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Abstract

For “small” privacy parameter ε (e.g. ε ă 1), ε-differential
privacy (DP) provides a strong worst-case guarantee that no
membership inference attack (MIA) can succeed at determin-
ing whether a person’s data was used to train a machine learn-
ing model. The guarantee of DP is worst-case because: a) it
holds even if the attacker already knows the records of all but
one person in the data set; and b) it holds uniformly over all
data sets. In practical applications, such a worst-case guaran-
tee may be overkill: practical attackers may lack exact knowl-
edge of (nearly all of) the private data, and our data set might
be easier to defend, in some sense, than the worst-case data
set. Such considerations have motivated the industrial deploy-
ment of DP models with large privacy parameter (e.g. ε ě 7),
and it has been observed empirically that DP with large ε
can successfully defend against state-of-the-art MIAs. Exist-
ing DP theory cannot explain these empirical findings: e.g.,
the theoretical privacy guarantees of ε ě 7 are essentially
vacuous. In this paper, we aim to close this gap between the-
ory and practice and understand why a large DP parameter
can prevent practical MIAs. To tackle this problem, we pro-
pose a new privacy notion called practical membership pri-
vacy (PMP). PMP models a practical attacker’s uncertainty
about the contents of the private data. The PMP parameter
has a natural interpretation in terms of the success rate of a
practical MIA on a given data set. We quantitatively analyze
the PMP parameter of two fundamental DP mechanisms: the
exponential mechanism and Gaussian mechanism. Our anal-
ysis reveals that a large DP parameter often translates into a
much smaller PMP parameter, which guarantees strong pri-
vacy against practical MIAs. Using our findings, we offer
principled guidance for practitioners in choosing the DP pa-
rameter.

Introduction
Machine learning (ML) systems, such as large language
models (LLMs), have the potential to transform various
facets of society and industry. However, the growing ubiq-
uity of these systems raises privacy concerns and a long line
of work has demonstrated how to attack ML models and un-
cover private details about individuals whose data was used
to train the model. For example, (Carlini et al. 2021) ex-
tracted individual training examples by querying an LLM.
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Membership inference attacks (MIAs) (Shokri and
Shmatikov 2015; Dwork et al. 2015) are a fundamental class
of privacy attacks. An MIA receives a trained model ApDq

and a target data point x as inputs and aims to infer whether
or not the target point was used to train the model (i.e.
whether or not x P D). In this paper, we focus on white-box
attackers who know the (randomized) algorithm A. MIAs
can violate people’s privacy: for example, genomic data sets
may contain information about people with a particular med-
ical diagnosis, and knowing that someone is in the data set
reveals that they have the diagnosis (Homer et al. 2008).
Moreover, MIAs are often used as building blocks for other
attacks, such as training data extraction attacks (Carlini et al.
2021). Thus, if we can prevent MIAs, we can often also pre-
vent other attacks.

For sufficiently small δ and ε ě 0, pε, δq-differential pri-
vacy (DP) (Dwork et al. 2006) guarantees that no MIA can
succeed with high probability, by requiring that the output
distribution of the ML model be insensitive to the presence
or absence of any individual data point (see Definition 1).
Pure ε-DP bounds the probability that an arbitrary MIA can
succeed by 1{p1 ` e´εq. Thus, for example, ε ď 0.1 im-
plies that no MIA can do much better than randomly guess-
ing (52.5%) whether or not a target data point was used
to train the model. However, the guarantee of DP degrades
rapidly with ε, e.g., if ε ě 7, then an ε-DP algorithm is
potentially vulnerable to MIAs that succeed with probabil-
ity ě 0.999. On the other hand, large ε values of ε ě 7
are often deployed in industrial applications (Apple 2016;
Úlfar Erlingsson, Pihur, and Korolova 2014; Ding, Kulkarni,
and Yekhanin 2017; Desfontaines 2021). Moreover, values
of ε ě 8 have been shown empirically to be highly effec-
tive at thwarting state-of-the-art MIAs (Carlini et al. 2022).
Existing theory cannot adequately explain the empirical suc-
cess of ε-DP with large ε at defending against MIAs.

This paper aims to bridge this gap between theory and
practice. We rigorously address the following question:

Why does DP with large ε defend against practical MIAs?

Contributions To answer this question, we begin with the
observation that differential privacy provides a guarantee
against a worst-case MIA, which holds uniformly for all
data sets. Namely, DP ensures that even an attacker with
knowledge of n´ 1 data points Dztxu cannot infer whether



or not the target point x was used as input to A. On the other
hand, practical attackers typically do not have such fine-
grained knowledge of the underlying data set as the worst-
case attacker that DP models. Indeed, the literature on MIAs
typically assumes that the attacker has some knowledge of
the data distribution (e.g. query access to the distribution
or knowledge of a subpopulation from which the data was
randomly drawn), but does not know any of the points in
the given data set with certainty. The attacker must rely on
the output of the training algorithm ApDq and distributional
knowledge to infer membership of the target point x.

We model this practical MIA setting in our definition
of practical membership privacy (PMP, Definition 2). We
show that PMP is a useful notion of privacy: PMP is weaker
than the strong worst-case notion of DP (Proposition 5), but
strong enough to guarantee that no practical MIA can suc-
ceed with high probability (Lemma 6). Moreover, PMP is
not susceptible to the blatant privacy breaches that afflict
other weakenings of DP that have been defined in the lit-
erature (see Related Work and Appendix).

We analyze the relationship between the PMP and DP pa-
rameters for two popular DP mechanisms: the exponential
mechanism (McSherry and Talwar 2007) and the Gaussian
mechanism (Dwork et al. 2006). We show that the PMP pa-
rameter can be much smaller than the DP parameter for these
mechanisms, e.g., the ε-DP exponential mechanism satisfies
ε{75-PMP for certain subpopulations. This helps explain
why large values of ε can provide strong protection against
practical MIAs: for example, the pε “ 7.5q-DP exponen-
tial mechanism lacks meaningful privacy guarantees against
a worst-case attacker, but the resulting pε{75 “ 0.1q-PMP
guarantee ensures that no practical MIA can succeed with
probability much higher than random guessing (52.5%). We
conclude by discussing the implications of our results for
practitioners in choosing the DP parameter, and highlight-
ing interesting directions for future work.

Differential Privacy

Definition 1 (Differential Privacy (Dwork et al. 2006)). Let
ε ě 0, δ P r0, 1q. A randomized algorithm A : Xn Ñ Z is
pε, δq-differentially private (DP) if for all pairs of adjacent
data sets D,D1 P Xn and all measurable subsets S Ď Z ,
we have

PpApDq P Sq ď eεPpApD1q P Sq ` δ,

where the probability is solely over the randomness of A.
If δ “ 0, we say that A satisfies “pure DP” and write ε-DP.
If δ ą 0, we say “approximate DP” and write pε, δq-DP.

Practical Membership Privacy
In this section, we define a privacy notion—called practical
membership privacy (PMP)—that models the practical MIA
setting.

PMP models a membership inference attacker who does
not know any elements of D˚ with certainty, but has some
distributional knowledge of D. Specifically, we assume that
the attacker knows a “parent set” X P X 2n from which

D was drawn uniformly at random1. One can interpret the
parent set X as representing a subpopulation from which
the data was known to be drawn (e.g., health insurance cus-
tomers or hospital patients) or a dataset (e.g., MNIST) con-
sisting of training samples D and test samples XzD. PMP
ensures that such an attacker cannot succeed in correctly de-
termining membership of any target point with high proba-
bility:

Definition 2 (Practical Membership Privacy2). Let ε ě

0, δ P r0, 1q and X P X 2n. A randomized algorithm
A : Xn Ñ Z satisfies pε, δq-practical membership privacy
(PMP) with respect to X if for all x P X and all measurable
subsets S Ď Z , we have

e´ε pPpApDq P S|x R Dq ´ δq

ď PpApDq P S|x P Dq

ď eεPpApDq P S|x R Dq ` δ,

where the probability is taken both over the random draw of
D „ Unif ptE Ă X : |E| “ nuq and the randomness of A.
A is pε, δq-PMP if A is pε, δq-PMP with respect to X for
all X P X 2n. To denote “pure PMP”, when δ “ 0, we will
simply write ε-PMP as a shorthand for (ε, 0)-PMP.

The key differences between the PMP model and the DP
model are: 1) our (practical) attacker only has partial infor-
mation about the other n ´ 1 samples in D, whereas DP
allows the (worst-case) attacker to know the other n´1 sam-
ples with certainty; and 2) our definition is dependent on the
parent data set X , whereas DP holds uniformly over all data
sets. Our assumption on the attacker’s knowledge is more re-
alistic than the DP assumption in many private data analysis
settings: In practice, it is uncommon that an attacker knows
n ´ 1 points in a data set (but not the n-th point). However,
it is often the case that an attacker knows that the data set
was drawn from some sub-population X Ă X ; Definition 2
models an attacker with this knowledge.

The following lemma provides alternative characteriza-
tions of PMP:

Lemma 3. Let X P X 2n, x P X , Xinpxq :“ tD Ă X :
|D| “ n, x P Xu, and Xoutpxq “ tD Ă X : |D| “ n, x R

Xu. Let S Ă Z be a measurable set. If

e´ε pPpx R D|ApDq P Sq ´ δq

ď Ppx P D|ApDq P Sq

ď eεPpx R D|ApDq P Sq ` δ, (1)

then

e´ε pPpApDq P S|x R Dq ´ 2δq

ď PpApDq P S|x P Dq

ď eεPpApDq P S|x R Dq ` 2δ. (2)

1The choice of 2n as the size of the parent set is for analyti-
cal convenience. Our analysis extends to the case where, e.g., X
contains αn points for some α ą 1.

2To simplify some of our analyses, we will assume that X con-
sists of 2n distinct points, w.l.o.g: If there are repeated points, then
we can re-define X without repeats for some smaller n.



Also, (2) holds iff

e´ε

¨

˝

1

N

ÿ

D1PXoutpxq

PApApD1q P Sq ´ δ

˛

‚

ď
1

N

ÿ

DPXinpxq

PApApDq P Sq

ď eε

¨

˝

1

N

ÿ

D1PXoutpxq

PApApD1q P Sq

˛

‚` δ, (3)

where N :“ |Xinpxq| “ |Xoutpxq| “
`

2n
n

˘

{2 and the proba-
bilities in (3) are taken solely over the randomness of A.

Moreover, if δ “ 0, then (1) holds iff (2) holds iff (3)
holds. Thus, A is ε-PMP w.r.t. X iff any of these three in-
equalities holds for all x P X and all S Ă Z .

Proofs are deferred to the Appendix. A consequence of
the equivalence between (2) and (3) is that if n “ 1, then
ε-PMP and ε-DP are equivalent—and satisfy ε-local differ-
ential privacy (Kasiviswanathan et al. 2011):
Corollary 4. If n “ 1, then A is pε, δq-DP iff A is pε, 2δq-
PMP w.r.t. X for every X P X 2n.

For n ą 1, PMP is weaker than DP. For simplicity, we
present this result for δ “ 0:
Proposition 5. If A is ε-DP, then A is ε-PMP. Moreover, if
n ą 2, then there exists an lnp2q-PMP A that is not ε1-DP
for any ε1 ă 8.

Intuitively, Proposition 5 is true because the inequalities
in (3) involve averages over data points in X , rather than
the worst-case supremum appearing in the definition of DP.
Moreover, the data set might not be worst case for PMP. The
averages correspond to the practical attacker’s uncertainty
about which samples are in D, which makes it harder to infer
membership of x than the worst-case DP attacker. Also, the
lnp2q-PMP parameter in Proposition 5 is not tight, as our
construction for n “ 3 can be extended to get an ε-PMP
algorithm with ε ă lnp2q for n ą 3, e.g., one can get ε ď

lnp40{37q ă 0.08 for n “ 6.
Next, we bound the success probability of a practical MIA

(as defined at the beginning of this section) in terms of the
PMP parameter:
Lemma 6. Let A be ε-PMP with respect to X and M be any
practical MIA. Then, the probability that M successfully in-
fers membership, for any x P X , never exceeds 1{p1`e´εq.

Analogously, it is well-known that ε-DP ensures that that
success probability of the worst-case attacker (who knows
all but one sample of D) never exceeds 1{p1 ` e´εq.

In the Appendix, we record additional basic properties of
PMP, such as post-processing.

Related Work
Some prior works have sought to understand why large ε
effectively prevents practical privacy attacks from various
different angles. Most of these approaches seek to weaken
the assumptions on the attacker in some respect. See Ghazi

et al. (2022, Section 7) for a thorough discussion of different
directions in which weaker assumptions on the attacker may
be imposed. Below, we list these directions and cite a few
related works for each.

Assumptions about the attacker’s capabilities: DP as-
sumes that the attacker has unlimited computational re-
sources and is capable of executing any sort of attack. Some
relaxations of DP, such as computational DP (Mironov et al.
2009), model an attacker with limited computational re-
sources. Other privacy notions (e.g., k-anonymity) model
an attacker that only executes a specific type of attack (e.g.,
record-linkage attack). In contrast to these works, our PMP
notion models an attacker with the same vast capabilities as
the DP attacker.

Assumptions about the attacker’s goals: DP protects
against membership inference attacks, which is equivalent
(up to a factor of 2 in ε) to an attacker learning an arbitrary
one-bit function of the target individual’s data. Some works
have considered a modified attacker with more ambitious
goals (e.g., training data reconstruction (Hayes, Mahloujifar,
and Balle 2023)). Other works have relaxed the DP defini-
tion to consider an attacker that only aims to extract certain
bits of information from the target individual, e.g., attribute-
level partial DP (Ghazi et al. 2022). In contrast to these
works, our work considers an attacker with the same goals as
the DP attacker. Thus, the attacker that we model is stronger
along the “goals” axis than these prior works.

Assumptions about the attacker’s knowledge: DP per-
mits an attacker to know everything about the data set except
for one private bit that they aim to infer. Several works have
sought to model the uncertainty that a practical attacker has
about the contents of the data set, e.g., (Bassily et al. 2013;
Li et al. 2013; Yeom et al. 2018; Sablayrolles et al. 2019;
Humphries et al. 2020; Izzo et al. 2022; Leemann, Pawel-
czyk, and Kasneci 2023).

Similarly, our PMP notion models an attacker with
weaker knowledge than the DP attacker. PMP has advan-
tages over previously proposed privacy notions that model
the attacker’s uncertainty. For example, as we discuss in the
Appendix, many previously proposed definitions can be sat-
isfied by algorithms that leak the data of some members of
the data set and are therefore not (intuitively) private. By
contrast, PMP is not susceptible to these blatant privacy vi-
olations. Moreover, the focus of our work—on precisely un-
derstanding the risk of a privacy breach with a practical (un-
certain) attacker against specific DP algorithms—is different
from these prior works.

In the Appendix, we discuss prior works seeking to
weaken assumptions about the attacker’s knowledge in more
detail. We highlight pathologies with previously proposed
definitions, in which algorithms that clearly leak an indi-
vidual’s data can still satisfy these other definitions. Also,
in contrast to some other works, PMP does not impose any
distributional or independence assumptions on the underly-
ing data. Instead, we allow for data to be drawn from an
arbitrary subpopulation X . This makes our analysis harder,
but also makes our definition and results stronger. Finally,



we reiterate that prior works did not provide the quantita-
tive interpretations of practical privacy guarantees of con-
crete DP mechanisms that our work provides. In this work,
we give quantitative bounds relating the DP parameter ε
to the PMP parameter and a precise interpretation of the
guarantees of our PMP notion against any practical at-
tacker (Lemma 6). Together, these results enable a rigorous
interpretation of the privacy guarantees of ε-DP against
a practical (less knowledgeable) attacker.

Practical Privacy Guarantees of the
Exponential Mechanism

In this section, we characterize the practical membership pri-
vacy of one of the most powerful and versatile differentially
private algorithms: the exponential mechanism (McSherry
and Talwar 2007). To define the exponential mechanism, let
W be a finite set of objects.3 Let ℓ : W ˆ Xn Ñ R be
some loss function. Given data D, our goal is to privately
select an object w P W that approximately minimizes the
loss function.

Definition 7 (Exponential Mechanism). Given inputs
D,W, ℓ, the exponential mechanism AE selects and out-
puts some object w P W . The probability that a particu-
lar w is selected is proportional to exp

´

´εℓpw,Dq

2∆ℓ

¯

, where

∆ℓ “ maxwPW supD„D1;D,D1PXn |ℓpw,Dq ´ ℓpw,D1q|.

Lemma 8. (McSherry and Talwar 2007) The exponential
mechanism is ε-DP.

The following proposition gives an exact description of
the PMP parameter as a function of the DP parameter ε:

Proposition 9. Let X P X 2n. The ε-DP exponential mech-
anism is ε̃pXq-PMP with respect to X if and only if

ε̃pXq ě ln

»

–

ř

DPXinpxq cpDq exp
´

´ ε
2∆ℓ

ℓpw,Dq

¯

ř

D1PXoutpxq cpD
1q exp

´

´ ε
2∆ℓ

ℓpw,D1q

¯

fi

fl

for all w P W and x P X , where cpDq “
”

ř

w1PW exp
´

´εℓpw1,Dq

2∆ℓ

¯ı´1

and cpD1q is defined simi-
larly.

For a given loss function ℓ and subpopulation X , Proposi-
tion 9 allows us to compute the PMP paramater ε̃pXq of the
exponential mechanism as a function of ε. In combination
with Lemma 6, this will allow us to interpret ε in terms of
the success rate of an arbitrary practical membership infer-
ence attacker.

Numerical Simulations We investigate the PMP param-
eter ε̃ vs. the DP parameter ε for different subpopulations
X . We fix the loss function: ℓpw,Dq “ 1

n

řn
i“1 }w ´ Di}2,

which is a convex empirical risk minimization problem cor-
responding to the geometric median. Our goal is to under-
stand the ratio ε̃pXq{ε that we get for different X , and dif-
ferent factors that affect the ratio (e.g., the distribution and

3If W is infinite, then the exponential mechanism can still be
applied after discretizing W .

dimension of the data). We choose W “ tw1, . . . , wmu

to be a set of m random standard normal unit vectors in
Rd, standardized to have unit ℓ2-norm. We then draw X „

N pw1, σ
2q2nˆd and clip the ℓ2 norm of each data point, so

}xi}2 ď C for all i P r2ns, where C is the clip threshold.
Recall that there are two key differences between PMP

and DP: one difference lies in the attacker’s knowl-
edge/uncertainty about the data, and the second is that PMP
is defined with respect to a subpopulation X , whereas DP
is worst-case over all X . In order to disentangle these two
effects, we plot two curves in each experiment: the (aver-
age, over T trials) ratios ε̃pXq{ε and the ratioX ε̃pXq{εpXq.
Here εpXq is defined as in Definition 1 except that that
we only require the inequality to hold for adjacent data
sets D,D1 that are subsets of X , rather than Xn “ tx P

Rd : }x}2 ď Cun. The ratioX ε̃pXq{εpXq controls for
the effect of the data and just describes the effect of the
practical attacker’s uncertainty compared to the worst-case
DP attacker’s certainty about members of Dztxu. The ra-
tio ε̃pXq{ε captures the role of both the attacker’s knowl-
edge and the data being potentially easier to defend than the
worst-case data set.

Figure 1 shows the ratios ε̃pXq{ε and ε̃pXq{εpXq vs. the
standard deviation σ of the data. Note that for small σ, the
data is easier to defend/harder to attack because everyone in
the data set looks similar: the attacker cannot easily distin-
guish between the output distribution of the algorithm when
the target x P D vs. when x R D. Conversely, large σ makes
it likely that some “outlier” x that is easier for the attacker
to identify will be in X . Thus, the ratio ε̃pXq{ε increases
with σ. On the other hand, the ratio ε̃pXq{εpXq does not
significantly depend on σ.
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Figure 1: Ratios vs. σ, with 1-dim. data, n “ 6, m “ 10,
C “ 10, εpXq “ 5.

For example, when σ “ 1 (standard normal data), the
ratio ε̃pXq{ε « 0.075, which mostly reflects the fact that
this data set is far from worst case. In this case, εpXq “ 5
and ε « 28.5, which does not afford any meaningful privacy
guarantees under classical DP theory. However, the PMP pa-



rameter ε̃pXq « 2.14, which provides a meaningful guaran-
tee against practical MIAs on this particular subpopulation
X , by Lemma 6. Moreover, for small σ ă 1, the smaller
ratios imply stronger PMP guarantees for fixed values of ε:
e.g. for σ ă .1, the PMP parameter ε̃pXq approaches zero.
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Figure 2: Ratios vs. Clip threshold C, with 5-dim. data, n “

6, 2 outliers, m “ 32, σ “ 1, εpXq “ 10.

Figure 2 shows the effect of clip threshold on the ratios.
A small clip threshold C reduces the effect of outlier data
points, while a large clip threshold C permits more outliers
in the data set. To amplify the effect of outliers, we choose
2 points in X at random and multiply them by 100. These
extreme outliers cause εpXq (and ε) to be much larger than
ε̃pXq, since the worst-case DP attacker who knows an out-
lier in Dztxu can use this information to easily infer mem-
bership of x. By contrast, the practical attacker cannot use
outliers to launch an MIA as effectively because they are
uncertain about which other points are in D. For example,
when C “ 50, both ratios are less than 0.0123. This means
that a 10-DP algorithm with no meaningful privacy guar-
antee against a worst-case attacker satisfies 0.123-PMP and
hence can defend against any practical attacker almost per-
fectly (1{p1` e´.123q « 0.53). Moreover, the DP parameter
ε « εpXq in the presence of extreme outliers because such
X is nearly worst-case from a privacy perspective. In this
experiment, n “ 6 since the runtime of computing ε̃pXq

is exponential in n. We would expect the ratios to become
even smaller for larger n because the practical attacker’s un-
certainty would increase.

Finally, Figure 3 shows that the ratios become smaller as
the dimension of the data increases. This can be attributed to
the particular choice of loss function and Euclidean geome-
try in higher dimensions. In general, the effect of dimension
on the ratios will depend on the loss function/problem.

Practical Privacy Guarantees of the Gaussian
Mechanism

This section analyzes the practical membership privacy of
one of the most widely used pε, δq-DP algorithms: the Gaus-
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Figure 3: Ratios vs. Dimension of data d, with n “ 6, m “

10, σ “ 1, εpXq “ 2.

sian Mechanism. Given a function q : Xn Ñ Rd, the Gaus-
sian mechanism simply adds isotropic Gaussian noise to the
output of q:

AGpDq :“ qpDq ` N
`

0, σ2Id
˘

.

Denote the cumulative distribution function of Y „

N p0, 1q by Φ.

Lemma 10. (Balle and Wang 2018) Let q : Xn Ñ Rd be
a function with global ℓ2-sensitivity ∆ “ supD„D1 }qpDq ´

qpD1q}2. For any ε ě 0 and δ P r0, 1s, the Gaussian mecha-
nism AG is pε, δq-DP if and only if

Φ

ˆ

∆

2σ
´

εσ

∆

˙

´ eεΦ

ˆ

´
∆

2σ
´

εσ

∆

˙

ď δ. (4)

For A :“ AG and x P X , define the mixture distribu-
tions Pin,xpSq :“ 1

|Xinpxq|

ř

DPXinpxq PApApDq P Sq and
Pout,xpSq :“ 1

|Xoutpxq|

ř

DPXoutpxq PApApDq P Sq. Our anal-
ysis will utilize the following characterizations of DP and
PMP, which are immediate from the definitions:

Lemma 11. Denote the hockey-stick divergence be-
tween random variables P and Q by DeεpP }Qq :“
ş

R maxt0, pptq ´ eεqptqudt, where p and q denote
the probability density or mass functions of P and
Q respectively. Then, A is pε, δq-DP if and only if
maxtDeεpApDq}ApD1qq, DeεpApD1q}ApDqqu ď δ for all
D „ D1. Moreover, A is pε, δq-PMP w.r.t. X if and only
if maxtDeεpPin,x}Pout,xq, DeεpPout,x}Pin,xqu ď δ for all
x P X .

The following technical result will be crucial in our anal-
ysis.

Proposition 12. Let AG be the pε, δq-DP Gaussian mecha-



nism. Then, for any x P X ,

max tDeεpPin,x||Pout,xq, DeεpPout,x||Pin,xqu (5)

ď
1

n|Xinpxq|

ÿ

DPXinpxq

ÿ

D1PXoutpxq,D1„D
«

Φ

ˆ

}qpDq ´ qpD1q}

2σ
´

εσ

}qpDq ´ qpD1q}

˙

´ eεΦ

ˆ

´
}qpDq ´ qpD1q}

2σ
´

εσ

}qpDq ´ qpD1q}

˙

ff

.

The main tools used in the proof of Proposition 12
are joint convexity of the hockey-stick divergence (which
holds since Deε is an f -divergence) and a bound on
DeεpAGpDq||AGpD1q due to (Balle and Wang 2018).

By Proposition 12 and Lemma 11, AG is pε, δq-PMP if
the right-hand side of inequality 5 is upper-bounded by δ.
The differences between this sufficient condition for PMP
and the condition (4) for DP is that (4) is worst-case over all
pairs of adjacent data sets in Xn, whereas PMP only requires
an average-case bound over all adjacent subsets of X .

Our Approach Our approach for analyzing the PMP pa-
rameter ε̃pXq for the pε, δq-DP Gaussian mechanism is as
follows:

1. Given target DP parameters pε, δq, find the approximately
smallest σ such that the Gaussian mechanism is pε, δq via
Lemma 10 and (Balle and Wang 2018, Algorithm 1).

2. Upper bound the hockey-stick divergence between Pin,x
and Pout,x in Proposition 12.

3. Using the value of σ obtained in step 1), find the ap-
proximately smallest ε̃pXq such that our upper bound in
Proposition 12 is ď δ for all x P X: this ensures that
the Gaussian mechanism is pε̃pXq, δq-PMP w.r.t. X , by
Lemma 11.

Note that a naive implementation of step 3 would run in
exponential (in n) time. To execute step 3 efficiently, we
observe that the right-hand-side of Inequality 5 can be
greatly simplified when the function is of the form qpDq “
ř

xPD fpxq, where f is some sample-wise function. Since,
the summation is constrained to be over D containing x and
D1 that is adjacent to D, where x is replaced with a differ-
ent x1, the value of qpDq ´ qpD1q is equal to fpxq ´ fpx1q.
Thus, the terms of the summation are a function of only x1

(given that x is fixed), with each possible x1 ‰ x repeatedly
appearing an equal number of times. Hence, instead of deal-
ing with the average-case over all adjacent datasets, we can
compute an equivalent average over all choices of x1 ‰ x,
given by

1

2n ´ 1

ÿ

x1‰x

«

Φ

ˆ

}fpxq ´ fpx1q}

2σ
´

εσ

}fpxq ´ fpx1q}

˙

´ eεΦ

ˆ

´
}fpxq ´ fpx1q}

2σ
´

εσ

}fpxq ´ fpx1q}

˙

ff

.

Numerical Simulations For our simulations, we consider
empirical mean estimation: qpDq “

ř

xPD x{n. The goals
of these simulations are the same as in the simulations
of the previous section: to quantify the ratios ε̃pXq{ε and
ε̃pXq{εpXq and understand the factors that cause these ra-
tios to be large or small. We draw an i.i.d. Gaussian data set
X „ N p0, σ2q2nˆd and clip the ℓ2 norm of each data point,
so }xi}2 ď C for all i P r2ns, in order to bound global
sensitivity of q.

Figure 4 shows the ratios vs. the DP parameter εpXq.
First, note that the ratio ε̃pXq{ε is small for all values of
εpXq. For example, even when εpXq “ 10 and ε̃pXq{ε is at
its largest, we still have a small PMP parameter ε̃pXq ă 0.9.
Second, we see that there is a large gap between the two (or-
ange and blue) curves, especially when εpXq is large. This
indicates that the worst-case DP parameter ε is significantly
bigger than the subpopulation-specific DP parameter εpXq

in this experiment. Thus, X is far from being worst-case.
Third, the ratios increase with the DP parameter εpXq.
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Figure 4: Ratios vs. εpXq, with n “ 100, d “ 20, C “ 50,
no outliers, σ “ 1, δ “ 10´2.

Figure 5 shows the effect of the clip threshold C on the
ratios in the presence of outliers. We produce outliers by
choosing 2 points at random and scaling them by a factor of
10. Similar to Figure 2, we see that the ratios shrink as the
clip threshold C increases. For example, for large C “ 100,
a DP parameter of ε “ 5 would translate into a much smaller
PMP parameter of ε̃pXq “ 1. One difference between Fig-
ure 5 and Figure 2 is that the gap between the blue and or-
ange curves is larger in Figure 5 than in Figure 2. The rea-
son is that the data X is relatively easier to keep private in
the experiment that was used to produce 5, whereas X was
nearly worst-case in Figure 2. This is due to differences in
the outlier scaling, dimension, σ, and the loss function/learn-
ing problem.

Figure 6 shows that the ratios increase with the dimension
of the data. In combination with Figure 3, we see that the
effect of dimension on the ratios may differ substantially for
different learning problems. Thus, practitioners may want to
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Figure 5: Ratios vs. Clip threshold C, with n “ 100, d “ 10,
2 outliers, σ “ 5, δ “ 10´2.

apply problem-specific context to guide the choice of ε.
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Figure 6: Ratios vs. Dimensionality, with ε with n “ 100,
C “ 50, no outliers, σ “ 1, δ “ 10´2.

Discussion and Conclusion
In this paper, we analyzed the risk of data leakage of DP
algorithms against a practical attacker who lacks certainty
about the contents of the data set. At a high level, our re-
sults are encouraging: we rigorously show that even at larger
ε, DP mechanisms can actually provide guaranteed defense
against practical MIAs.

We also gleaned more granular insights. For example,
Figure 1 indicates that if a data analyst has a priori knowl-
edge that the subpopulation from which data is drawn is
approximately i.i.d./homogeneous, then they can afford to
choose larger ε: homogeneous data is easier to keep private.
Also, data sets containing extreme outliers make it relatively

much easier for a worst-case MIA to attack than for a practi-
cal MIA (e.g., see Figure 2). Strategies like aggressive clip-
ping can be used to mitigate the negative effects of outliers
on privacy. Practitioners can use our code (which we plan
to make available online) to help choose an appropriate ε for
their particular problem/data population, while aiming to get
a small corresponding PMP parameter, e.g., ε̃pXq ď 0.1.

We emphasize that our motivation for studying the notion
of PMP was to better understand DP; we do not advocate
for using PMP as a substitute for DP. PMP has certain short-
comings: As discussed in Ghazi et al. (2022, Section 7), an
attacker’s level of uncertainty may decrease over time, e.g.,
due to subsequent releases of information. Consequently,
PMP does not satisfy the same sequential composition prop-
erty that DP satisfies. We hope that by providing clearer in-
terpretations of the DP parameter in terms of vulnerability
to practical MIAs, our work facilitates more widespread use
of DP algorithms in industry and government.
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More details on related works
In this Appendix, we discuss prior works seeking to weaken assumptions about the attacker’s knowledge in more detail. We
highlight pathologies with previously proposed definitions, in which algorithms that clearly leak an individual’s data can still
satisfy these other definitions. Also, in contrast to some other works, PMP does not impose any distributional or independence
assumptions on the underlying data. Instead, we allow for data to be drawn from an arbitrary subpopulation X . This makes our
analysis harder, but also makes our definition and results stronger. Finally, we re-iterate that prior works did not provide the
quantitative interpretations of practical privacy guarantees of concrete DP mechanisms that our work provides.

The work of Bassily et al. (2013) was motivated by similar goals to our own. They propose distributional DP (DDP), a
special case of their more general “coupled-worlds privacy” framework. DDP utilizes a “simulator” in its definition, requiring
that the output distribution of the algorithm ApDq be pε, δq-indistinguishable from the output distribution of some simulator run
on the “scrubbed” data SimpD´iq, for all i P rns. The paper shows that certain noiseless protocols (e.g. real-valued summation,
histograms, stable functions) satisfy DDP w.r.t. certain distribution classes P . Moreover, they discuss the relation of DDP to
previous notions of privacy—namely, Pufferfish privacy (Kifer and Machanavajjhala 2012) and noiseless privacy (Bhaskar et al.
2011).

However, the DDP definition suffers from a shortcoming, which does not occur with our PMP definition. Under fairly
mild distribution classes, DDP can permit pathological algorithms that simply release the entire dataset. Let P consist of
distributions on datasets D of size n, where knowledge of any n ´ 1 points reveals the remaining point. In such a case, the
algorithm ApDq “ D becomes permissible, as it is perfectly (ϵ “ δ “ 0) indistinguishable from a simulator SimpD´iq that
can also output the entire dataset, by recovering the missing point. For example, let D1, . . . , Dn be uniformly drawn from
binary sequences with even parity, i.e., for any i P rns, we have Di “ ‘jPrns:j‰iDj . Note that this is a simple modification
of Example 1 from Bassily et al. (2013), but with the auxiliary side information Z (meant to reveal the parity of the binary
sequence) omitted, and instead the fixed parity is incorporated into the distribution of the binary sequence. This also applies to
generalizations of this example with distributions where the sum (or mean) of the dataset is fixed and known.

Li et al. (2013) proposes a notion of membership privacy that is similar in spirit to DDP. Roughly speaking, an algorithm
satisfies the (positive) membership privacy notion of (Li et al. 2013) w.r.t. a family of distributions P on Xn if PP,Apx P

X|ApXq P Sq « PP px P Xq for all P P P, x P X , S Ă A. Conceptually, the essential differences between this definition and
our definition of PMP are: that our definition is parameterized by a parent data set, whereas theirs is parameterized by a family
of distributions that correspond to the attacker’s prior knowledge; also, their definition is non-symmetric in positive vs. negative
membership inference, whereas our definition is symmetric. To address this latter limitation, (Li et al. 2013) introduce a second
definition of negative membership privacy that protects against attacks that determine that someone was not a member of the
training data. Having two definitions seems unnecessary and our framework eliminates this need. They prove post-processing
property of their membership privacy notion. The paper concludes by giving different instantiations of membership privacy
for different choices of P and recovering prior notions of privacy (including DP) along the way. In particular, Li et al. (2013,
Theorem 5.10) shows that their membership privacy definition recovers “DP under sampling” (Li, Qardaji, and Su 2012) for
the distribution family Pβ consisting of distributions such that P pxq P t0, βu for some choice of β. An algorithm satisfies “DP
under sampling” if it is DP when composed with the subsampling operation that first samples each point in the data set with
probability β and then executes the algorithm on the subsampled data set. A drawback of (Li et al. 2013) is that the privacy
parameter of their definition is not analyzed carefully or related to the DP parameter. We address this drawback in our work.

The work of Long, Bindschaedler, and Gunter (2017) proposes differential training privacy (DTP) to empirically estimate
the privacy risk of publishing a classifier. Their DTP definition is specifically given for classifiers that output a vector of
probabilities for predicted labels y and features x: pApT qpy|xq, where T is the training data set. Thus, their DTP notion is also
data set-specific. Essentially, their definition requires that the predicted label probabilities of A do not change too much when
any single point in the training data set is removed: pApT qpy|xq ď eεpApT zzqpy|xq should hold for all z P T and all feature-label
pairs px, yq in the universe. Thus, their definition seems to be conceptually more similar to DP than it is to our definition of
PMP. They provide an efficiently computable approximation of DTP that they compute in empirical case studies. They use
these case studies to reason about the privacy risks of non-DP classifiers trained on certain data sets. No theoretical treatment
of their DTP notion is provided.

The work of Yeom et al. (2018) proposes a different distribution-dependent definition of membership privacy based on the
following membership experiment: data S „ Pn is drawn i.i.d. from some distribution and a learning algorithm ApSq is run on
the training data. Then a random bit b „ Berp1{2q is drawn. If b “ 0, then we draw a point z P S at random. If b “ 1, then we
draw a random point z „ P . The attacker observes the target point z and the output of the algorithm ApSq (and implicitly has
knowledge of P ) and tries to guess the value of b (i.e., membership of z). They define the membership advantage of an attacker
in terms of its success rate, and say an algorithm is membership private (w.r.t. P ) if every attacker has small membership
advantage. Note that this membership experiment is the one that Carlini et al. (2022) assume in their attack model. Compared
to our PMP notion, a critical difference is that their definition only protects the privacy of the people in the data set on average
(over the random draw of z from S). By contrast, our definition provides a stronger worst-case (over z P S) guarantee, ensuring



that the data of every person in S remains private. Another difference is that Yeom et al. (2018) uses a parent distribution P ,
whereas we use a parent data set X . Yeom et al. (2018)’s definition is conceptually similar to DDP, but the precise way it is
measured (in terms of advantage) differs and also it is framed as an experiment with an MIA.

Yeom et al. (2018) shows that DP implies bounded membership advantage and studies the connection between overfitting
and membership advantage. Additionally, they look at the connection between membership inference and attribute inference.

The work of Humphries et al. (2020) proposed a variation of the definition in (Yeom et al. 2018) to deal with a specific limi-
tation of (Yeom et al. 2018)’s definition. Namely, Humphries et al. (2020) argues that the i.i.d. data assumption is problematic
because DP guarantees become much weaker in the presence of data dependencies and because the assumption may not be
satisfied in practice. Thus, they modify the definition in Yeom et al. (2018) by assuming that P is a mixture of K distributions:
first, k „ rKs is drawn uniformly and then S „ Pn

k is drawn (conditionally i.i.d. given k). If b “ 1, then the target point z
is drawn from the mixture distribution: first k1 „ rKs is drawn and then z „ Pk1 . Note that this modification allows for data
dependencies.

Humphries et al. (2020) provides tighter bounds on the relation between DP and membership advantage, compared with
(Yeom et al. 2018). They also empirically evaluate membership inference with data dependencies. Again, the main difference
between our notion and Humphries et al. (2020) is that we use a parent set instead of a parent distribution. Note that our
definition also permits data dependencies, since the parent data set may consist of dependent data.

The work of Sablayrolles et al. (2019) defines a training algorithm that returns a parameter θ as being pε, δq-membership
private w.r.t. a loss function ℓpθ, zq. Their definition Sablayrolles et al. (2019, Definition 3) essentially requires a membership
private algorithm to satisfy ℓpθ, z1q «

ş

w
ℓpt, z1qpT pwqdw with high probability over the random draw of the training data

set T “ pz1, . . . , znq. Here pT pwq is the posterior density of the parameter w given pz2, . . . , znq, which is assumed to take a
particular form given in (Sablayrolles et al. 2019, Definition 12). Roughly speaking, it is assumed that w depends on the data
through an “exponential mechanism”-like training algorithm. An immediate problem with their definition is the dependence on
the loss function, which greatly reduces the generality and flexibility of the definition. (Sablayrolles et al. 2019) characterize
the optimal MIA under certain assumptions discussed above. They show that DP implies a bound on the membership advan-
tage. They run experiments showing that their attack—based on the theoretically optimal attack under their assumption on the
posterior—performs well.

The work of Mahloujifar et al. (2022) is motivated by the desire to get tighter bounds on membership inference privacy for
existing algorithms. They measure membership inference privacy by using a very strong definition of membership privacy that
is similar to DP in that it assumes (implicitly) that the attacker knows the other n ´ 1 points in the training set. As we argue,
this assumption is usually unrealistic and a major benefit of our PMP definition is that it relaxes this assumption by modeling
the adversary’s uncertainty about the training data set.

The recent work of Izzo et al. (2022) works towards a theory of membership inference privacy (MIP). Their notion of η-MIP
is similar to our notion of ε-PMP in terms of being average case over the uniformly random draw of the training data, and
worst-case over outcomes. However, their MIP notion is fundamentally weaker than our PMP notion. In particular, it is easy
to see that the following blatantly non-private algorithm satisfies η-MIP but does not satisfy ε-PMP for any ε ă 8: A releases
a training example D1 with probability nη and otherwise outputs NULL. Thus, their MIP notion may not be strong enough to
offer the meaningful and intuitive membership privacy guarantees that we desire. Moreover, PMP implies MIP, as the following
lemma shows:

Lemma 13. If A is ε-PMP, then A is 1´e´ε

2 -MIP.

Proof. Let ∆ “ 1 ´ e´ε P r0, 1q. Assume for concreteness that A is discrete. (A similar argument works if A is continuous.)
Then since A is ε-PMP, we have

1 ´ ∆ ď
Ppx P D|ApDq “ aq

Ppx R D|ApDq “ aq
ď

1

1 ´ ∆

for almost every a P Z , where Z denotes the range of ApDq. By the proof of (Izzo et al. 2022, Theorem 7), we get

max pPpx P D|ApDq “ aq,Ppx R D|ApDq “ aqq ď
1 ` ∆

2

and
ż

Z
max pPpx P D|ApDq “ aq,Ppx R D|ApDq “ aqqPpApDq “ aq ď

1 ` ∆

2

ż

Z
P pApDq “ aq

“
1 ` ∆

2
.

By the definition of η-MIP, the above inequality implies that A is η-MIP for η “ ∆{2 “ p1 ´ e´εq{2.



Finally, the concurrent and independent work of Leemann, Pawelczyk, and Kasneci (2023) proposes a Gaussian-DP analog
of the membership inference privacy (MIP) notion. They show how to implement their Gaussian MIP with noisy SGD and give
a novel MIA based on their MIP notion.

Proofs of Theoretical Results
In this Appendix, we re-state and prove our theoretical results. First, we show that PMP satisfies post-processing.
Lemma 14 (Post-processing property of PMP). Let A : Xn Ñ Z be pε, δq-PMP. If f : Z Ñ Y is any function, then
f ˝ A : Xn Ñ Y is pε, δq-PMP.

Proof. Let S Ă Y be measurable, X P X 2n, x P X , N “ |Xinpxq| “ |Xoutpxq|, where Xinpxq and Xoutpxq are defined
in Lemma 3. Assume w.l.o.g. that f is deterministic. (If f is randomized, then we can reduce to the deterministic case by
considering convex combinations.) Let TS :“ tz P Z : fpzq P Su “ f´1pSq. Note that for any D P Xinpxq, there exists a
D1 P Xoutpxq that is adjacent to D: if x “ Di, take D1 “ pD1, . . . , Di´1, x

1, Di`1, . . . , Dnq for some x1 P XzD. Then, by
Lemma 3, we have

1

N

ÿ

DPXinpxq

PApf ˝ ApDq P Sq “
1

N

ÿ

DPXinpxq

PApApDq P TSq

ď
1

N

ÿ

D1PXoutpxq

eεPApApD1q P TSq `
δ

2

“ δ{2 ` eε
1

N

ÿ

D1PXoutpxq

PApf ˝ ApD1q P Sq.

By Lemma 3, we conclude that f ˝ A is pε, δq-PMP.

Lemma 15 (Re-statement of Lemma 3). Let X P X 2n, x P X , Xinpxq :“ tD Ă X : |D| “ n, x P Xu, and Xoutpxq “ tD Ă

X : |D| “ n, x R Xu. Let S Ă Z be a measurable set. If

e´ε pPpx R D|ApDq P Sq ´ δq ď Ppx P D|ApDq P Sq ď eεPpx R D|ApDq P Sq ` δ, (6)

then

e´ε pPpApDq P S|x R Dq ´ 2δq ď PpApDq P S|x P Dq ď eεPpApDq P S|x R Dq ` 2δ. (7)

Also, (7) holds iff

e´ε

¨

˝

1

N

ÿ

D1PXoutpxq

PApApD1q P Sq ´ δ

˛

‚ď
1

N

ÿ

DPXinpxq

PApApDq P Sq ď eε

¨

˝

1

N

ÿ

D1PXoutpxq

PApApD1q P Sq

˛

‚` δ, (8)

where N :“ |Xinpxq| “ |Xoutpxq| “
`

2n
n

˘

{2 and the probabilities in (8) are taken solely over the randomness of A.
Moreover, if δ “ 0, then (6) holds iff (7) holds iff (8) holds. Thus, A is ε-PMP w.r.t. X iff any of these three inequalities

holds for all x P X and all S Ă Z .

Proof. Suppose (6) holds. Then, by Bayes’ rule and the fact that Ppx P Dq “ Ppx R Dq “ 1{2, we have

e´ε

ˆ

´δ `
PpApDq P S|x R Dq

2PpApDq P Sq

˙

ď
PpApDq P S|x P Dq

2PpApDq P Sq
ď eε

PpApDq P S|x R Dq

2PpApDq P Sq
` δ. (9)

Multiplying (9) by 2PpApDq P Sq and using the fact that PpApDq P Sq P r0, 1s yields (7).
Next we prove the equivalence between (7) and (8). Observe that

PpApDq P S|x P Dq “ PpApDq P S|D P Xinpxqq (10)

“
PpApDq P S,D P Xinpxqq

PpD P Xinpxqq
(11)

“

1
N

ř

DPXinpxq PApApDq P Sq

1{2
(12)

“
2

N

ÿ

DPXinpxq

PApApDq P Sq. (13)



Similarly, PpApDq P S|x R Dq “ 2
N

ř

D1PXoutpxq PApApD1q P Sq. Substituting these equalities into (7) and then dividing by 2

yields (8).
Now suppose δ “ 0. Then we have already shown that (6) implies (7) and that (7) is equivalent to (8). Conversely, if (7)

holds, then by Bayes rule and the fact that Ppx P Dq “ Ppx R Dq “ 1{2, we get

e´ε2Ppx R D|ApDq P SqPpApDq P Sq ď 2Ppx P D|ApDq P SqPpApDq P Sq ď eε2Ppx R D|ApDq P SqPpApDq P Sq.

If PpApDq P Sq ą 0, then dividing the above by 2PpApDq P Sq implies that (6) holds. This completes the proof.

Corollary 16 (Re-statement of Corollary 4). If n “ 1, then A is pε, δq-DP iff A is pε, 2δq-PMP w.r.t. X for every X P X 2n.

Proof. If n “ 1, then N “ 1 and the sums in (3) are each only over one term. Thus, (3) holds for all X “ tx, x1u P X 2 iff

e´εpPpApx1q P Sq ´ δq ď PpApxq P Sq ď eεPpApx1q P Sq ` δ (14)

iff A is pε, δq-DP. By Theorem 3, this condition is also equivalent to A being pε, 2δq-PMP w.r.t. X for every X P X 2.

Proposition 17 (Re-statement of Proposition 5). If A is ε-DP, then A is ε-PMP. Moreover, if n ą 2, then there exists an
lnp2q-PMP A that is not ε1-DP for any ε1 ă 8.

Proof. The first statement is a consequence of Lemma 3 and uses arguments from the proof of (Izzo et al. 2022, Proposition 6).
Let X P X 2n consist of 2n distinct points, let x P X and S Ă Z . Let A be ε-DP. By Lemma 3, we have

PpApDq P S|x R Dq

PpApDq P S|x P Dq
“

ř

DPXinpxq PApApDq P Sq
ř

D1PXoutpxq PApApD1q P Sq
.

Now, for any D “ pD1, . . . , Dnq P Xinpxq, there is a unique i P rns such that Di “ x. Let x1 P XzD and
D1 :“ pD1, . . . , Di´1, x

1, Di`1, . . . , Dnq, which is a neighboring data set of D (i.e. D „ D1) and D1 P Xoutpxq. Note
that there are n choices for x1. Thus, we can see that D has n neighboring data sets in Xoutpxq. Similarly, every D1 P Xoutpxq

has n neighbors in Xinpxq. Thus,

n
ÿ

D1PXoutpxq

PApApD1q P Sq “
ÿ

DPXinpxq

ÿ

D1
PXoutpxq

D1
„D

PApApD1q P Sq.

This implies

PpApDq P S|x R Dq

PpApDq P S|x P Dq
“

ř

DPXinpxq PApApDq P Sq
ř

D1PXoutpxq PApApD1q P Sq

“

ř

DPXinpxq PApApDq P Sq

1
n

ř

DPXinpxq

ř

D1PXoutpxq,D1„D PpApD1q P Sq

ď
eε

ř

DPXinpxq minD1PXoutpxq,D1„D PApApD1q P Sq
ř

DPXinpxq AverageD1PXoutpxq,D1„DPApApD1q P Sq

ď eε.

A similar argument proves the other inequality.
For the second statement, assume for simplicity that n “ 3. It will be easy to see that our construction extends to n ą 3

(and indeed the PMP parameter can be reduced for n ą 3, giving a stronger result). Let X “ t0, 1, 2, 3, 4, 5u, and X “

p0, 1, 2, 3, 4, 5q. Define ApDq “ sumpDq pmod 6q as the modular addition operator. First, A is clearly not ε1-DP for any
ε1 ă 8 since A is not randomized. Concretely, if ApDq “ 0 for some D P Xn, then replacing D1 by D1

1 “ D1 ` 1 pmod6q

and letting D1 “ pD1
1, D2, . . . , Dnq implies that ApD1q “ 1; hence the privacy loss is infinite.

Next, A is lnp2q-PMP. To see this, let x “ 0 and compute maxaPX
ř

DPXinpxq PApApDq “ aq “ maxaPX |tD P Xinpxq :
ř

pDq “ a pmod 6qu| “ 2. On the other hand, minaPX
ř

DPXoutpxq PApApDq “ aq “ minaPX |tD P Xoutpxq :
ř

pDq “

a pmod 6qu| “ 1. By symmetry and Lemma 3, A is ε-PMP with respect to X if and only if
ˇ

ˇ

ˇ

ˇ

ˇ

ln

ř

DPXinpxq PpApDq “ aq
ř

D1PXoutpxq PpApD1q “ aq

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε

for all a P X . By the above computations, we see that this holds only if ε ě lnp2q.

Lemma 18 (Re-statement of Lemma 6). Let A be ε-PMP with respect to X and M be any practical MIA. Then, the probability
that M successfully infers membership, for any x P X , never exceeds 1{p1 ` e´εq.



Proof. Suppose PpApDq P S|x P Dq “ eεPpApD1q P S|x R D1q for some S Ă Z and x P X . Then any practical MIA’s
success probability is upper bounded by max pPpx P D|ApDq P Sq,Ppx R D|ApDq P Sqq, which corresponds to the success
probability of the Bayes optimal practical MIA, M˚. Assume w.l.o.g. that max pPpx P D|ApDq P Sq,Ppx R D|ApDq P Sqq “

Ppx P D|ApDq P Sq. Then,

PpM˚ is correctq ď Ppx P D|ApDq P Sq

“
PpApDq P S|x P DqPpx P Dq

PpApDq P Sq

“
eεPpApDq P S|x R Dq ˆ 1{2

p1{2q pPpApDq P S|x P Dq ` PpApDq P S|x R Dqq

“
eε

1 ` eε
“

1

1 ` e´ε
.

Proposition 19 (Re-statement of Proposition 9). Let X P X 2n. The ε-DP exponential mechanism is ε̃pXq-PMP with respect
to X if and only if

ε̃pXq ě ln

»

–

ř

DPXinpxq cpDq exp
´

´ ε
2∆ℓ

ℓpw,Dq

¯

ř

D1PXoutpxq cpD
1q exp

´

´ ε
2∆ℓ

ℓpw,D1q

¯

fi

fl

for all w P W and x P X , where cpDq “

”

ř

w1PW exp
´

´εℓpw1,Dq

2∆ℓ

¯ı´1

and cpD1q is defined similarly.

Proof. By Lemma 9, the ε-DP exponential mechanism is ε̃pXq-PMP with respect to X if and only if

ε̃ ě max
wPW,xPX

ln

«

ř

DPXinpxq PApApDq “ wq
ř

D1PXoutpxq PApApD1q “ w

ff

“ max
wPW,xPX

ln

»

–

ř

DPXinpxq cpDq exp
´

´ ε
2∆ℓ

ℓpw,Dq

¯

ř

D1PXoutpxq cpD
1q exp

´

´ ε
2∆ℓ

ℓpw,D1q

¯

fi

fl .

Proposition 20 (Re-statement of Proposition 12). Let AG be the pε, δq-DP Gaussian mechanism. Then, for any x P X ,

max tDeεpPin,x||Pout,xq, DeεpPout,x||Pin,xqu ď
1

n|Xinpxq|

ÿ

DPXinpxq

ÿ

D1
PXoutpxq

D1
„D

«

Φ

ˆ

}qpDq ´ qpD1q}

2σ
´

εσ

}qpDq ´ qpD1q}

˙

´ eεΦ

ˆ

´
}qpDq ´ qpD1q}

2σ
´

εσ

}qpDq ´ qpD1q}

˙

ff

.

Proof. Let x P X and N :“ |Xinpxq| “ |Xoutpxq|. Let P pSq :“ PApApDq P Sq, P 1pSq :“ PApApD1q P Sq, and denote
the density functions of these distributions by p and p1 respectively. (The distributions P and P 1 are parameterized by specific
data sets D and D1, but we omit the dependence to reduce notational clutter.) Note that pptq “ 1?

2πσ2
exp

´

´
pqpDq´tq2

2σ2

¯

and p1ptq “ 1?
2πσ2

exp
´

´
pqpD1

q´tq2

2σ2

¯

. Recall that the hockey-stick divergence Deε is an f -divergence, with fptq “ fεptq “

maxpt ´ eε, 0q (Sason and Verdú 2016). By joint convexity,

DeεpPin,x||Pout,xq ď
1

N

ÿ

DPXinpxq

Deε

¨

˚

˚

˝

P

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

ÿ

D1
PXoutpxq

D1
„D

P 1

˛

‹

‹

‚

ď
1

N

ÿ

DPXinpxq

1

n

ÿ

D1
PXoutpxq

D1
„D

Deε
`

P ||P 1
˘

. (15)



Now,

DeεpP ||P 1q “

ż

max
`

0, qptq ´ eεq1ptq
˘

dt

“

ż

t:qptqěeεq1ptq

rqptq ´ eεq1ptqsdt,

and by (Balle and Wang 2018), we have

DeεpP ||P 1q “ Py„ApDq|D

„

log
ppyq

p1pyq
ą ε

ȷ

´ eεPz„ApD1q|D1

„

log
p1pyq

ppyq
ă ´ε

ȷ

“ Φ

ˆ

}qpDq ´ qpD1q}

2σ
´

εσ

}qpDq ´ qpD1q}

˙

´ eεΦ

ˆ

´
}qpDq ´ qpD1q}

2σ
´

εσ

}qpDq ´ qpD1q}

˙

.

Plugging this identity into the inequality 15 completes the proof.
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