile sensors,
and the combination of the two denoted as FT, Tac, and
FT+Tac, respectively. The evaluation is carried out on the
same and different bottom object, which we denote as ID
(in-distribution) and OOD (out-of-distribution).

Results and analyses The results are presented in Table I.
When comparing the various modalities, it is evident that the
combination of tactile sensors and the force-torque sensor
yields the most favorable performance. Consequently, for
our subsequent experiments, we will utilize both of these
modalities. However, it should be noted that the model
performance on different bottom objects (OOD) generally
exhibits a marked decline in comparison to its performance
on the same bottom object (ID).

C. Stability Analysis

Settings Next, we assess whether the proposed framework
predicts the stability from the estimated contact patch with
the same data used in the previous experiment. The evaluation
metric to assess stability is binary accuracy. Specifically, a
positive outcome is recorded when both the model prediction
and the ground truth yield concordant results, indicating either
stability or instability.

Results and analyses Table II shows the qualitative results
of the stability estimation. The results indicate that extrinsic
contact patch detection would be useful in estimating stability
when stacking objects. However, the performance is still not
reliable, so we will add probabilistic inference to aggregate
information from multiple touches to improve the performance
of the stability estimation in the future.

TABLE II: Stability estimation performance measured by
binary accuracy (higher is better).

Mushroom Barrel Pot MeanS L S L S L

ID 79.2 90.8 89.1 90.2 88.4 93.8 88.2

OOD 63.5 67.8 62.8 59.2 64.8 60.7 63.1

TABLE III: Cosine similarity between optimal and predicted
action (higher is better).

Mushroom Barrel Pot MeanS L S L S L

ID 0.96 1.00 0.98 0.99 0.98 1.00 0.99

OOD 0.62 0.70 0.49 0.72 0.52 0.70 0.63

D. Action Selection

Settings Finally, we evaluate the action selection perfor-
mance with the cosine distance metric to see if the selected
action enables the robot to move towards a more stable
configuration, i.e., increases the contact surface area by
moving towards the center of mass position of the underlying
object.

Results and analyses Table III demonstrates that the
policy almost always determines to move toward the near-
optimal direction, which can be found from the average cosine
similarity being 0.99. In OOD settings, the average similarity
score is 0.63, which approximately has an error of 40 degree.
In the future, we plan to evaluate these functionalities in the
real system to see if these errors are acceptable or not.

VI. CONCLUSION

Designing systems that can interpret and disentangle useful
contact information from observed tactile measurements could
be the key to performing precise and fine manipulation. We
proposed a framework for estimating extrinsic contact patches
from tactile and force-torque measurements for a stacking
task with highly irregular shapes. We evaluated the method
in a real system and showed reasonable stability estimation
performance. In the future, we would like to improve the
performance by training on a wider variety of objects and
relaxing the assumption of the known geometry so that the
trained model can be used for the stacking task with arbitrary
objects.

REFERENCES

[1] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave,
T. van de Wiele, V. Mnih, N. Heess, and J. T. Springenberg,
“Learning by playing solving sparse reward tasks from scratch,” in
Proceedings of the 5th Conference on Robot Learning (CoRL), ser.
Proceedings of Machine Learning Research, J. Dy and A. Krause,
Eds., vol. 80. PMLR, 10–15 Jul 2018, pp. 4344–4353. [Online].
Available: https://proceedings.mlr.press/v80/riedmiller18a.html

[2] Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunya-
suvunakool, J. Kramár, R. Hadsell, N. de Freitas, and N. Heess,
“Reinforcement and imitation learning for diverse visuomotor skills,” in
Proceedings of International Conference on Learning Representations
(ICLR), 2018.

https://proceedings.mlr.press/v80/riedmiller18a.html


[3] S. Cabi, S. G. Colmenarejo, A. Novikov, K. Konyushkova, S. Reed,
R. Jeong, K. Zolna, Y. Aytar, D. Budden, M. Vecerik, O. Sushkov,
D. Barker, J. Scholz, M. Denil, N. de Freitas, and Z. Wang, “Scaling
data-driven robotics with reward sketching and batch reinforcement
learning,” 2020.

[4] L. Hermann, M. Argus, A. Eitel, A. Amiranashvili, W. Burgard, and
T. Brox, “Adaptive curriculum generation from demonstrations for sim-
to-real visuomotor control,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA), 2020, pp. 6498–6505.

[5] R. Jeong, Y. Aytar, D. Khosid, Y. Zhou, J. Kay, T. Lampe, K. Bousmalis,
and F. Nori, “Self-supervised sim-to-real adaptation for visual robotic
manipulation,” in Proceedings of IEEE International Conference on
Robotics and Automation (ICRA), 2020, pp. 2718–2724.

[6] M. D. Noseworthy, C. Moses, I. Brand, S. Castro, L. P. Kaelbling,
T. Lozano-Pérez, and N. Roy, “Active learning of abstract plan
feasibility,” Robotics Science and System (RSS).

[7] A. X. Lee, C. M. Devin, Y. Zhou, T. Lampe, K. Bousmalis, J. T.
Springenberg, A. Byravan, A. Abdolmaleki, N. Gileadi, D. Khosid,
C. Fantacci, J. E. Chen, A. Raju, R. Jeong, M. Neunert, A. Laurens,
S. Saliceti, F. Casarini, M. Riedmiller, r. hadsell, and F. Nori, “Beyond
pick-and-place: Tackling robotic stacking of diverse shapes,” in
Proceedings of the 5th Conference on Robot Learning (CoRL), ser.
Proceedings of Machine Learning Research, A. Faust, D. Hsu, and
G. Neumann, Eds., vol. 164. PMLR, 08–11 Nov 2022, pp. 1089–1131.
[Online]. Available: https://proceedings.mlr.press/v164/lee22b.html

[8] F. Furrer, M. Wermelinger, H. Yoshida, F. Gramazio, M. Kohler,
R. Siegwart, and M. Hutter, “Autonomous robotic stone stacking with
online next best object target pose planning,” in Proceedings of IEEE
International Conference on Robotics and Automation (ICRA), 2017,
pp. 2350–2356.

[9] Y. Liu, J. Choi, and N. Napp, “Planning for robotic dry stacking
with irregular stones,” in Field and Service Robotics, G. Ishigami and
K. Yoshida, Eds. Singapore: Springer Singapore, 2021, pp. 321–335.

[10] L. Manuelli and R. Tedrake, “Localizing external contact using
proprioceptive sensors: The contact particle filter,” in Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2016, pp. 5062–5069.

[11] S. Kim, D. K. Jha, D. Romeres, P. Patre, and A. Rodriguez, “Simulta-
neous tactile estimation and control of extrinsic contact,” arXiv preprint
arXiv:2303.03385, 2023.

[12] D. Ma, S. Dong, and A. Rodriguez, “Extrinsic contact sensing
with relative-motion tracking from distributed tactile measurements,”
in Proceedings of IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2021, pp. 11 262–11 268.

[13] S. Kim and A. Rodriguez, “Active extrinsic contact sensing: Application
to general peg-in-hole insertion,” in Proceedings of IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2022, pp.
10 241–10 247.

[14] C. Higuera, S. Dong, B. Boots, and M. Mukadam, “Neural contact
fields: Tracking extrinsic contact with tactile sensing,” in Proceedings
of IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2023, pp. 12 576–12 582.

https://proceedings.mlr.press/v164/lee22b.html

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2024-018.pdf
	page 2
	page 3
	page 4
	page 5


