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Abstract

Stochastic and robust optimization of uncertain contact-rich systems is relatively
unexplored. This paper presents a chance-constrained formulation for robust trajec-
tory optimization during manipulation. In particular, we present chance-constrained
optimization of Stochastic Discrete-time Linear Complementarity Systems (SDLCS).
The optimization problem is formulated as a Mixed-Integer Quadratic Program with
Chance Constraints (MIQPCC). In our formulation, we explicitly consider joint chance
constraints for complementarity variables and states to capture the stochastic evolu-
tion of dynamics. Additionally, we demonstrate the use of our proposed approach
for designing a Stochastic Model Predictive Controller (SMPC) with complementarity
constraints for a planar pushing system. We evaluate the robustness of our optimized
trajectories in simulation on several systems. The proposed approach outperforms some
recent approaches for robust trajectory optimization for SDLCS.

Keywords— discrete-time linear complementarity system, stochastic system, chance-constrained
optimization, model predictive control

1 Introduction

Contacts are central to most manipulation problems. Consequently, contact modeling has been an
active area of research in robotics since the last several decades [1, 2, 3, 4, 5, 6]. One of the most
popular approaches to model contact dynamics is using Linear Complementarity Problem (LCP).
The distinguishing feature of a complementarity problem is the set of complementarity conditions.
Each of these conditions requires that the product of two or more non-negative quantities (either
a decision variable, or a function of decision variables) should be zero [7]. Linear Complemen-
tarity Systems have been widely used to succintly represent hybrid dynamical systems [8]. LCP
models are widely used for modeling contact dynamics since they allow a compact representation
of hybrid dynamics compared to mode enumeration. They have been also used in several physics
simulation engines such as Bullet, ODE, etc. Consequently, linear complementarity systems have
been extensively explored in robotics research in various domains like manipulation and locomotion.
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Figure 1: This paper presents chance-constrained optimization for SDLCS. The figure shows the case of
stochastic planar pushing with uncertain dynamics. Note that w and v are additive uncertainty terms. We
show a Mixed Integer Program (MIP)-based stochastic MPC formulation for control of stochastic planar
pushing system.

For example, contact-implicit trajectory optimization (CITO) models contacts as complementarity
constraint between contact forces and relative accelerations, and the optimization is formulated as
a mathematical program with complementarity constraints (MPCC) [9]. Such techniques have been
widely used to solve complex manipulation [10, 11, 12] and locomotion problems [13]. Similarly, Lya-
punov stability of linear systems with complementarity systems has also been studied [14, 15, 16].
However, almost all of these works assume deterministic contact models for planning. In reality,
contact-rich systems could suffer from several uncertainties which lead to stochastic dynamics and
thus, it is important to consider uncertainty during planning. Modeling uncertainty in LCP-based
contact models leads to a Stochastic Discrete-time Linear Complementarity System (SDLCS).

Figure 1 shows an example of a stochastic planar pushing system which naturally leads to
stochastic evolution of system states due to stochastic frictional interaction during pushing. How-
ever, the complementarity constraints in SDLCS pose unique challenges for formulation of robust
or stochastic optimization of SDLCS. This is mostly because of the non-differentiability of the com-
plementarity constraints which makes uncertainty propagation challenging. In some recent works
that consider stochastic complementarity constraints, an expected residual minimization (ERM)-
based [17] penalty is used to solve the robust optimization problem [18]. A major shortcoming
of such an approach is that it fails to capture the stochastic evolution of system dynamics due to
the stochastic complementarity constraint. Similarly, in [19], the authors augment the formulation
in [18] with chance constraints. However, this formulation has certain fundamental shortcomings
which prevent constraint satisfaction guarantees. One should notice that uncertainty naturally leads
to stochastic evolution of system states in SDLCS. A robust optimization formulation for SDLCS
should consider the uncertainty in state evolution. Motivated by these problems and weaknesses,
we present a formulation that circumvents these shortcomings by using a mixed integer formulation.
Using a relaxation of the complementarity constraints, we formulate the chance-constrained opti-
mization for SDLCS as a Mixed Integer Quadratic Program with Chance Constraints (MIQPCC).

Since worst-case robust optimization is quite conservative and does not explicitly discuss stochas-
tic evolution of states [20], this work considers probabilistic optimization with stochastic evolution
of states. We illustrate some challenges in performing principled stochastic optimization for SDLCS.
We introduce some simplifying assumptions which are important in order to formulate a tractable
optimization problem. In particular, we consider the case where the coefficient matrices multiplying
the complementarity variables are stochastic while assuming that the complementarity variables are
deterministic. This corresponds to the case when one might have uncertainty arising from errors
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in parameter identification leading to a SDLCS. An alternative to this, and more accurate formu-
lation, is to allow the complementarity variables to also be stochastic. However, such treatment
is out of the scope of the current work. Our treatment of SDLCS leads to stochastic evolution of
system states, while we treat the complementarity variables as deterministic. The assumption of
determinacy in complementarity variables is similar to several previous works [17], [18], [19], [21].
Robustness to uncertainty is provided by enforcing probabilistic satisfaction of state constraints.
Under certain simplifications, we show that the chance-constrained problem can be reformulated as
a MIQPCC.

Contributions. This paper has the following contributions:

1. We present a novel formulation for chance-constrained optimization of SDLCS.

2. The proposed optimization is used in a stochastic MPC method for control of stochastic
nonlinear complementarity systems.

3. We compare our proposed approach with several previously proposed techniques and demon-
strate that our method outperforms the recent techniques in [18, 19].

An initial version of this paper appeared in a conference [22]. The conference version of the paper
presented the MIQP formulation for robust optimization. The proposed method was demonstrated
on two SDLCS. However, compared to the previously presented work, this work has the following
additional contributions:

1. We have included another system (a dual manipulation system) to demonstrate robustness
to uncertain friction parameters. We present insights regarding some of the key assumptions
made in the proposed formulation.

2. We present a formulation for performing stochastic MPC for stochastic complementarity
systems using the proposed formulation. The proposed MPC formulation is verified using a
stochastic planar pushing system.

This paper is organized as follows. In Section 2, we present some literature which is close
to the proposed work. A problem statement with some required background in Section 3. The
robust trajectory formulation is presented in Section 4. Section 5 shows numerical simulations for
validation of the proposed formulation. Section 6 presents results for the stochastic MPC for planar
pushing problem. Finally, the paper is concluded with some possible future directions in Section 7.

2 Related Work

Our work is closely related to trajectory optimization techniques for contact-rich systems. Contact-
Implicit Trajectory Optimization (CITO) techniques are very popular for performing TO for contact-
rich systems, and several methods have been proposed for manipulation as well as legged locomo-
tion [9, 23]. More recently, these methods have been extended to formulate fast MPC for contact-
rich systems [24]. All the above techniques assume perfect model knowledge and do not consider
uncertainty. Planning with uncertain contact-rich systems is relatively unexplored. This is primar-
ily because it is not clear how to propagate uncertainty through the complementarity system for
planning. Very recently, there has been some work done in this area and we describe them next.

Recent work on robust trajectory optimization in contact-rich systems can be found in [18,
19, 25]. In [18], the authors have utilized the formulation of expected residual minimization
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(ERM) [17] for robust TO. ERM, first introduced in [17] for Stochastic Linear Complementar-
ity Problem (SLCP), aims at minimizing the expected error in satisfying the SLCP. In [18], authors
use ERM as an additional penalty term in their TO problem. However, such a formulation does
not consider the stochastic state evolution of the system during optimization. A chance-constrained
formulation for the stochastic nonlinear complementarity system is presented in [19]. This method
augments the ERM-augmented objective in [18] with additional chance constraints on satisfying
the complementarity constraints. The formulation ignores the stochastic evolution of system state
during optimization, and thus borrows the limitations of [18]. Furthermore, this formulation is
incapable of enforcing a constraint violation probability smaller than 0.5 for any degree of uncer-
tainty. Consequently, this method is very fragile for trajectories with horizon lengths longer than
one (N > 1), as the chance of violating the constraints for such trajectories is 0.5N ≥ 1 [26]. Our
formulation addresses these weaknesses under certain simplifying assumptions for SDLCS. More re-
cently, there has been another work which makes use of particles to perform uncertainty propagation
in SDLCS [27]. However, the resulting optimization could become computationally challenging. In
contrast, this method formulates a computationally efficient method at the cost of some simplifying
assumptions.

Another line of work which is relevant to our proposed work is related to Chance-Constrained
Optimization (CCO). This has been extensively studied in robotics as well as in the optimization
literature [28, 29, 30]. In [28], authors have proposed stochastic optimization formulation for open-
loop collision avoidance problems using chance constraints under Gaussian noise. The authors
in [30] use statistical moments of the distribution to handle non-Gaussian chance constraints. An
important point to note here is that in all CC formulation for dynamic optimization, one needs to
consider the Cumulative Density Function (CDF) function for the joint probability distribution of
all variables. However, such distribution is extremely challenging to compute. Thus, in general, the
joint chance constraint is decomposed into individual chance constraints using Boole’s inequality
(see [28, 30]), which results in very conservative approximation of the individual constraints. We also
utilize Boole’s inequality to convert the original computationally intractable joint chance constraints
into conservative but tractable independent chance constraints.

3 Problem Preliminary

For completeness of the paper, we first provide a brief introduction to linear complementarity prob-
lems and their stochastic form. Then the problem formulation for robust trajectory optimization
of stochastic linear complementarity systems is provided. We also point out several key differ-
ences of our approach w.r.t. previous attempts for robust trajectory optimization of stochastic
complementarity system.

3.1 Discrete-time Linear Complementarity System (DLCS)

A DLCS is a discrete-time linear dynamical system with complementarity constraints [16] repre-
sented by:

xk+1 = Axk +Buk + Cλk+1 + gk (1a)

0 ≤ λk+1 ⊥ Dxk + Euk + Fλk+1 + hk ≥ 0 (1b)

where k is the time-step index, xk ∈ Rnx is the state, uk ∈ Rnu is the control input, and λk ∈ Rnc

is the algebraic variable (e.g., contact forces). The matrices, A,B,C,D,E, F and vectors gk, hk are
of compatible dimensions. The i-th element of vector pk (pk can be xk, uk, λk) is represented as
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pk,i. The i-th diagonal element of matrix Pk is represented as Pk,ii. The notation 0 ≤ a ⊥ b ≥ 0
denotes the complementarity constraints a ≥ 0, b ≥ 0, ab = 0. The variables a and b are known
as complementarity variables. These variables could be decision variables or functions of decision
variables.

Given a pair of state and control values xk, uk, a unique solution λk+1 to (1b) exists if F is
P-matrix [31]. The matrix F is said to be a P-matrix if every principal minor of F is positive. If
F does not satisfy the P-matrix property, it is possible that λk+1 satisfying (1b) is non-unique or
non-existent.

3.2 Contact-Implicit Trajectory Optimization

Trajectory optimization for the DLCS (1) can be formulated as:

min
x,u,λ

N−1∑
k=0

J(xk, uk, λk) (2a)

s.t. xk+1 = Axk +Buk + Cλk+1 + gk, (2b)

0 ≤ λk+1 ⊥ Dxk + Euk + Fλk+1 + hk ≥ 0, (2c)

x0 = xs, xN = xg, xk ∈ X , uk ∈ U , λk ≤ λu (2d)

where xs, xg represent the initial and the terminal values, respectively, X ⊆ Rnx and U ⊆ Rnu

are convex polytopes consisting of a finite number of linear inequality constraints, λu is the upper
bound of λk, andN is the time horizon. This approach is widely known as contact-implicit trajectory
optimization in locmotion and manipulation literature [13, 9, 32].

While (2) is widely used in various robotic applications (see [11, 13]), it can be fragile under
uncertainty, which is often the case in model-based manipulation. It is desirable to consider a robust
version of the optimization problem in (2). However, the non-differentiability of complementarity
constraints pose unique challenges for uncertainty propagation. We present a novel, stochastic
version of (2) so that the resulting trajectory would be robust under uncertainty.

3.3 Stochastic Discrete-time Linear Complementarity Systems (SDLCS)

We consider the following SDLCS:

xk+1 = Axk +Buk + Cλk+1 + gk + wk (3a)

0 ≤ λk+1 ⊥ yk+1 ≥ 0 (3b)

where yk+1 = Dxk+Euk+Fλk+1+hk+vk, and wk ∈ Rnx , vk ∈ Rnc are known additive uncertainties.
The variables yk+1 and λk+1 are the complementarity variables. One should notice that SDLCS
would lead to stochastic evolution of states as well as the complementarity variables. In fact, in
a recent publication [27], authors have shown the stochastic evolution of SDLCS. However, the
resulting distribution of the complementarity variables is quite complex, which makes uncertainty
propagation for SDLCS quite challenging. Thus, we consider the case where the coefficient matrix
C in (3a) and F in (3b) are stochastic while the complementarity variables are deterministic. This
is used as an alternative approach to model the stochastic effect due to complementarity constraints
while admitting a tractable computational approach. Our treatment of SDLCS leads to stochastic
evolution of system states xk, while we treat λk+1 as deterministic. While this assumption is
limiting, we show that we can compute robust trajectories for the underlying system.
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The authors in [18] use ERM to solve robust TO of SDLCS with the following cost function:

N−1∑
k=0

(
J (xk, uk, λk+1) + βE

[
∥ψ (λk+1, yk+1)∥2

])
(4)

where ψ is a Nonlinear Complementarity Problem (NCP) function and β is a weighting scalar. The
NCP function ψ(λk+1, yk+1) has the property that ψ(λk+1, yk+1) = 0 if and only if the complemen-
tarity constraints (3b) hold. An example such a function is min(λk+1, yk+1), where the minimum is
applied componentwise. We compare the robustness of our formulation with (4) in Section 5.

4 Robust Trajectory Optimization for SDLCS

In this section, we present our formulation for robust trajectory optimization of SDLCS. We consider
the following optimization problem:

min
x,u,λ

E

[
N−1∑
k=0

J(xk, uk, λk)

]
(5a)

s.t. xk+1 = Axk +Buk + Cλk+1 + gk + wk, (5b)

Pr (0 ≤ λk+1 ⊥ yk+1 ≥ 0, xk ∈ X , ∀k) ≥ 1−∆, (5c)

x0 ∼ N (xs,Σs) , uk ∈ U , λk ≤ λu (5d)

where Pr(·) denotes the probability associated with an event and ∆ ∈ (0, 0.5] is the user-defined
maximum probability of violating the constraints. (5c) is the joint chance constraint for the state
to lie in the desired set as well as the complementarity constraints at every instant of time. The
quantities xs,Σs are the mean and covariance matrix of the state at k = 0 respectively . X and U
are convex polytopes, consisting of a finite number of linear inequality constraints. We make the
following simplifying assumptions:

1. The noise terms wk, vk follow a Gaussian distribution.

2. The complementarity variable λk+1 is deterministic.

3. Each element of vectors Cλk+1 and Fλk+1 are independent Gaussian variables.

Problem (5) might be intractable with this formulation of the constraints (5c). Therefore, in
Section 4.1, we propose how to convert (5c) in order to obtain a tractable optimization problem. In
Section 4.2 we explain the rationale for the above assumptions as a simplification in order to solve
(5) .

We explain the reasoning behind our formulation presented in (5). Since the underlying SDLCS
is uncertain, we consider a chance-constrained formulation for optimization to capture stochastic
evolution of states where we impose multiple constraints simultaneously. This is represented as
joint chance constraints for the complementarity constraints as well as the states, which is succintly
written in Equation (5c). Note that we represent the chance constraints on all the variables jointly
(as is common in stochastic optimization for dynamic systems) using the cumulative distribution
function (cdf) for the state as well as complementarity variables. In the remainder of this section,
we will show how the joint constraints can be decomposed into individual chance constraints using
Boole’s inequality. It is also important to note that unlike the formulation in (5), the method
in [18, 19, 33] fails to capture the stochastic evolution of states in their formulation.
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4.1 Joint Linear Chance Constraints

We consider joint chance constraint such that multiple constraints are satisfied simultaneously with
a pre-specified probability. More specifically, we consider the joint chance constraints (5c) so that
the complementarity constraints and state bound constraints over the whole time horizon of the
optimized trajectory are satisfied with probability (1−∆). We succintly denote the complementarity
relationship in (3b) as (λk+1,i, yk+1,i) ∈ S for i = 1, . . . , nc, i.e. (λk+1,i, yk+1,i) satisfies (3b) if and
only if (λk+1,i, yk+1,i) ∈ S. Hence, we can rewrite the joint chance constraints in the optimization
problem (5) as:

Pr (0 ≤ λk+1 ⊥ yk+1 ≥ 0, xk ∈ X ,∀k) ≥ 1−∆ ⇐⇒

Pr

(
N∧
k=0

(
nc∧
i=1

(λk+1,i, yk+1,i) ∈ S

)∧(
L∧
l=1

a⊤l xk ≤ bl

))
≥ 1−∆

(6)

where
∧

is the logical AND operator. The parameter L represents the number of inequalities
modeling X and al ∈ Rnx is the coefficient vector and bl represents the right-hand side of the
inequality.

Obtaining a cumulative density function (cdf) of (6) is challenging because the joint probabil-
ity of states and complementarity variables is considered. A popular approach to decompose joint
chance constraints is the application of Boole’s inequality [26] which converts the original compu-
tationally intractable joint chance constraints into conservative but tractable independent chance
constraints. Hence, similar to previous works, we use Boole’s inequality [26] to get the conservative
approximation of (6) as follows:

Pr

(
N∧
k=0

(
nc∧
i=1

(λk+1,i, yk+1,i) ∈ S

))
≥ 1−∆1,

Pr

(
N∧
k=0

(
L∧
l=1

a⊤l xk ≤ bl

))
≥ 1−∆2,∆1 = ∆2 =

∆

2

(7)

Using Boole’s inequality again, we can further obtain the conservative chance constraints given by:

Pr ((λk+1,i, yk+1,i) ∈ S) ≥ 1− ∆1

Nnc
, (8a)

Pr
(
a⊤l xk ≤ bl

)
≥ 1− ∆2

NL
, (8b)

We discuss how to handle (8a) in Section 4.2. We formulate (8b) as its equivalent deterministic
form (see [29, 34, 35]):

Pr
(
a⊤l xk ≤ bl

)
≥ 1− ∆2

NL
⇐⇒ (9a)

a⊤l x̄k ≤ bl −
√
a⊤l Σxk

alΦ
−1(1− ∆2

NL
) (9b)

where x̄k,Σxk
are the mean and covariance matrix of xk, respectively. Φ

−1 is an inverse of the cdf
of the standard normal distribution.
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Figure 2: Deterministic and stochastic complementarity constraints. We have the complementarity con-
straints 0 ≤ λk+1,i ⊥ yk+1,i ≥ 0 where yk+1,i has uncertainty and accepts the violation of ϵ.

4.2 Chance Complementarity Constraints (CCC) for SDLCS

We explain the rationale behind some of the assumptions specified in Section 4. One of the key
assumptions is that the complementarity variable λk+1 is deterministic. A more general formu-
lation would allow the complementarity variable λk+1 to be stochastic. Indeed, in our previous
work [27], we have shown that the complementarity variable λk+1 is in fact stochastic. One should
notice, however, that the complementarity constraints naturally leads to truncated distribution of
the complementarity variables (as λk+1 ≥ 0). This makes uncertainty propagation for comple-
mentarity variables challenging. This could potentially make the stochastic optimization problem
computationally challenging (see [27]). Thus, in this work, we make the assumption that λk+1 is
deterministic, which improves the computational requirements for the resulting optimization prob-
lem. Furthermore, we believe that allowing C and F to be stochastic can model a similar effect
to having λk+1 stochastic in the SDLCS. Finally, note that in cases where the distribution of λk+1

is known, our proposed formulation can be easily extended to incorporate stochasticity in λk+1.
However, for brevity, we skip these details. Assuming the uncertainty to be Gaussian is motivated
by our interest in leveraging the equivalent reformulation of the chance constraints to deterministic
inequalities.

While [19] proposed a promising CCC, their formulation possesses empty solutions when ∆ ≤ 0.5
(see [19]). The formulation in [19] can result in a very fragile trajectory since the total violation
probability over N steps would be always more than 1 if N ≥ 1 (using Boole’s inequality). Since
the optimization is formulated as a Non-Linear Program (NLP), all the CCC are imposed simulta-
neously. Consequently, the resulting formulation struggles to find feasible solutions.

In our formulation, the stochastic complementarity constraints are decomposed into two modes
(see Fig. 2) as follows:

Pr ((λk+1,i, yk+1,i) ∈ S) ≥ 1− θ (10a)

⇐⇒ Pr

(
(λk+1,i ≥ 0, yk+1,i = 0)∨
(λk+1,i = 0, yk+1,i ≥ 0)

)
≥ 1− θ (10b)

⇐⇒

{
λk+1,i ≥ 0,Pr (yk+1,i = 0) ≥ 1− θ

or λk+1,i = 0,Pr (yk+1,i ≥ 0) ≥ 1− θ
(10c)

where θ = ∆1
Nnc

and
∨

denotes the logical OR. Note that now yk+1 ∼ N
(
ȳk+1,Σyk+1

)
. To obtain

lower violation probabilities, we propose an Mixed Integer Programming (MIP) framework. First,
we propose the following CCC:

zk,i,0 = 1,=⇒ λk+1,i ≥ 0,Pr (yk+1,i = 0) ≥ 1− θ, (11a)

zk,i,1 = 1,=⇒ λk+1,i = 0,Pr (yk+1,i ≥ 0) ≥ 1− θ (11b)
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where zk,i,0, zk,i,1 denote the binary variables to represent the two modes which satisfies zk,i,0 +
zk,i,1 = 1 for i-th complementarity constraint at instant k.

However, Pr (yk+1,i = 0) is zero (as the probability measure for singleton sets is zero) so that
we cannot directly use (11). To alleviate this issue while avoiding negative values for λ, we propose
the following CCC using a relaxation for complementarity constraints (see Fig. 2):

zk,i,0 = 1,=⇒ λk+1,i ≥ 0,Pr (0 ≤ yk+1,i ≤ ϵ) ≥ 1− θ, (12a)

zk,i,1 = 1,=⇒ λk+1,i = 0,Pr (yk+1,i ≥ ϵ) ≥ 1− θ (12b)

where ϵ > 0 is the acceptable violation in the complementarity constraints.
We have two-sided linear chance constraints in (12a). We decompose (12a) as two one-sided

chance constraints so that we can use the same reformulation as in (9). Note that each one-sided
chance constraints, obtained from the two-sided chance constraint, are formulated with a maximum
violation probability of θ

2 .
Since we have integer constraints, MIP can impose individual constraints for each mode sep-

arately. This allows to derive a lower bound for θ as function of ϵ, ȳk+1,i, and Σyk+1,ii, which is
presented in Lemma 4.1. On the other hand, the NLP formulation imposes all mode constraints
jointly (see [19]). Consequently, the NLP formulation achieves a higher bound for θ. We provide
arguments describing the advantage of our approach over the NLP approach in Remark 1.

Lemma 4.1. Suppose the CCC are formulated as (12) and ϵ, ȳk+1,i, and Σyk+1,ii are specified.
Then (i) (12a) is feasible for all θ > 2(1 − Φ( ϵ

2Σyk+1,ii
)) and (ii) (12b) is feasible for all θ >

1− Φ
(
(ȳk+1,i − ϵ)/Σyk+1ii

)
.

Proof. Consider case (i): From (9b) and (12a), the two-side chance constraints in (12a) are con-
verted to their deterministic forms which are given as: Σyk+1,iiΦ

−1 (1− θ/2) ≤ ȳk+1,i ≤ ϵ −
Σyk+1,iiΦ

−1 (1− θ/2). To have a nonempty solution, we must have ϵ − 2Σyk+1,iiΦ
−1 (1− θ/2) > 0.

Simplifying this equation, we obtain the bound specified in (i). Consider case (ii): From (9b) and
(12b), the one-side chance constraints in (12b) are converted as: ȳk+1,i ≥ ϵ + Σyk+1,iiΦ

−1 (1− θ).
Simplifying this equation, we obtain the bound specified in (ii).

Remark 4.1. From Lemma 4.1, it is easy to show that θ < 1
2 if ϵ

2Σyk+1,ii
> Φ−1(34) for case (i), and

if (ȳk+1,i − ϵ)/Σyk+1ii > Φ−1(12) for case (ii). In contrast, the formulation in [19] cannot enforce
the chance constraints for any θ < 0.5.

The evolution of the mean of the states in SDLCS is described by the following equations:

x̄k+1 = Ax̄k +Buk + Cλk+1 + gk + w̄k, (13a)

Σxk+1
= AΣxk

A⊤ +ΣCλk+1
+W (13b)

where W represents the noise covariance matrix and Cλk+1 represents a mean of Cλk+1, and

ΣCλk+1
= E

[(
Cλk+1 − Cλk+1

) (
Cλk+1 − Cλk+1

)⊤]
is a diagonal matrix because of the indepen-

dence of random variables.
The mean and variance of yk in SDLCS is described by the following equations:

ȳk = Dx̄k + Euk + Fλk+1 + hk + v̄k, (14a)

Σyk = DΣxk
D⊤ +ΣFλk+1

+ V (14b)

where V represents the noise covariance matrix from vk and Fλk+1 represents a mean of Fλk+1,

and ΣFλk+1
= E

[(
Fλk+1 − Fλk+1

) (
Fλk+1 − Fλk+1

)⊤]
is a diagonal matrix because of the inde-

pendence of random variables.
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4.3 Mixed-Integer Quadratic Programming with Chance Constraints
(MIQPCC)

In this section, we present our MIQPCC formulation to solve (5). The proposed CCC could be
imposed in either an MIP or an NLP framework. However, our MIP-based method solves disjunctive
inequalities while NLP needs to impose all CCC simultaneously, which yields an empty solution for
∆ ≤ 0.5. For this reason we do not consider an NLP framework.

The proposed MIQPCC is formulated as follows:

min
x,u,λ,z

N−1∑
k=0

x̄⊤k Qx̄k + u⊤k Ruk (15a)

s. t. x̄k+1 = Ax̄k +Buk + Cλk+1 + gk + w̄k, (15b)

Σxk+1
= AΣxk

A⊤ +Σw,Cλk+1
+W, (15c)

x0 ∼ N (xs,Σs) , uk ∈ U , λk ≤ λu, (15d)

a⊤l x̄k ≤ bl − ακ, (15e)

zk,i,0 + zk,i,1 = 1, (15f)

0 ≤ λk+1,i ≤Mzk,i,0, (15g)

ζψzi,k,0 + (ϵ+ ηψ)zk,i,1 ≤ ȳk+1,i (15h)

ȳk+1,i ≤ (ϵ− ζψ)zk,i,0 +Mzk,i,1, (15i)

where Q = Q⊤ ≥ 0, R = R⊤ > 0, α = Φ−1(1 − ∆
2NL), ζ = Φ−1(1 − ∆

4Nnc
), η = Φ−1(1 − ∆

2Nnc
), κ =√

a⊤l Σxk
al, ψ =

√
Σyk+1,ii

. zk,i,0, zk,i,1 are the binary decision variables for the i-th complementarity

constraint at k to represent mode 1, 2, respectively. Using these binary variables, we employ big-M
formulation to deal with disjunctive inequalities in our CCC. The parameter M is a valid upper
bound for λk, yk.

4.4 Stochastic Model Predictive Control (SMPC) with Comple-
mentarity Constraints

Model Predictive Control (MPC) is very popular and well understood for control of smooth dynam-
ical systems. However, it remains mostly unexplored for complementarity systems and stochastic
complementarity systems. Using our proposed MIQPCC, we present a stochastic MPC method
for uncertain contact systems. More formally, we present a formulation to implement SMPC for
stochastic non-linear complementarity system (SNCS) where the dynamics equation is represented
as:

xk+1 = f(xk, uk, λk+1) + wk (16a)

0 ≤ λk+1 ⊥ yk+1 ≥ 0 (16b)

where f(xk, uk, λk+1) is nonlinear dynamics. The goal is to find a control sequence to track a
reference state trajectory for the SNCS. We first create the reference trajectory x∗, u∗, λ∗, y∗ by
solving the optimization with deterministic complementarity constraints (no chance constraints)
using Mathematical Program with Complementarity Constraints (MPCC) [9]. Then, we linearize
the dynamics along the reference trajectory which is used for uncertainty propagation.

10



The modified MIQPCC for SMPC is given by:

min
x,u,λ,z

xe⊤N QNx
e
N +

N−1∑
k=0

xe⊤k Qxek + ue⊤k Ruek (17a)

s.t.xek+1 = Axek +Buek + Cλek+1 + w̄k, (17b)

(15c), (15e), (15f), (17c)

x0 ∼ N (xs,Σs) , u
e
k + u∗k ∈ U , λek + λ∗k ≤ λu, (17d)

0 ≤ λek+1,i + λ∗k+1,i ≤Mzk,i,0 (17e)

ζψzi,k,0 + (ϵ+ ηψ)zk,i,1 ≤ yek+1,i + y∗k+1,i (17f)

yek+1,i + y∗k+1,i ≤ (ϵ− ζψ)zk,i,0 +Mzk,i,1 (17g)

where xe = x̄−x∗, ue = u−u∗, λe = λ−λ∗, ye = ȳ−y∗, A = ∂f(x,u,λ)
∂x

∣∣∣
x∗,u∗,λ∗

, B = ∂f(x,u,λ)
∂u

∣∣∣
x∗,u∗,λ∗

, C =

∂f(x,u,λ)
∂λ

∣∣∣
x∗,u∗,λ∗

. It is worth pointing out that this formulation does not fix or penalize the discrete

mode sequence. (17e) means that λk+1,i ≥ 0 if zk,i,0 = 1 and λk+1,i = 0 if zk,i,1 = 1. Thus, (17e)
allows deviation from the reference discrete mode sequence while satisfying complemenatarity con-
straints. Therefore, the controller may change the mode sequence from the reference. In prior work,
Hogan et al. [36] proposed a similar MIQP formulation. However, they penalize deviation from the
reference mode sequence which might be infeasible for a number of cases (due to state and control
bounds). Additionally, it does not consider stochastic dynamics and complementarity constraints
during control.

5 Numerical Simulations

We validate our proposed method using three benchmark DLCS which are shown in Fig. 3. See [15]
for more details of these three benchmarks. Through the numerical experiments performed in the
paper, we answer the following questions:

1. Can our proposed optimization generate robust open-loop trajectories?

2. Can our proposed formulation satisfy the probabilistic constraints imposed during optimiza-
tion?

3. How does the proposed method compare against the previous methods for robust optimization
in SDLCS?

5.1 Implementation Details

The proposed method is implemented in Python. We use Gurobi [37] to solve the proposed
MIQPCC, and PyRoboCOP [9, 38] to solve the MPCC arising from the ERM-based method in
[18] and the CCC method in [19]. The examples are implemented on a computer with Intel i7-
12800H processor.

We verify the robustness of open-loop trajectories obtained from our proposed optimization using
Monte Carlo simulations. To simulate SDLCS with a given control input, we use MINPACK [39] to
solve the nonlinear complementarity problem that arises at each time-step in order to simulate the
system. The noise term is sampled from the distribution which was used during optimization. We

11



(a) Cartpole with softwalls (b) Sliding box (c) Dual manipulation.

Figure 3: Problems described in Section 5.

simulate each control trajectory for 1000 times to estimate the probability of constraint violation
for the proposed as well as the baseline methods.

For notation simplicity, we present the continuous-time dynamics for all the test systems. We
discretize continuous-time dynamics into discrete-time dynamics using the explicit Euler method
with sample time dt = 0.033. We denote x0,Σ0 as the mean and covariance matrix at k = 0 for
states of systems, respectively.

5.2 Example Details

5.2.1 Cartpole with Softwalls

The continuous-time dynamics with complementarity constraints for the cartpole with softwalls (see
Fig. 3a) is as follows:

ẋ1 = x3, ẋ2 = x4, ẋ3 = g
mp

mc
x2 +

1

mc
u1, (18a)

ẋ4 =
g (mc +mp)

lmc
x2 +

1

lmc
u1 +

λ1
lmp

− λ2
lmp

, (18b)

0 ≤ λ1 ⊥ lx2 − x1 +
1

k1
λ1 + d ≥ 0, (18c)

0 ≤ λ2 ⊥ x1 − lx2 +
1

k2
λ2 + d ≥ 0 (18d)

where x1 is the cart position, x2 is the pole angle, the x3 and x4 are their derivatives. u1 is
the control and λ1, λ2 are the reaction forces at from the wall 1, 2, respectively. We consider the
additive noise w, the zero-mean i.i.d. Gaussian noise which standard deviation is 2 × 10−4, to
x1,k, x2,k. k1 = 10, k2 = 10 are the stiffness of walls 1 and 2, respectively. In this example, we
assume that the uncertainty also arises from the 1

k1
, 1
k2

which standard deviations are 10−5. We
denote by g = 9.81 is the gravitational acceleration, and by mp = 0.1,mc = 1.0 denote the mass of
the pole, cart, respectively. Further, l = 0.5 is the length of the pole and d = 0.15 is the distance
from the origin of the coordinate to the walls.

The optimization setup is as follows: N = 20,M = 100, Q = diag(0, 0, 0, 0), R = 0.01, ϵ =
0.002, x0 = [−0.15, 0, 0, 0]⊤,Σ0 = diag(0, 0, 0, 0). We also impose the following chance constraints:
Pr(x1,k ≤ 0.05) ≥ 1− ∆

4N ,Pr(x2,k ≤ 0.15) ≥ 1− ∆
4N ,∀k = 0, . . . , N − 1, Pr(−0.02 ≤ x1,N ≤ 0.02) ≥

1− ∆
4N ,Pr(−0.04 ≤ x2,N ≤ 0.04) ≥ 1− ∆

4N .
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5.2.2 Sliding Box with Friction

The continuous-time quasi-static dynamics with complementarity constraints for sliding box with
Coulomb friction (see Fig. 3b) is as follows:

ẋ1 = x2, αẋ1 = u+ λ+ − λ−, (19a)

0 ≤ γ ⊥ µmg − λ+ − λ− ≥ 0, (19b)

0 ≤ λ+ ⊥ γ + u+ λ+ − λ− ≥ 0, (19c)

0 ≤ λ− ⊥ γ − u− λ+ + λ− ≥ 0 (19d)

where x1 is the box position and x2 is the box velocity. u is the control input and λ+, λ− are the
positive and negative components of the friction force, respectively. γ is the slack variable. α = 4 is
the damping constant, m = 1 is the mass of the box, and µ = 0.1 is the coefficient of friction. We
consider additive i.i.d. Gaussian noise w in the dynamics equation as x1,k+1 = x1,k + x2,kdt + w.
The standard deviation of w is 4×10−4. g = 9.81 is the gravitational acceleration. We assume that
the coefficient of friction, µ, is also uncertain and standard deviation for µ is 10−5.

The optimization setup is as follows: N = 20,M = 100, Q = diag(0, 0, 0, 0), R = 0.01, ϵ =
0.01, x0 = [1,−1]⊤,Σ0 = diag(0, 0). We also impose the following chance constraints: Pr(x1,k ≥
0.885) ≥ 1 − ∆

2N ,∀k = 0, . . . , N − 1, Pr(0.89 ≤ x1,N ≤ 0.91) ≥ 1 − ∆
2N ,Pr(−0.1 ≤ x2,N ≤ 0.1) ≥

1− ∆
2N .

5.2.3 Dual Manipulator System

We consider the example where a box is manipulated on a planar surface with Coulomb friction
and contact forces from two manipulators (see Fig. 3c). The continuous-time quasi-static dynamics
is as follows:

ẋ1 = x2, αẋ1 = λ1 − λ2 + λ+ − λ−,

ẋ3 = x4, ẋ4 = u1, ẋ5 = x6, ẋ6 = u2,

0 ≤ λ1 ⊥ x1 − x3 +
1

k
λ1 ≥ 0,

0 ≤ λ2 ⊥ x5 − x1 +
1

k
λ2 ≥ 0,

0 ≤ γ ⊥ µmg − λ+ − λ− ≥ 0,

0 ≤ λ+ ⊥ γ + λ1 − λ2 + λ+ − λ− ≥ 0,

0 ≤ λ− ⊥ γ − λ1 + λ2 − λ+ + λ− ≥ 0

(20)

x1, x3, x5 are the positions of the box, the left arm, the right arm, respectively and x2, x4, x6 are
their derivatives. u1, u2 represent the controls of the left and the right arm, respectively. λ+, λ−
are the positive and negative component of the friction force, respectively. γ is the slack variable.
λ1, λ2 are the contact forces from the left arm and the right arm, respectively. We set g = 9.81,
m = 1, k = 100, µ = 0.1. We discretize the dynamics (20) with dt = 0.033. As in the previous
systems, we the zero-mean i.i.d. Gaussian noise w with standard deviation 0.0002 to the dynamics,
x1,k+1 = x1,k + x2,kdt+ w. The standard deviation of µ and 1

k are 0.0001.
The optimization setup in this example is as follows: N = 20,M = 50, Q = diag(0, 0, 0, 0, 0, 0), R =

diag(1, 1), ϵ = 0.0042, x0 = [0.1,−1.1, 0, 0, 0.1, 0]⊤, Σ0 = diag(0, 0, 0, 0, 0, 0). We impose the follow-
ing chance constraints: Pr(x1,k ≥ −0.17) ≥ 1− ∆

2N ,∀k = 0, . . . , N − 1, Pr(−0.01 ≤ x1,N ≤ 0.01) ≥
1− ∆

2N .
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(a) Trajectories of x1. (b) Trajectories of x2. (c) Trajectories of u1. (d) Control cost

Figure 4: Results with different ∆ for the cartpole with softwalls system. First, the cart moves in the
negative direction to utilize the contact force λ2 because the control input is bounded. Once the cart obtains
enough λ2, the cart is accelerated in the positive direction. We can observe the effect of our proposed chance
constraints in particular around t ∈ [0, 0.1] and t ∈ [0.4, 0.5]. When t ∈ [0, 0.1], the mode changes from the
”contact on the wall 2” to the ”no contact” and the cart tries to be far from wall 2 to satisfy the CCC. When
t ∈ [0.4, 0.5], the trajectories are farther away from x1 = 0.05 and x2 = 0.15 as ∆ decreases.

Remark 5.1. It is noted that the proposed method can be used for robust optimization as long as
the dynamics is linear. In the presence of non-linear dynamics, uncertainty propagation becomes
more challenging and it can not be modeled by the current framework. The uncertainty in SDLCS
can arise from various sources like parametric uncertainty (e.g., coefficient of friction, uncertain
stiffness coefficients, etc.). As long as the underlying dynamics can be modeled as a SDLCS, the
proposed formulation could be used for robust optimization.

5.3 Robustness of Open-Loop Trajectories

The optimized control and state trajectories for the three systems using our proposed method are
shown in Fig. 4-Fig. 6. Overall, these figures show that the optimal state trajectories move further
away from the bound specified in the chance constraints as the violation probability decreases (see
the state constraints specified in Section 5.2). For instance, Fig. 4a shows that the computed
trajectories move further away from x = 0.05 as ∆ decreases (note that Pr(x1,k ≤ 0.05) ≥ 1 − ∆

4N
is the chance constraint specified for optimization, see Section 5.2). We observe the same behavior
for the other systems too in Fig. 5 and Fig. 6. In addition, these figures illustrate that the control
costs increase as ∆ decreases. This illustrates the trade-off between safety and cost.

Remark 5.2. At this point, we would like to discuss the magnitude of uncertainty we consider
in these problems. Compared to other stochastic optimal control works [28, 29], the uncertainty
in these problems is relatively smaller. There are several reasons why we need to have a smaller
uncertainty. Note that as we have explained in Section 3, our approach satisfies joint constraints
on multiple constraints together. First, our formulation has chance complementarity constraints
in addition to chance constraints on states, which are commonly used. Our formulation has more
number of chance constraints, and consequently, the lower uncertainty is required because of the
conservative approximation of Boole’s inequality to resolve joint chance constraints into individual
constraints as explained in Section 4.1, and Section 4.2. Second, we need to have a small ϵ to avoid
large violation of complementarity constraints, which requires small uncertainty. Finally, we would
like to emphasize that allowing larger uncertainties requires either better resolution of joint chance
constraints or covariance steering approaches [29, 27], which is out of scope for the current study.
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(a) Trajectories of x. (b) Trajectories of u.

Figure 5: Results with different ∆ for the sliding box with friction example. First, the box is accelerated
in the positive direction. Then, the control decreases with time to regulate the box around the origin by
employing friction forces. We can observe the effect of our proposed chance constraints in particular around
t ∈ [0.2, 0.3] where the trajectories are farther away from x = 0.88 as ∆ decreases.

(a) Trajectories of x1. (b) State x1 around t ∈ [0.2, 0.3] (c) Control cost with different ∆.

Figure 6: Results with dual manipulation. First, the box is pushed by the right arm in the negative direction.
Next, the left arm regulates the box to the origin. In particular, around t ∈ [0.2, 0.3] s, the trajectories are
farther away from x1 = −0.17 m as ∆ decreases.
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Table 1: Comparison of the constraint violation probability specified in the different optimization problems
against the observed constraint probabililty obtained from simulation of the “cartpole with softwalls” over
1000 samples. In the table, ∆ represents the constraint violation probability for our approach, β for the
ERM-based approach in [18], and the ∆z is for the CCC method in [19].

∆ = 0.5 ∆ = 0.2 ∆ = 0.1 ∆ = 0.02
Obtained ∆ (Ours) 0.190 0.147 0.085 0.020

β = 103 β = 104 β = 105 ∆z = 0.5
Obtained ∆ (ERM) 0.75 1.0 1.0 -
Obtained ∆ (CCC) - - - 0.91

Table 2: Comparison of the constraint violation probability specified in the different optimization problems
against the observed constraint probabililty obtained from simulation of the “a sliding box with friction”
over 1000 samples. In the table, ∆ represents the constraint violation probability for our approach, β for the
ERM-based approach in [18], and the ∆z is for the CCC method in [19].

∆ = 0.5 ∆ = 0.1 ∆ = 0.01 ∆ = 0.002
Obtained ∆ (Ours) 0.080 0.051 0.027 0.010

β = 103 β = 104 β = 105 ∆z = 0.5
Obtained ∆ (ERM) 1.0 1.0 1.0 -
Obtained ∆ (CCC) - - - 0.91

5.4 Monte Carlo Simulation Results

Table 1-Table 3 present the comparison of constraint violation for the proposed method and the
baseline methods proposed in [18] and [19] using Monte Carlo simulation. We compute the empirical
constraint violation for all the three problems with different values of ∆. We run the ERM method
in [18] with different objective weights β and the CCC [19] with violation probability ∆z = 0.5 (as
discussed in the original paper). The parameter β was chosen so that the magnitude of the ERM
cost is of similar order as the other costs in the objective. Since in the original work in [18] and
[19], the authors had only considered the terminal constraint violation, we only measure the failure
of these methods for violation of the terminal constraint. For the proposed method, we measure
the constraint violations which was specified in Section 5.2.

Table 3: Comparison of the constraint violation probability specified in the different optimization problems
against the observed constraint probabililty obtained from simulation of the “dual manipulation” over 1000
samples. In the table, ∆ represents the constraint violation probability for our approach, β for the ERM-based
approach in [18], and the ∆z is for the CCC method in [19].

∆ = 0.5 ∆ = 0.4 ∆ = 0.3 ∆ = 0.2
Obtained ∆ (Ours) 0.419 0.317 0.257 0.217

β = 103 β = 104 β = 105 ∆z = 0.5
Obtained ∆ (ERM) 1.0 1.0 1.0 -
Obtained ∆ (CCC) - - - 1.0

Table 1 shows that the proposed method outperforms both the baseline methods for the cartpole
with softwalls system. The controller based on the ERM method in [18] achieves 100% constraint
violation with β = 104, 105. With β = 103, the ERM results are comparatively better. One should
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Figure 7: Simulated trajectories of x2 of the cartpole example over 1000 samples with ∆ = 0.5 for the left
column and with ∆ = 0.02 for the right column. The bottom row enlarges the top row figures around the
area where the chance constraints effect is observed. The red line shows the 99.9 % confidence interval.

notice that higher weight of the ERM in the objective function results in more fragile trajectories
since the state constraints are always violated. This indicates that the ERM-based objective is
not able to capture the robustness in the state trajectories of SDLCS. The CCC in [19] could also
show relatively good violation probability compared to the ERM-based method with β = 104 and
β = 105 but shows the worse violation probability compared to our method with ∆ = 0.5 and the
ERM with β = 103.

Table 2 shows similar results for the sliding box system for the proposed method. However,
we observe that the controller can not satisfy the constraints for the cases with ∆ = 0.01, 0.002.
There could be several reasons that contribute to the violation of the chance constraints. Unlike
the cartpole example, F is not a P matrix for the sliding box system (see Section 5.2) so we can
get the multiple solutions for the complementarity variable λ. Also, even though ϵ is small, it is
not zero so the actual trajectory in the simulator cannot be exactly the same as the trajectory from
the optimization even in the absence of noise. While we can ignore these effects with relatively
large ∆, we cannot ignore these effects anymore with the small ∆. We believe some of these effects
lead to some constraint violation observed for this system. Although the proposed method could
not satisfy chance constraints for all ∆ in this example, our method achieves much lower violation
probabilities compared to the ERM in [18] and the CCC in [19]. Table 3 shows that we obtain
similar results for the dual manipulator system as for the sliding-box example.

Fig. 7 and Fig. 8 show that our proposed planner could successfully drive the system to the goal
state. We also observe that with decreasing ∆, the system trajectories move further away from state
set boundaries to satisfy tighter chance constraints. For Fig. 9, while the majority of the sampled
trajectories converge to the specified terminal constraints, some of them clearly converged to other
states. This result also shows that the true distribution of the uncertainty for the SDLCS is not
Gaussian.

5.5 Computation Results

We show computational time for the proposed method in Table 4. We observe that the compute
time for our method increases as the number of integer variables increase. This is expected since we
use mixed-integer programming. We also added the computational results for the ERM-based and
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Figure 8: Simulated trajectories of x of sliding box with friction example over 1000 samples with ∆ = 0.5
for the left column and with ∆ = 0.002 for the right column. The bottom row enlarges the top row figures
around the area where the chance constraints effect is observed. The red line shows the 99 % confidence
interval.

Figure 9: Simulated trajectories of x1 over 1000 samples with ∆ = 0.2 for dual manipulation. The right
figure shows the enlarged figure of the left figure. The red line shows the 99 % confidence interval.

the CCC method in Table 5. Similar to our method, both the ERM-based method and the CCC
method incur larger computation time as the number of constraints and variables increase.

5.6 Discussion of Assumptions

In this section, we will provide empirical justification for the assumptions described in Section 3
that we made on the stochasticity of the matrices C,F and the determinism of the complementarity
variable λk+1. Consider the cartpole system. Figure 10 plots simulated trajectories of the cartpole
system for different realizations of the uncertain parameters. In performing the simulations, we
simply sample the uncertainty in the spring constants and forward simulate the DLCS using the
computed optimal controls obtained from our proposed optimization in (15). The subplots in 10a-
10b plot the pole angle x2 and the reaction force λ2 for low value of uncertainty variance of 10−6

in the spring constants. The remaining plots 10c-10d and 10e-10f plot the same trajectories for
larger uncertainty variances of 10−4 and 5 · 10−4 respectively. In this specific scenario, x1 and λ1
trajectories are not shown since they do not show significant variation in the simulations. From
these plots, we can observe that the simulated state trajectories x2 (as light grey lines for sampling
of uncertainty) are largely concentrated around the optimal trajectory of x2 (blue line) computed
from our proposed optimization approach (15). The main objective of the chance constraints is
to control the state trajectories within prescribed limits. Our assumptions yield controls that
precisely control the states as desired. The contact forces λ2, in contrast to our assumption, are not

18



Table 4: Computation time of our method. nC , nI , nconstraints show the number of continuous variables, the
number of integer variables, and the number of total constraints, respectively, for each problem.

nC nI nconstraints runtime [s]
Cartpole with softwalls (Ours) 348 80 512 0.023

Sliding box (Ours) 220 120 624 1.95
Dual manipulation (Ours) 720 300 1632 8.29
Planar pushing (Ours) 148 40 270 0.009

Table 5: Computation time of other methods. nvariables and nconstraints show the total number of variables
and the number of total constraints, respectively, for each problem.

nvariables nconstraints runtime [s]
Cartpole with softwalls (ERM) 416 400 0.319
Cartpole with softwalls (CCC) 1178 1160 2.42

Sliding box (ERM) 437 420 0.281
Sliding box (CCC) 1328 1310 2.90

Dual manipulation (ERM) 737 720 0.701
Dual manipulation (CCC) 1468 1450 8.01

necessarily deterministic. However, our approach is able to capture the uncertainty propagation in
the states and effectively contain the variance as desired. We have observed a similar behavior in
the other systems considered in this paper. We believe a more rigorous theoretical justification can
be provided and we will investigate this in a future work.

6 SMPC for Planar Pushing

In this section, we verify our proposed SMPC algorithm for contact-rich system can track a ref-
erence trajectory with probabilistic guarantees and outperform a deterministic MPC method. We
demonstrate the proposed method for a stochastic pusher-slider system.

6.1 Planar Pushing

The frictional interaction between the pusher and slider leads to a linear complementarity system
which we describe next. The pusher interacts with the slider by exerting forces in the normal and
tangential directions denoted by f−→n , f−→t (as shown in Figure 11) as well as a torque τ about the
center of the mass of the object. Assuming quasi-static interaction, the limit surface [40] defines an
invertible relationship between applied wrench w and the twist of the slider t. The applied wrench
w causes the object to move in a perpendicular direction to the limit surface H(w). Consequently,
the object twist in body frame is given by t = ∇H(w), where the applied wrench w = [f−→n , f−→t , τ ]

could be written as w = JT (−→n f−→n +
−→
t f−→

t
). For the contact configuration shown in Figure 11, the

normal and tangential unit vectors are given by −→n = [1 0]T and
−→
t = [0 1]T . The Jacobian J is

given by J =

[
1 0 −py
0 1 px

]
.

The dynamics of the pusher-slider system is given by

ẋ = f(x,u) =
[
Rt ṗy

]⊤
(21)
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(a) (b) (c)

(d) (e) (f)

Figure 10: Trajectories for the stochastic cartpole system obtained by using 1000 samples for the uncertain
parameters while the control input is set to that computed using our proposed optimization (15) where the
uncertainty values correspond to those used in Section 5.2.1. (a): simulated trajectories of x2 with uncertain
1
k1
, 1
k2

for which standard deviations are 10−6. (b): the simulated force trajectories of λ2 corresponding to

(a). (c): simulated trajectories of x2 with uncertain 1
k1
, 1
k2

which standard deviations are 10−4. (d): the

simulated force trajectories of λ2 corresponding to (c). (e): simulated trajectories of x2 with uncertain 1
k1
, 1
k2

which standard deviations are 5 ∗ 10−4. (f): the simulated force trajectories of λ2 corresponding to (e). We
rollout dynamics with the control input u which was computed (15), the blue lines show the optimal x2, λ2
and the rollouts are shown in grey.
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Figure 11: A schematic of a planar pusher-slider system. State of the system is [x, y, θ, py]
⊤ assuming that

the pusher only comes in contact with the left edge as shown in the figure.

where R is the rotation matrix. The twist t can be obtained using an approximate limit surface [40]
for quasi-static pushing. Since the wrench applied on the system depends of the point of contact
of pusher and slider, the state of the system is given by x = [x y θ py]

⊤ and the input is given
by u = [f−→n f−→

t
ṗy]

⊤. The elements of the input vector must follow the laws of coulomb friction
which can be expressed as complementarity conditions as follows:

0 ≤ ṗy+ ⊥ µpf−→n − f−→
t
≥ 0

0 ≤ ṗy− ⊥ µpf−→n + f−→
t
≥ 0

(22)

where ṗy = ṗy+ − ṗy− and the µp is the coefficient of friction between the pusher and the slider.
The world frame and the body frame of reference are denoted by Fw and Fb respectively. The

uncertainty in the friction cone is approximately represented by the shaded region in the friction
cone. We use a modified version of (17) to solve SMPC for planar pusher-slider system. We use
0 ≤ uek,i + u∗k,i ≤ Mzk,i,0 instead of (17e) because we have stochastic complementarity constraints
on u, not on λ. We use the following hyper parameters: µ = 0.3,m = 1.0. We use dt = 0.1 to
discretize the dynamics and set N = 10,M = 20. We add uncertainty in µ and dynamics for which
the standard deviations are 10−4 and 4 × 10−3, respectively. We consider the following chance
constraints: Pr(x∗ − 0.1 ≤ x1,k ≤ x∗ + 0.1) ≥ 1 − ∆

4N , Pr(x2,k ≤ 0.27) ≥ 1 − ∆
4N . The initial and

the terminal state are xs = [0, 0, 0]⊤, xg = [0, 0.2, π]⊤. Also, we formulate our Deterministic MPC
(DMPC) which uses the constraints xk ∈ X instead of Pr (xk ∈ X ). We also evaluate the no-mpc
case which implements the reference control sequence in open-loop.

6.2 Results

We evaluate the performance of the controllers with respect to:

(i) the safety in terms of the chance constraints by counting the number of failures, and

(ii) the Mean Squared tracking Error (MSE) from the reference trajectory.

Note that a failure is defined as constraint violation. Similar to the previous section, we use Monte
Carlo simulations to evaluate the different controllers.

The obtained ∆ and the MSE are shown in Table 6. Our proposed SMPC achieves the best
performance with respect to both metrics followed by DMPC method. Since our proposed SMPC
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Figure 12: This figure shows results for the proposed SNMPC and comparison against some baseline ap-
proaches. Top left: no mpc (open loop), top right: DMPC, bottom left: ∆ = 0.5, bottom right: ∆ = 0.01.
The blue curve shows the reference trajectory of the center of the box and the green lines show the simulated
trajectories. The red curves show the bounds. As could be observed from the plots, we observe maximum
constraint violation for the open-loop and deterministic MPC cases. Our proposed method with ∆ = 0.01
achieves best constraint satisfaction.
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Table 6: Comparison of obtained ∆ and MSE with different ∆ from the simulation of ”pushing with slipping”
over 100 samples.

No MPC DMPC ∆ = 0.5 ∆ = 0.01
Obtained ∆ 0.31 0.19 0.10 0.00

MSE 0.00295 0.00244 0.00208 0.00216

considers stochastic complementarity constraints as well as uncertainty propagation, our method
achieves lowest tracking error as well as constraint violation probability. We can see the trade-off
between ∆ = 0.5 and ∆ = 0.01 where ∆ = 0.5 shows the higher ∆ but the lower MSE. The reason
why the DMPC shows higher MSE is that the DMPC may diverge from the reference trajectory
since it ignores uncertainty propagation.

Fig. 12 illustrates the trajectories of MPC with different parameters. We can confirm that our
proposed SMPC can track the reference trajectories while satisfying the chance constraints. Also,
the average runtime for our SMPC to compute a solution was 0.0029 s during runtime.

7 Discussion and Conclusion

The hybrid dynamics of contact-rich interaction as well as uncertainty associated with contact
parameters make efficient design of model-based controllers for manipulation challenging. We believe
that understanding stochastic and robust optimization and control methods for contact-rich systems
is important. However, this topic remains relatively unexplored in literature. One of the key reasons
is the difficulty in handling stochastic complementarity constraints and its effect on uncertainty
propagation for planning. This poses unique challenges for formulation of computationally feasible
algorithms for robust planning of SDLCS.

In this paper, we presented a robust trajectory optimization technique for contact-rich systems.
We presented a formulation for chance constrained optimization for SDLCS which is solved using
MIQPCC. This paper makes an assumption of deterministic complementarity variables for compu-
tational tractability. We show that despite this assumption, we are able to compute controllers that
are robust to the underlying stochastic system. We compared our proposed approach against other
recent techniques for robust optimization for stochastic complementarity systems. We showed that
our formulation outperforms these baseline techniques. We show that the proposed chance con-
strained optimization can be used to design stochastic MPC controllers for contact-rich system.
The proposed SMPC was demonstrated for a stochastic planar pushing system.

In the future, we would like to relax certain assumptions in this work. We would like to propose
solutions for general non-linear stochastic complementarity systems in the presence of non-Gaussian
noise. In the current work, using joint chance constraints on all the variables results in conservative
solutions. To consider these problems, the study of nonlinear uncertainty propagation in SNCS is
required. Further, extending the approach to SNCS will result in the formulation falling in the
class mixed-integer non-linear programming which can be difficult to solve. We would also like to
investigate how we can relax the conservative solutions obtained by our proposed approach using
better measures for risk. We would also like to incorporate real-time sensor input [41] to develop
algorithms for stochastic model predictive control of complex manipulation problems [25, 11, 12].
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