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Abstract

Audio-visual navigation of an agent towards locating an audio goal is a challenging task
especially when the audio is sporadic or the environment noisy. In this paper, we present
CAVEN, a Conversation-based Audio-Visual Embodied Navigation framework in which the
agent may interact with a human/oracle for solving the task of navigating to an audio goal.
Specifically, CAVEN is modeled as a budget-aware partially observable semi-Markov decision
process that implicitly learns the uncertainty in the audio-based navigation pol- icy to decide
when and how the agent may interact with the oracle. Our CAVEN agent can engage in fully-
bidirectional natural language conversations by producing relevant questions and interpret
free-form, potentially noisy responses from the oracle based on the audio-visual context. To
enable such a capability, CAVEN is equipped with: i) a trajectory forecasting network that is
grounded in audio-visual cues to produce a potential trajectory to the estimated goal, and (ii)
a natural language based question generation and reasoning network to pose an interactive
question to the oracle or interpret the oracle’s response to produce navigation instructions.
To train the interactive modules, we present a large scale dataset: AVN-Instruct, based
on the Landmark-RxR dataset. To substantiate the usefulness of conversations, we present
experiments on the benchmark audio-goal task using the SoundSpaces simulator under various
noisy settings. Our results reveal that our fully-conversational approach leads to nearly an
order-of-magnitude improvement in success rate, especially in localizing new sound sources
and against methods that use only uni-directional interaction.
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Abstract

Audio-visual navigation of an agent towards locating an au-
dio goal is a challenging task especially when the audio is
sporadic or the environment noisy. In this paper, we present
CAVEN, a Conversation-based Audio-Visual Embodied Nav-
igation framework in which the agent may interact with a
human/oracle for solving the task of navigating to an audio
goal. Specifically, CAVEN is modeled as a budget-aware par-
tially observable semi-Markov decision process that implic-
itly learns the uncertainty in the audio-based navigation pol-
icy to decide when and how the agent may interact with the
oracle. Our CAVEN agent can engage in fully-bidirectional
natural language conversations by producing relevant ques-
tions and interpret free-form, potentially noisy responses
from the oracle based on the audio-visual context. To enable
such a capability, CAVEN is equipped with: i) a trajectory
forecasting network that is grounded in audio-visual cues to
produce a potential trajectory to the estimated goal, and (ii)
a natural language based question generation and reasoning
network to pose an interactive question to the oracle or in-
terpret the oracle’s response to produce navigation instruc-
tions. To train the interactive modules, we present a large
scale dataset: AVN-Instruct, based on the Landmark-RxR
dataset. To substantiate the usefulness of conversations, we
present experiments on the benchmark audio-goal task using
the SoundSpaces simulator under various noisy settings. Our
results reveal that our fully-conversational approach leads to
nearly an order-of-magnitude improvement in success rate,
especially in localizing new sound sources and against meth-
ods that use only uni-directional interaction.

Introduction

The advent of powerful deep neural networks and sophisti-
cated language models have led to significant advancements
in building conversational agents that can collaborate with
humans in solving challenging reasoning tasks (Peng et al.
2023; Ram et al. 2018; Chowdhery et al. 2022; Gupta and
Kembhavi 2023; You et al. 2022). While, much effort has
been expended on tasks that are predominantly in the lan-
guage domain, such progress is yet to percolate into real
world problems that need complex reasoning over multiple
modalities of perception (Li et al. 2022; Liu et al. 2023). One
such task that we exclusively explore in this paper is that of
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Figure 1: An illustrative CAVEN interaction: The agent
starts at @ guided by the audio event at @ At @, the agent
decides to seek help from the human/oracle H (e.g., because
the audio stopped). The oracle then provides a short natu-
ral language instruction for the agent to follow. At locations
<3> and @, the agent decides to ask questions to the oracle
using the forecasted trajectories (orange) and gets feedback,
finally reaching the audio goal at <5>

audio-visual navigation of an embodied robotic agent where
the goal is to localize a sound producing source in a realis-
tic, complex, and never-seen before environment when the
sound is noisy, intermittent, sporadic, and mixed with other
sounds — a situation even humans may find hard to tackle.
As can be easily imagined, the applications needing such an
audio goal capability are enormous; for example, at one end,
we may think of a robotic disaster and emergency response
agent that may need to move through huge rubble to local-
ize victims who may cry for help and on the other, one may
consider a home robotic vacuum repurposed to be vigilant
to strange sounds.

While the task of navigating to the audio goal, has wit-
nessed some attention in the recent years (Chen et al., 2021),
we consider a variant of this task, dubbed audio-visual-
language embodied navigation (AVLEN) (Paul et al., 2022),
where the agent has the ability to interact with a human/ora-
cle when it is unable to solve the task by itself and potentially



query an oracle for task-specific guidance. However, the in-
teractive abilities of the agent in AVLEN is limited in sev-
eral aspects. In particular, the AVLEN agent could ask only a
fixed question (e.g., “Help me!”), while the (human) oracle
could provide a natural language response for guiding the
agent to the goal. This technique of querying, while useful
to some extent, does not cover the full scope of bi-directional
interactions. As we know, back and forth interaction in natu-
ral language simulates a human-like conversation, allowing
for better expressivity towards sharing ideas effectively. For
instance, let’s assume for a moment that the agentis a 5 year
old child who needs help in finding a sounding toy at a secret
location. While the parents (oracle) could suggest: “look in-
side the wooden trunk” (as in Paul et al., 2022), the child
might not know what a ‘trunk’ is. Instead, isn’t it better if
the child had asked: ’Should I look next to the large brown
box?” and the parents say: “yes”? or suggest "No, look in-
side it”? It is not only easy to respond with a ‘yes’/‘no’
answer (if possible), but this also avoids the need to know
what a ‘trunk’ is (and ask more questions or make wrong
inferences). Engaging in conversations to resolve such am-
biguities is of importance in several time-critical real-world
circumstances, e.g., the sound of wheezing in an elderly care
or a thud in a medical facility.

Our goal in this paper is to build a fully-conversational
robotic agent, which we call CAVEN - Conversational
Audio-Visual Embodied Navigation, with the capabilities
as described above, that can engage in bidirectional inter-
actions with an oracle in natural language towards solving
the audio goal task in a complex realistic visual environ-
ment. Specifically, CAVEN can either use the audio-visual
cues for its navigation (as in prior works (Chen et al. 2020,
2021a; Gan et al. 2020)) or in case the agent is uncertain of
which navigation step to take, it can interact with the ora-
cle in two distinct modes: (i) a question mode, in which the
agent forecasts a plausible trajectory based on audio-goal
belief, using which it frames a natural language question to
be posed to the oracle, and subsequently interpreting the or-
acle’s response to the question, and (ii) a query mode, where
the agent is unsure of what question to even phrase (e.g.,
when there are no useful cues in the scene) or completely
uncertain about its current situation, and therefore directly
seeks the oracle’s guidance. Figure 1 illustrates a typical
conversation between a human and our agent.

There are several challenges to tackle when designing the
learning and inference model for CAVEN. Specifically, (i)
when should the agent use language? (ii) what type of lan-
guage interaction should the agent use (question or query)?
(iii) how should the agent phrase the question? (iv) how to
make the oracle understand the agent’s question?, (v) how
should the oracle respond to the agent’s question? and (vi)
how frequently should the agent be allowed to ask questions
(budget)? Note that, some of these challenges are partially
addressed in prior works (Kesiraju et al. 2020; Siddhant and
Lipton 2018; Xiao and Wang 2019) such as (v) and (vi).
However in CAVEN, we tackle all these challenges within
a single framework, by proposing a novel budget-aware par-
tially observable semi-Markov decision process (POSMDP),
using a reinforcement learning framework by introducing

novel learning rewards.

To empirically assess the performance of CAVEN, we
conduct extensive experiments on the semantic audio-goal
navigation task (Chen et al. 2021b) in the SoundSpaces sim-
ulator, under various challenging scenarios, each having in-
termittent sounds emanating from a source. One key diffi-
culty to train the CAVEN model is the absence of any large
scale dataset that includes language instructions in an audio-
visual navigation setting. To this end, we introduce AVN-
Instruct — a novel audio-visual-language navigation sub-
instruction dataset with 41.5k pairs of audio-goal, trajectory,
and language instructions. Our experimental results using
the above setup clearly bring out the benefits of enabling
the agent to converse with the oracle, demonstrating a solid
gain of nearly 12% over competing approaches on the suc-
cess rate.

We summarize below the core contributions of our work:

* We present CAVEN, a multimodal navigation agent that
is, for the first time, capable of fully-bidirectional interac-
tion with an oracle in free-form natural language, thereby
facilitating easy communication.

* We introduce a novel guestion module for bi-directional
interaction with the oracle consisting of: (i) a trajectory
forecasting module grounded on both visual scenes and
audio cues, (ii) a question generation module, and (iii) a
question decoder (FollowerNet, on the oracle).

* We design a novel budget-aware and uncertainty-
splitting reinforcement learning policy, which integrates
the question module as additional policy (using suitable
reward design inspired by differential RL) in addition to
audio-visual navigation and language-based policy.

* We propose a novel audio-visual-language navigation
sub-instruction dataset, AVN-Instruct to pre-train em-
bodied navigation models. We also propose two new
metrics to evaluate language-guided navigation tasks,
dubbed SNO and SNI.

* Our experiments demonstrate state-of-the-art perfor-
mances against related prior approaches by an order-of-
magnitude increase in success rate.

Related Works

Audio-Visual Embodied Navigation Tasks: Recent years
have seen several works in Embodied Al that consider the
audio-goal navigation task (Chen et al. 2020, 2021a; Gan
et al. 2020; Yu et al. 2022). Generally, this task assumes a
continuous sound. However, there are derivatives that look at
situations when the audio is sporadic and depends on the cat-
egory of the sounding object, dubbed semantic audio-goal
navigation (Chen et al. 2021b). Both of these tasks are fa-
cilitated by the SoundSpaces simulator (Chen et al. 2020)
that can render realistic audio in 3D visual environments.
While the aforementioned methods only consider audio and
visual modalities, (Paul et al., 2022) proposes AVLEN that
utilizes language feedback from the oracle. However, there
is no provision of posing questions, which burdens the ora-
cle with the task of chalking out a path to the goal whenever
help is sought. Contrary to these approaches, our proposed



CAVEN utilizes bi-directional interaction with the oracle be-
sides audio-visual cues, a setting that is more practical.

Vision-and-Language Navigation (VLN): The task in
VLN is to use (or execute) natural language instructions
to reach a target location. Akin to (Gu et al. 2022), we
group VLN approaches in three categories: (i) instruction-at-
start, (ii) oracle guidance, and (iii) bi-directional interaction.
Instruction-at-start is a well-explored research area (Ander-
son et al. 2018; Hong et al. 2021; Ke et al. 2019; Liu et al.
2021; Majumdar et al. 2020; Ma et al. 2019a,b; Zhu et al.
2020; Chen et al. 2021c; Pashevich et al. 2021; Guhur et al.
2021) in which the agent is given a language instruction at its
start describing the intended path. To tackle the task, Wang
et al. (Wang et al. 2019) uses cross-modal attention to focus
on the relevant parts of both vision and language modalities,
while others (Fried et al. 2018; Tan et al. 2019), used aug-
mented instruction-trajectory pairs to improve the VLN per-
formance. Recent approaches have begun using transformer-
based architectures, such as BERT (Devlin et al. 2018) for
VLN (Hong et al. 2021; Majumdar et al. 2020). In the ora-
cle guidance setting, an agent may receive feedback (ground
truth actions (Chi et al. 2020), encoded ground truth ac-
tion (Nguyen et al. 2019a), or a fixed set of natural language
instructions (Nguyen et al. 2019b)) from an oracle during
navigation. A major challenge in these works, however, is
to identify when to query an oracle for feedback. In the bi-
directional interaction setting, an agent can use natural lan-
guage to seek navigation help (Banerjee et al. 2021; Thoma-
son et al. 2020; Cao et al. 2022; Lin et al. 2022). Thomason
et al. (Thomason et al. 2020) introduced the CVDN dataset
with human-human dialogue for navigation. However, these
works allow the agent and oracle to communicate only at
certain locations of the environment, making it less prac-
tical to real world scenarios. Self-Motivated Communica-
tion Agent (SCoA) (Zhu et al. 2021) permits the agent to
only ask templated questions filled in with labels of detected
scene objects, grossly limiting the nature of interaction be-
tween the agent and the oracle. Contrary to these methods,
we empower our CAVEN agent with: (i) the ability to seek
occasional human/oracle help at any location and (ii) com-
petence for natural language-based scene grounded conver-
sations with an oracle for effective navigation.. Further, our
agent is also robust to noisy feedback from the oracle.

LLM-based Embodied Navigation. The spark of recent
advancements in large language models (LLMs) (Bubeck
et al. 2023; Touvron et al. 2023; OpenAl 2023) has brought
along new opportunities in improving multi-modal robot
navigation. In the context of Vision and Language Naviga-
tion, early works like LM-Nav (Shah et al. 2022) analyzed
landmarks in the instruction to be used for visual naviga-
tion. In NavGPT, (Zhou et al. 2023) explored the possibility
of integrating ChatGPT (Ouyang et al. 2022) with a vision
foundation model: BLIP-2 (Li et al. 2023) into its prompt-
ing setup to perform multi-modal reasoning to navigate in
a zero-shot manner. While, these works achieve decent per-
formances on vision-language navigation task, they do not
incorporate audio as part of the inputs and are thus comple-
mentary to our efforts.

Proposed Method

Task Setup: We assume the standard embodied audio goal
problem setup (Chen et al. 2020), where the agent is
equipped with an RGBD camera and a binaural microphone
and at any time step can take one of four navigation actions:
{stop, move_forward, turn_right, turn_left} in a densely-
sampled 3D grid with the goal of locating the audio source.
As in (Chen et al. 2020), we assume the sound is seman-
tically unique and is produced by a static object, however
the audio could be noisy, sporadic, or mixed up with other
environmental sounds. An audio goal navigation episode is
deemed successful if the agent calls the stop action within a
given proximity to the goal.

Beyond the standard problem setup above, our CAVEN
agent can also seek language-based guidance from an oracle.
Practically, the oracle could be a human who has higher level
information about the scene, e.g., a remote operator control-
ling several such agents and intervening whenever needed,
or a home owner who is notified about the situation and
is sought to provide guidance. To incorporate the language
modality into the audio goal setup, we follow AVLEN (Paul,
Roy-Chowdhury, and Cherian 2022) in which the agent can
query the oracle for help and the oracle responds via a
short message describing a pathlet towards the audio goal.
However as is clear, the interaction in AVLEN is only uni-
directional and the agent cannot ask questions. Our CAVEN
agent goes beyond this shortcoming and can phrase a ques-
tion in free-form natural language using cues from the audio-
visual context. Further, we assume the oracle after receiving
this question, will either give a “yes” response if the ora-
cle’s interpretation of the question in its own state space re-
sults in actions that match its estimate of the actions along
the ground truth geodesic to the goal. Otherwise, the oracle
responds with a “no” followed by a short sentence guiding
the agent to the goal. Note that the oracle in AVLEN has ac-
cess to the 3D space of the full environment and thus can
provide plausible instructions for navigation, however the
CAVEN agent has only a very restricted view of the scene
in its vicinity, thus making this task of creating a question at
the agent’s side entirely different from that of the oracle’s.
In our new problem setup, we also assume that the number
of times an agent can receive direct navigation instructions
from the oracle (as a result of a wrong question or when it
directly queries) is limited by a budget so that the agent only
seeks help when necessary.

CAVEN Learning and Inference Framework

As we envisage CAVEN to incorporate various modules
with diverse temporal spans, it is natural to consider a par-
tially observable semi-Markov decision process (POSMDP)
as our control module (Le et al. 2018). A POSMDP is
essentially a partially observable Markov decision process
(POMDP) with macro actions and is characterized by the
tuple (S, A, T, R,Q, Z,v) where S, A, T, R, and ~ are the
state space, action space, transition function, reward func-
tion, and discount factor, respectively, while {2 and Z are
the observation space and observation model. In a partially
observable setup, the agent maintains a belief distribution
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Figure 2: Architecture of our CAVEN model. We show the
reinforcement learning policies, namely a selector policy 7
and three option policies 7, 77, and Tgyes.

b over S, which is used to compute the expected reward.
While in a POMDP setup, the agent maintains a policy
7 RISl x A — [0,1] that maximizes the expected re-
ward, in POSMDP the agent maintains multiple low level
‘options’ as temporal abstractions, denoted =, and a high
level selector policy 7, to select the options from =. An op-
tion £ € = is defined by the triplet (S¢, 7€, 3%), where S¢ is
the set of valid states, 7¢ is the policy, B¢ is the termination
condition. In our setup, we disentangle agents’ interactive
audio goal navigation process into three low level temporal
abstractions (i.e., options): i) audio-visual navigation &g, ii)
instruction-guided navigation &, iii) bi-directional question-
answer navigation &gyes. We use mg, m¢, and Tgyes to denote
the respective policies of &4, &, and &gues and R), R}, and
Ry, as corresponding immediate rewards. In our case, in-
stead of using the termination condition for each option, we
allow the audio-visual navigation option &, to take a single
step, while the interaction-based options (§; and §gy¢s) are
allowed a fixed span of v steps (unless stop action is exe-
cuted by these options). These options are assumed valid in
any state of the environment, i.e., S¢_, S¢;, S, €S-

Although the agent always has access to three option poli-
cies, it should maintain its autonomy and should only en-
gage in a limited number of language interactions to mit-
igate its uncertainty. Further, in our setup, we have differ-
ent levels of engagement of the oracle with the agent for
varied language interactions (e.g., bi-directional conversa-
tions with question and answer, querying for language in-
structions) and a system should favor asking correct ques-
tions based on its audio-visual cues over relying on ora-
cle instructions to reduce the oracle’s effort. To consider
all of these scenarios, we formulate option policies with
dynamically adjusted constraints. These constraints are re-
alized by penalties associated with the reward functions
of each option policy. The audio-visual navigation policy
my : RISXIME o G x| Al — [0,1] chooses the naviga-
tion actions a € A based on the audio-visual features. Here,
M is a memory module storing a fixed number of past ob-
servations, and G is a set of audio goal estimates. Since,
74 is fully autonomous and does not require oracle interac-
tion, we encourage selecting this option by defining an un-
constrained reward, R}, (by,a¢) = E [Y272, 7" "R} (bi, ai)].

The instruction guided navigation policy 7, : RIS*¥ x
Z x G x |A] — [0,1] navigates based on the received
natural language instruction. Here, Z is the set of all natu-
ral language instructions. Since, 7, is entirely dependent on
the oracle instruction, we penalize such interactions using

Coivens By(bisa) = B[St Rybisai)] = Glo).
The bi-directional conversational navigation policy mgyes :
RISIXY »x Q x T x G x | A| = [0, 1] navigates based on ask-
ing a question and receiving an answer. Here, Q is the set
of all natural language questions. Specifically, Tgyes cOn-
sists of multiple novel components and the policy module
can be divided in three submodules based on the function-
ality: i) question generator G9, ii) question evaluator £, and
iii) instruction generator G°. The output of Tques depends
on the interplay between these submodules. Question gen-
erator G9 is used to generate questions. Then, the question
evaluator £ evaluates on the oracle side if the question is
correct. If the question is incorrect then the instruction gen-
erator G' (which mimics the oracle) generates instructions
for navigation. Since, asking correct question results in min-
imal oracle effort in producing a response, we define a dy-
namic penalty based on the question by, R, (b, a:) =

E [223171 ’Yi_tR;ues (bis ai)} — Cques(t, €(q)), where g €
Q and &(q) is an indicator function that checks whether the
question ¢ asked by the agent falls within the range of the
estimated navigation direction by the oracle, and no penalty
will incur when £(g) = 1.

Putting it all together, our objective to learn these policies
m = {75, Mg, ¢, Tques } 1 Via maximizing the value func-
tion V™ (bg), i.e.,

argmax V" (bg), where

VT (b) = mo(&l0) | Ry + D Z/(0'b,E) VT (V)
o'eq)

7 (&lb) | Ri+ D Z(0 b, &)V ()

o' e

+ T (Eques|b) | Ryes + >, Z'(0[b, Eques) V() | (1)
o' e

Here, V' is the updated belief and Z’ is the multi-time tran-
sition function (Sutton, Precup, and Singh 1999) given by:
Z'(0'6,€) = 32721 2oy 2oV 2(5', 0, s, §)b(s). Below,
we detail the architecture of each of these policies.
Bi-directional Question-Answer Policy Module: Bi-
directional question-answer policy consists of three compo-
nents: (i) TrajectoryNet (forecasting short navigation steps),
(ii) QuestionNet (generates natural language questions using
trajectories), and (iii) FollowerNet (interprets the question
on oracle side). These components detailed below are illus-
trated in Figure 3. They are used to enable the functionalities
within the g5 policy as: i) question generator (Trajecto-
ryNet + QuestionNet), ii) question evaluator (FollowerNet),
and iii) instruction generator (QuestionNet).
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(i) TrajectoryNet: In order to forecast the steps of a trajec-
tory, the agent needs to have a clear observation of its sur-
roundings. Towards this end, we allow the agent to have a
panoramic view at its current location. With the full view of
its surroundings and an estimate of the audio-goal, the agent
forecasts a sequence of [-step actions, denoted by F,. This is
achieved by TrajectoryNet — a transformer encoder-decoder
network which takes as input a sequence of ego occupancy
maps E; of four disjoint views (separated by 90-degrees)
and the goal vector g; predicted by a binaural audio encoder,
to predict a sequence of actions Fo, = (fay, fas -+ far)
(auto-regressively). The ego occupancy map is calculated by
transforming depth images into point clouds and projecting
them onto the ground plane.

(ii) QuestionNet: The action sequences defined in
SoundSpaces (Chen et al. 2020) are discrete, e.g,
move_forward implies moving forward by 1m. However,
the language produced from these actions by itself may
be ambiguous (since it is a higher level construct) and
thus does not explicitly reflect the granularity of these dis-
crete actions. Further, as will be explained in the Experi-
ments section, while the trajectories are forecasted using the
SoundSpaces grid (which uses 90 degree angles for turn-
ing), the language instructions are produced using a model
trained on the LandmarkRxR dataset (He et al. 2021), that
uses panoramic images as input. To compensate for these
mismatches, we propose to first gather the view of the
agent at the end of the forecasted trajectory, which we call
Juiew, and the corresponding displacement vector gg,p =
[dy,cos(8f), sin(0y)], where d is the distance between the
agent’s location and the trajectory end point and 6 is the
angle difference between the direction of ds and the agent’s
facing direction.

Next, we capture the panorama around the agent using
12 equiangular views, as RGB images as well as the corre-
sponding occupancy maps to abstract the 3D scene geome-
try. ResNet-152 features are then extracted from these RGB
images using an ImageNet pre-trained model, while the ego-
occupancy maps are encoded using a 2D-CNN; both the fea-
tures are fused with position embeddings and passed through
a transformer encoder. In order to fuse these panoramic
views with the forecasted agent views (in the SoundSpaces

grid), we propose to use a transformer decoder, which takes
the output of the encoder and a fusion of ResNet-152 fea-
tures from g,;cq, coupled with the position encoding of ggup,
and the embeddings of hitherto produced words in the ques-
tion (e.g., GloVe (Pennington, Socher, and Manning 2014)
or CLIP (Radford et al. 2021)), and proceeds to generate
the next word in the question autoregressively.

(iii) FollowerNet: After the question is asked, the oracle
needs to verify if it can be correctly translated into a di-
rection that falls within the oracle’s own estimation of the
direction range to the goal. To this end, we incorporate Fol-
lowerNet at the oracle, which is assumed to have knowledge
of the agent’s location and its audio-visual context, and can
convert the question back to the oracle’s space of the view
angles. See Appendix for details on its training.

Language-based Policy Module: There can be situations
when an agent cannot produce a question to ask the oracle;
e.g., when there are no useful landmarks to base the ques-
tion. To cater to such cases, we equip the agent to directly
query the oracle for language-based instructions. When in-
voked, the agent receives instructions, similar to when a
wrong question is posed to the oracle.

Audio-Visual Navigation Policy Module: This policy is
modeled as a transformer (Vaswani et al. 2017) based
encoder-decoder as in (Chen et al. 2021b). The encoder
takes as input the current and previous observations in the
memory M, the output of which is combined with the goal
descriptor g and decoded by the decoder to produce a fea-
ture vector defining the belief state of the agent b. Next, a
single-layer actor-critic neural network learns a policy, 7,
that transforms this belief b to predict the distribution on the
navigation actions, which the agent samples to take a step in
the environment.

Selector Policy: This module, denoted 7, decides when to
navigate using audio-visual cues (i.e., use 74), when to query
the oracle for instructions directly (i.e., use my); or when
to pose a question to the oracle, (i.e., use mgyes). Instead
of directly using model uncertainty (as is common in prior
works (Chi et al. 2020)), we use our proposed RL framework
to train this policy in an end-to-end manner, guided by the
reward design ¢ described below.



Table 1: Comparison of CAVEN performances against the state of the art under heard and unheard sound settings.

Heard Sound Unheard Sound
Feedback SuccessT SPLT SNAT DTG| SWS?T SNIT SNOT?T | Successt SPLT SNAT DTG|] SWST SNIT SNOT?T
Random Nav. X 14 35 1.2 17.0 14 - - 14 35 1.2 17.0 14 - -
ObjectGoal RL X 1.5 0.8 0.6 16.7 1.1 - 1.5 0.8 0.6 16.7 1.1 -
Gan et al. (Gan et al. 2020) X 29.3 23.7 23.0 11.3 14.4 159 12.3 11.6 12.7 8.0
Chen et al. (Chen et al. 2020) X 21.6 15.1 12.1 11.2 10.7 18.0 134 12.9 12.9 6.9
AV-WaN (Chen et al. 2021a) X 209 16.8 16.2 10.3 83 17.2 13.2 12.7 11.0 6.9
SMT(Fang et al. 2019)+Audio X 22.0 16.8 16.0 12.4 8.7 16.7 11.9 10.0 12.1 8.5
SAVi (Chen et al., 2021) X 339 24.0 183 8.8 21.5 - 24.8 17.2 132 9.9 14.7 -
AVLEN (Paul et al., 2022) Language 36.1 24.6 19.7 8.5 23.1 21.8 26.2 17.6 14.2 9.2 15.8 15.9
AVLEN (Paul et al., 2022) GT Actions 48.2 34.3 26.7 7.5 36.0 - 29.1 36.7 24.1 18.7 8.3 26.6 - 223
CAVEN (Ours) Noisy-Language 452 32.9 28.8 7.5 323 17.9 314 38.2 27.6 24.1 8.2 25.9 15.0 23.1
CAVEN (Ours) Language 48.4 35.8 31.0 6.9 34.2 21.5 334 42.0 30.0 26.5 7.6 30.9 16.7 27.9
CAVEN (Ours) GT Actions 54.8 414 359 6.5 399 243 37.8 49.7 373 32.7 6.7 37.2 19.8 33.0
Reward Design Experiments

In this section, we detail the rewards structure to train the
various policy modules in an end-to-end manner. For the
74 policy, we use the reward scheme in (Chen et al. 2020),
i.e., the agent gets +1 for moving towards the goal and re-
ceives 410 if it calls the stop near the goal. Further, to make
the navigation efficient, we penalize by —0.01 for every step
taken. The penalty structure for the language-based policies
is designed so as to discourage the agent to seek help from
the oracle, while also limiting the number of instructions
K > 0 received. To this end, we propose a dynamic penalty
that increases in magnitude as more instructions are sought
from the oracle. Specifically, if (;(k, K) denotes the penalty
received by the agent for the k-th query, then

kX(rnegtexp(=v)) . - [
Gk, K) = v 2
Tneg +exp(—k) k> K,

where v characterizes the number of steps agent takes based
on the language instruction received, which is fixed in our
case, and r,.y = —0.6 is a constant. Until £ < K, the
penalty is linear, however for £ > K, the penalty approaches
Tneg €xponentially thereby discouraging the agent to seek
language guidance directly. Further to this penalty, we also
include an additional cost for seeking oracle guidance fre-
quently. Specifically, we include a linear penalty (y if the
agent queries the oracle within 7 steps, where (;(j) = £

J
for the j-th step, if j € [0,7] and zero otherwise (with
ry = —0.5). Thus, the total penalty for the agent querying
the oracle is given by ¢; + (s.

As the question policy 74,5 blends between 7, and my,
we propose a penalty structure that integrates both these
policies. Specifically, if (4yes(m) is the penalty incurred by
the agent for asking the m-th question, then

Cques (m) = G(m, K/) 5ques (m) + quues (m), ()
where (y, .. is the penalty for asking questions too many
times (similar to (f(k)), K’ is the budget on the number of
wrong questions, and d4yes(m) = 1 if the response to the
m-th question by the oracle is ‘no’, else dgues(m) € [0,1)
is a constant. In our experiments, we find that not penal-
izing the agent for correct questions leads to better results,
i.e., 0gues(m) = 0. Such a differential reward implicitly re-
inforces the agent to learn correct trajectories to the audio
goal, improving performance. We also couple 7,5 With 7y
via enforcing K + K’ = n for an p = 3. Using this re-
ward setup, the policies are trained with the DD-PPO algo-
rithm (Wijmans et al. 2019).

Datasets: The CAVEN agent is trained and evaluated on the
SoundSpaces platform (Chen et al. 2020). It uses Matter-
Port3D environment scans (Chang et al. 2017). We use the
the semantic audio-visual navigation dataset from (Chen
et al. 2020) to benchmark our experiments. The details of
the dataset are provided in the Appendix.

AVN-Instruct Dataset: For pre-training and evaluation of
the language interaction modules (i.e., QuestionNet, Fol-
lowerNet), we use the Landmark RxR dataset (He et al.
2021), which contains 150k well-annotated sub-trajectories
and their corresponding language sub-instructions grounded
on scenes captured using the MatterPort3D simulator. Then
we adopt the pre-trained QuestionNet to synthesize a dataset
called AVN-Instruct, which contains a total of 41.5k dense
pairs of sub-instructions, audio-goal, and visual scene under
the state space of Soundspace Habitat simulator, by sam-
pling the trajectories and transporting the grid from Mat-
terport3D to Soundspace and obtaining the action sequence
which closely approximates this trajectory. Before integrat-
ing the modules into the RL framework, we fine-tune the
whole question module end-to-end on AVN-Instruct with a
set of 500 and 1000 samples for validation and testing.
Evaluation Metrics: We follow the standard metrics de-
fined in SAVi (Chen et al. 2021b) to evaluate the navigation
performance, namely: (i) success rate (SR) for navigation
success, (ii) success rate weighted by inverse path length
(SPL), (iii) success rate weighted by inverse number of ac-
tions (SNA), (iv) average distance to goal (DTG), and (v)
success rate when silent (SWS). In addition, we introduce
two new metrics for assessing navigation performance that
also considers the number of language-based oracle interac-
tions, namely: (a) success rate weighted by the inverse num-
ber of language interactions (SNI) — which is the ratio of
the success rate to the average total number of times either
direct instructions are sought from the oracle or a question
is posed to it (averaged by the number of episodes), and (b)
success rate weighted by inverse number of oracle instruc-
tions (SNO) — which is the ratio of the success rate to the
average total number of times either direct instructions are
sought from the oracle or a wrong question is posed to it.
These additional metrics help explain the performance gain
under conversational settings.

Experimental Results and Analysis: Here, we compare
our proposed formulation against state-of-the-art seman-
tic audio-visual navigation approaches, namely (Gan et al.
2020), (Chen et al. 2020), AV-WaN (Chen et al., 2021),



Table 2: Comparison of CAVEN performances with differ-
ent approaches in the presence of distractor sound.

Feedback | SuccessT SPLT SNAT DTG| SWS{| SNIT SNO T
Chen et al X 4.0 2.4 20 14.7 23 - -
AV-WaN (Chen et al. 2021a) X 3.0 2.0 1.8 14.0 1.6 -
SMT+Audio (Fang et al. 2019) X 4.2 29 2.1 14.9 2.8 -
SAVi (Chen et al., 2021) X 11.8 74 5.0 13.1 8.4 -
AVLEN (Paul et al., 2022) Language 14.0 84 59 12.8 11.1 - 8.5
Random Bi-interact 16.9 10.6 7.9 1.9 IL1 72 9.4
Uniform Bi-interact 16.9 10.5 7.6 11.9 11.6 7.1 9.5
Model Uncertainty Bi-interact 19.6 124 8.9 11.4 14.0 7.8 10.2
CAVEN Bi-interact 21.3 13.9 11.7 11.6 14.5 8.4 11.6

Table 3: Ablation of the reward parameter d4ycs of CAVEN’s
question module under unheard sound settings.

Architecture Successt SPLT SNA1 DTG|] SWS1
CAVEN (d4ues=1.0) 32.1 23.1 19.4 8.0 20.8
CAVEN (8 gues=0.5) 36.5 26.9 24.6 8.2 21.1
CAVEN (dgues=0.0) (ours) 42.0 30.0 26.5 7.6 30.9

SMT (Fang et al. 2019) + Audio, SAVi (Chen et al., 2021)
and AVLEN (Paul et al., 2022). Using the same protocol
as in AVLEN, we evaluate our performances on two dif-
ferent settings: (i) heard and (ii) unheard sound, both in
unseen environments with sporadic sources. To ensure the
comparisons are fair, we control our CAVEN model to have
a similar number of oracle feedbacks as in Paul et al.. Ta-
ble 1 provides the results of our experiments using heard
and unheard sounds. The table shows that our full model
—CAVEN (language), is capable of achieving significant im-
provements across all metrics. CAVEN exhibits a 12% gain
on the newly introduced SNO metric over Paul et al., our
closest competitor, in both heard and unheard cases. This
clearly shows that the agent benefits much more from both
our novel language components. Given the budget on di-
rectly receiving instructions from the oracle, we find that
CAVEN poses a correct question about 40% of the time,
thereby incurring less penalty. Even with a noisy oracle,
i.e., Noisy-Language in Table 1, we achieve better perfor-
mances compared to Paul et al., showing the robustness of
our framework. To induce noise, we either ground the gen-
erated oracle’s instructions on random trajectories or switch
’yes’/’no’ responses, both with a chance of 25%.

Navigation Under Distractor Sounds: We also evaluate
the performance of CAVEN in the presence of distrac-
tor sounds, in the unheard setting. Since this environment
presents a mixture of sounds, therefore to disambiguate, a
one hot encoding of the target sounding object is also pro-
vided as an input to the agent (as is the standard evaluation
protocol (Chen et al. 2021b)). The presence of distractor
sounds adversely affects the estimation of the audio-goal,
which results in more uncertainty in the agent’s decision-
making. Under this setting, the conversations between the
agent and oracle becomes even more critical. Even under
such challenging circumstances, as shown in Table 2, we no-
tice a 5.5% and a 3.1% gain on SPL and SNO, respectively
against our closest competitor.

Ablation on Selector Policy: In Tables 1, 2, we compare
various strategies instead of learning the selector policy, 7.
In Random, the agent randomly selects a navigation policy,
while in Uniform, the agent chooses a policy every 3 steps,
alternating between the three policies. In Model Uncertainty,
the audio-goal uncertainty estimated by the selector policy

is used to decide which policy to invoke; i.e., if the audio-
goal uncertainty is above 66.7%, the language-based policy
is invoked; if the uncertainty is between 33.3% and 66.7%,
question policy is invoked; otherwise, the audio-goal policy
is invoked. Our results show learning of 7y is better.

—e—Language-based Policy

—e—Question Policy

Probability

Audio-Goal Policy

Figure 4: Distribution of estimated audio goal confidence
when each policy is invoked.

Analysis of Policy Dynamics: To study the situations when
the agent invokes the various navigation policies, we record
the confidence of audio-goal estimated by selector policy 7,
when each of the option policies is invoked and compute its
distribution using all test set episodes. As shown in Figure 4,
the audio-goal is invoked when the agent is highly confident
and the language-based policy is invoked when agent’s con-
fidence is low. It is note-worthy that the question policy is
invoked more often when the agent is moderately confident.
Though it potentially risks being penalized by asking wrong
questions, it benefits from seeking confirmation from the or-
acle using its own audio-visual cues to help alleviate navi-
gation uncertainty, thus facilitating efficient navigation.
Insights into Differential Rewarding: In Table 3, we report
the CAVEN performances on varying the penalty parameter
Oques- Note that our differential rewarding scheme gives no
penalty when the agent makes a correct question dgyes = 0,
however penalizes heavily for mistakes. Thus, the gap be-
tween the two penalties act as an incentive for the agent to
make more number of correct trajectory predictions than in
a case where this penalty gap is lower (e.g., dgyes = 0.5,1.0
in which case it is similar to the penalty it receives for the
wrong question). The success rate is much higher suggest-
ing that the incentive the agent receives in making a correct
question influences the learning of the trajectory forecasting
significantly more.

Conclusions

In this paper, we introduced CAVEN for embodied naviga-
tion in an audio-visual setting for the audio goal task, where
the agent is also equipped to converse with an oracle in natu-
ral language, when uncertain. We introduced a novel budget-
aware partially observable semi-Markov decision process to
learn the various control policies for solving the task. Quan-
titative evaluations of CAVEN under various noisy problem
settings, using established and novel metrics, demonstrate
large improvements in performance over competing meth-
ods, substantiating the benefits of our proposed interaction
policies and our architecture. However, the interactions with
the oracle might result in the agent having to wait for feed-
back, which we intend to fix in future work.
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