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ABSTRACT

Target speech extraction aims to extract, based on a given con-
ditioning cue, a target speech signal that is corrupted by inter-
fering sources, such as noise or competing speakers. Building
upon the achievements of the state-of-the-art (SOTA) time-
frequency speaker separation model TF-GridNet, we propose
AV-GridNet, a visual-grounded variant that incorporates the
face recording of a target speaker as a conditioning factor
during the extraction process. Recognizing the inherent dis-
similarities between speech and noise signals as interfering
sources, we also propose SAV-GridNet, a scenario-aware
model that identifies the type of interfering scenario first and
then applies a dedicated expert model trained specifically for
that scenario. Our proposed model achieves SOTA results
on the second COG-MHEAR Audio-Visual Speech Enhance-
ment Challenge, outperforming other models by a significant
margin, objectively and in a listening test. We also perform
an extensive analysis of the results under the two scenarios.

Index Terms— Audio-visual, scenario-aware, speaker
extraction, TF-GridNet, time-frequency

1. INTRODUCTION

Speech, as the most natural form of human communication,
effectively delivers rich information about a speaker’s emo-
tion, identity, location, or spoken content. Many speech pro-
cessing algorithms have been developed to extract such infor-
mation [1–5]. These algorithms are often optimized for clean
speech signals, while real-world speech signals are typically
contaminated by interfering signals such as noise and irrel-
evant speakers, which is exemplified as the “cocktail party
problem” [6]. Therefore, it is often beneficial to incorporate a
pre-processing step to extract the speech signal of interest, a
task commonly known as target speech extraction [7].

Target speech extraction algorithms are usually condi-
tioned on an auxiliary reference or cue, to distinguish the
target speaker in the case of overlapping speakers. A widely
studied case is that of a pre-recorded speech utterance being
used as the reference, where the network extracts the speech
that sounds similar to the speech signal reference [8–14].

This work was performed while Y. Masuyama was an intern at MERL.

A drawback of such an approach is that pre-enrollment of
each target speaker is needed, which is cumbersome or even
unfeasible in some circumstances.

Human attention is known to be multi-modal [15], in-
volving various sensory stimuli that are processed interac-
tively as described by the reentry theory [16]. Notably, stud-
ies have shown that watching a speaker significantly improves
speech comprehension in a challenging “cocktail party” sce-
nario [17–19]. Motivated by these studies and the robustness
of visual cues against acoustic noise, there have been vari-
ous attempts to condition the target speech algorithm on vi-
sual signals. For example, the FaceFilter model explores the
face-voice correspondence using a single face image [20], the
reentry model explores the speech-lip synchronization using
a lip recording [21], and the SEG model explores the speech-
gesture association using an upper-body recording [22].

Among visual cues, face recordings are generally under-
stood to be the most effective and are the most often used, as
visemes provide the exact places of articulation [23–32]. Re-
searchers have explored the use of face recordings in various
target speech networks, such as frequency-domain bidirec-
tional long short-term memory (BLSTM) networks [33, 34],
time-domain temporal convolutional networks (TCN) [21,26,
35–37], or dual-path recurrent neural networks (DPRNN) [38,
39]. In this work, motivated by the recent success of the time-
frequency-domain speaker separation model TF-GridNet, we
propose to condition it on face recordings for audio-visual tar-
get speech extraction, referring to this model as AV-GridNet.

While a target speaker extraction algorithm can work in-
dependently to the type of interfering signals, we contend
that, the characteristics of speech and noise being very dif-
ferent, it may be more advantageous to individually optimize
a model for each interference scenario, as a model separat-
ing speech from speech is likely to more heavily rely on the
intrinsic structure of speech signals, while a model separat-
ing speech from noise is likely to more heavily rely on the
differences between the characteristics of speech and noise.

In this paper, on top of a universal AV-GridNet that pro-
cesses the mixture speech signal irrespective of the type of
interfering signals, we thus propose a scenario-aware AV-
GridNet model, SAV-GridNet, that explicitly integrates the
different interfering scenarios. SAV-GridNet is a cascaded



model that first identifies the type of interfering signals with
a classifier model, and then applies a dedicated expert AV-
GridNet model that is trained specifically for that scenario. To
validate the effectiveness of our proposed networks, we par-
ticipated in the second COG-MHEAR Audio-Visual Speech
Enhancement Challenge [40], and achieved state-of-the-art
(SOTA) results in terms of objective measures such as percep-
tual evaluation of speech quality (PESQ), short-time objective
intelligibility (STOI), and scale-invariant signal-to-distortion
ratio (SI-SDR), in addition to word intelligibility in a listening
test, outperforming the other teams and the baseline [41] by a
significant margin. We also perform an extensive analysis of
the results under the two scenarios.

2. METHODOLOGY

2.1. Related work: TF-GridNet
Our proposed system is built upon the SOTA time-frequency-
domain model called TF-GridNet, which has demonstrated
promising results in various tasks including speech separa-
tion [42] and multi-channel audio-only target speech extrac-
tion [43]. TF-GridNet directly estimates the real and imag-
inary components of the target speech signal from those of
the mixture speech. It encodes a speech signal into TF repre-
sentations of dimension T×F×D with a short-time Fourier
transform (STFT) followed by a 2-dimensional convolution
(Conv2D) and a layer normalization (LN) operation. Then, B
repetitions of GridNet blocks are applied to refine the TF rep-
resentations. Finally, the real and imaginary components of
the target speech are obtained by applying 2-dimensional de-
convolution to the output of the final GridNet block, followed
by an inverse STFT (iSTFT) operation to output the separated
speech signals.

Each GridNet block consists of three successive modules:
1) An intra-frame spectral module that views the TF repre-
sentation as T separate sequences of D-dimensional embed-
dings, each sequence having length F , and applies a BLSTM
layer with H units and a 1-dimensional deconvolution layer
with kernel size I and stride J ; 2) A sub-band temporal mod-
ule that views the TF representation as F separate sequences
of D-dimensional embeddings, each sequence having length
T , and performs a similar procedure as in the intra-frame
spectral module; 3) A full-band self-attention module that
first reshapes the TF representation into a single sequence of
length T with F×D channels, and applies a multi-head self-
attention operation with L heads.

2.2. Proposed AV-GridNet
Instead of separating all speakers into individual streams, we
propose a modified version of TF-GridNet for audio-visual
target speaker extraction called AV-GridNet. AV-GridNet is
conditioned on the face recording v of the target speaker, and
it extracts only the corresponding target speech ŝ from the
mixture speech signal x, irrespective of the type of interfer-
ence signals. The architecture of AV-GridNet is illustrated
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Fig. 1. Our AV-GridNet model extracts the target speech con-
ditioned on the target’s face recording.

in Fig. 1, incorporating an additional visual conditioning net-
work to extract visual features V from the face recording v.

2.2.1. Visual conditioning network
The visual conditioning network comprises a 3-dimensional
convolutional layer (Conv3D), a ResNet 18 layer, and R rep-
etitions of visual temporal convolutional network (V-TCN),
as depicted in Fig. 1. The Conv3D and ResNet 18 layers are
pre-trained on lip-reading tasks and are kept frozen during
the training of AV-GridNet1. This allows the network to re-
tain the ability to encode viseme movements that synchronize
with the phoneme sequence of speech. Additionally, we em-
ploy V-TCN layers as an adaptation, similar to [21, 39], to
adapt the visual embeddings towards speech extraction.

The visual embedding V typically has a lower tempo-
ral resolution compared to speech embeddings. To address
this mismatch, we linearly interpolate the visual embeddings
along the time dimension to match the resolution of the
speech embeddings. We fuse the same visual embeddings
V using a fusion layer to the start of each GridNet block.
Specifically, we concatenate the audio and visual embeddings
along the channel dimension, and project them back to the
original channel dimension of the audio embeddings before
fusion with a linear layer.

2.2.2. Loss function to train the AV-GridNet
In time-domain end-to-end speaker extraction network train-
ing, the negative SI-SDR loss function [45] has been widely
used in most methods. It is formulated as follows:

LSI-SDR(s, ŝ) = −20 log10

∥∥<ŝ,s>
∥s∥2 s

∥∥∥∥ŝ− <ŝ,s>
∥s∥2 s

∥∥ . (1)

1The pre-trained visual network can be found at https://github.
com/smeetrs/deep_avsr [44]
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In this work, we adopt the hybrid loss proposed in [41],
which reduces the over-suppression error and leads to im-
proved perceptual quality and intelligibility for the extracted
speech. The hybrid loss consists of the time-domain SI-SDR
loss as shown in Eq. (1), together with a frequency-domain
multi-resolution delta spectrum loss2:

Lhybrid(s, ŝ) = LSI-SDR(s, ŝ) + γ
1

M

M∑
m=1

Lm
freq-∆(s, ŝ), (2)

where the delta spectrum loss Lm
freq-∆ is calculated at M = 3

different resolutions, using the following triplets of param-
eters for {FFT size, hop size, window length} in samples:
{512, 50, 240}, {1024, 120, 600}, and {2048, 240, 1200}. γ
is a balancing weight that is set to 1 in this paper.

2.3. Proposed scenario-aware SAV-GridNet
2.3.1. Motivation
Speech and noise exhibit very distinct characteristics, and sce-
narios where one or the other acts as interfering signal of a
target speaker may thus require different strategies. Indeed,
a model trained to separate speech from speech is likely to
heavily rely on the structure of speech, and thus to be dif-
ferent from a model trained to separate speech from noise,
which has the opportunity to rely on the intrinsic differences
between the characteristics of the two signals to be separated.
Therefore, we advocate that a dedicated expert AV-GridNet
model that is trained specifically for noise or speech interfer-
ence may better handle each scenario.

To this end, we propose a model, referred to as SAV-
GridNet, that is aware of the different interference scenarios
as depicted in Fig. 2. SAV-GridNet first identifies the type
of interfering scenario with a classifier network, and then ap-
plies a dedicated expert model that is trained specifically for
that scenario. The classifier model and the expert models
AV-GridNetn (for noise interference) and AV-GridNets (for
speech interference) are trained independently.

Note that we consider here scenarios involving either
noise or a single speaker as interference because of the par-
ticular setting of the COG-MHEAR challenge. A generalized
and arguably more realistic setting for practical applications
would be to consider noise-only interference on one hand,
and one or more speakers with or without background noise
on the other. While our proposed classifier-based approach
can be readily extended to this setting, with the correspond-
ing expert models, we leave a thorough investigation of the
performance of such a system to future work.

2.3.2. Classifier network
The classifier network, detailed in the left panel of Fig. 2,
accepts both x and v as inputs. Although the task could be
performed with only x, it may be beneficial to include the

2Code for the hybrid loss function can be found at https://github.
com/zexupan/avse_hybrid_loss [41]

Mixture Speech
Target Speaker's

Face Track Images

Classifier
network

Extracted Speech

AV-GridNet AV-GridNet

x 2

Conv1D (1/256) [80/40]

ReLU & LN

AvgPool1D [4/4]

AvgPool1D [3/3]

V-TCN

AvgPool1D [3/3]

AdpAvgPool1D

Linear (256/1) & Sigmoid

TCN stack {2}

TCN stack {4}
ResNet 18

Conv3D

V-TCN x R

fusion

x 2

Fig. 2. Our scenario-aware SAV-GridNet model is a cascaded
model that first classifies the type of interfering signals with
a classifier network, and then applies dedicated expert mod-
els AV-GridNetn for noise interference or AV-GridNets for
speech interference. In the classifier network, the values in-
side “(/)” represent the input and output feature sizes, the val-
ues inside “[/]” represent kernel size and stride, and the value
inside “{}” represents the upper-bound of the dilation value
in a TCN stack [35]. AvgPool1D and AdpAvgPool1D denote
1D average pooling and 1D adaptive average pooling opera-
tions, respectively.

visual signals here as it could serve as an anchor point for
the target speech. The classifier network design is motivated
by the audio-visual SLSyn network in [21], which consists
of a visual front-end, a speech front-end, and an audio-visual
back-end. It is worth noting that the visual front-end here also
consists of Conv3D, ResNet 18, and V-TCN layers. As with
the visual conditioning network in Fig. 1, the Conv3D and
ResNet 18 layers are pre-trained on lip-reading tasks and are
kept frozen during the training of the classifier model.

We minimize the following binary cross-entropy loss for
the scenario classifier network training:

Lbce = −y log(ŷ)− (1− y) log(1− ŷ), (3)

where y ∈ {0, 1} indicates whether the interfering signal is
speech or noise, while ŷ is the predicted probability. We ar-
bitrarily set speech interference to be the negative class and
noise interference to be the positive class.

2.3.3. Classifier post-processing
If the classifier makes a mistake and the wrong expert model
is used, the results may be detrimental as there is a mismatch
between training and inference for the AV-GridNet. We em-
pirically find that a model trained only on speech interfer-
ence generalizes remarkably well on noise interference, but
not vice versa. Therefore, we propose two post-processing
strategies to mitigate the false-positive cases (i.e., predicting
noise while the ground-truth label is speech).

For the first post-processing strategy (post-proc1), if the
classifier prediction is noise and the criteria in Eq. (4) is met,
which indicates that the universal model is more in agreement

https://github.com/zexupan/avse_hybrid_loss
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with the noise expert than with the speech expert, we classify
the interference as noise, otherwise as speech:

LSI-SDR(ŝ, ŝn) < LSI-SDR(ŝ, ŝs), (4)

where

ŝn = AV-GridNetn(x, v), (5)
ŝs = AV-GridNets(x, v), (6)
ŝ = AV-GridNet(x, v). (7)

For the second post-processing strategy (post-proc2), if
the classifier prediction is noise, and either of the criteria in
Eq. (4) or Eq. (8) is met, with this latter criterion indicating
that the original mixture is further to the output of the noise
expert than to that of the speech expert, we classify the inter-
ference as noise, otherwise as speech:

LSI-SDR(x, ŝn) > LSI-SDR(x, ŝs) (8)

For the samples that are classified as noise interference
initially by the classifier but are changed to speech interfer-
ence by the post-processing, we use the extracted speech from
the universal AV-GridNet model. For all other samples, the
model indicated by the classifier is used.

3. EXPERIMENTAL SETUP

3.1. Dataset
We participated in the second COG-MHEAR Audio-Visual
Speech Enhancement Challenge 3 and evaluated our proposed
method on its benchmark dataset. The speech dataset is from
the Lip Reading Sentences 3 (LRS3) [46], which consists
of thousands of spoken sentences from TED videos. The
noise datasets are from the Clarity challenge [47], which
comprises around 7 hours of domestic noises, the DEMAND
dataset [48], which includes recordings of 18 soundscapes
that represent over 1 hour of data, and the Deep Noise Sup-
pression (DNS) challenge [49], for which only the noise
signals from Freesound [50] are considered. The challenge
has two tracks: systems in track 1 can only use the above-
mentioned provided datasets and unimodal pre-trained mod-
els, while systems in track 2 have no limitations in the datasets
and pre-trained models used.

The training, development, and evaluation sets consist of
34519, 3300, and 2792 scenes respectively. There are two
scenarios in total, a target speaker mixed with a competing
speaker at random signal-to-noise ratio (SNR) levels that
range from −15 dB to +5 dB, or a target speaker mixed with
a noise signal at random SNR levels that range from −10 dB
to +10 dB. The clean speech signals and scenario labels are
only available for the training and development set. The audio
signals are sampled at 16 kHz, while the video has a frame
rate of 25 per second. The target face tracks are provided for
all the samples.

3https://challenge.cogmhear.org/

3.2. Baselines
We use the AV-DPRNN network [39, 41] as our main base-
line, as it is currently one of the best-performing audio-visual
speech extraction networks. There are three main differences
between AV-DPRNN and AV-GridNet: 1) The speech en-
coder and decoders used by AV-DPRNN are in the time do-
main, while those of AV-GridNet are in the time-frequency
domain; 2) AV-DPRNN is a mask-based method that uses
dual-path BLSTM as the extractor, while AV-GridNet directly
maps the signals using the GridNet blocks as the extractor; 3)
The visual embeddings are only fused at the first repeat of the
extractor for AV-DPRNN, while the visual embeddings are
fused at every repeat of the extractor for AV-GridNet. We also
report results by the official baseline released by the challenge
organization. It has a similar architecture to the AV-DPRNN
network [39, 41], but with no visual pre-training involved.

3.3. Model and training settings
For the baseline AV-DPRNN, the hyperparameter setting fol-
lows [39, 41]. For the classifier network in SAV-GridNet, the
TCN stack hyperparameter follows [35]. For AV-GridNet, the
V-TCN hyperparameter follows [39, 41]. We set D = 48,
B = 6, and R = 5. The STFT window size is 256, the
hop size is 128, and the square root Hann window is used.
A 256-point discrete Fourier transform is applied to extract
129-dimensional complex spectra at each frame. For other
hyperparameters in the GridNet block, we set I = 4, J = 1,
H = 192, E = 4, and L = 4 [42].

For all model training, we use the Adam optimizer with
an initial learning rate of 0.001, the learning rate is halved if
the best development loss (BDL) does not improve for 6 con-
secutive epochs, and the training stops when the BDL does
not improve for 20 consecutive epochs. We train the model
on 8 GPUs with 48GB RAM each. To fit the data in the
GPU memory during training, the audio clips are truncated to
3 seconds for AV-GridNet, 12 seconds for AV-DPRNN, and
25 seconds for the classifier network.

4. RESULTS

We evaluate the speech signals extracted by our proposed
networks and the baselines using objective measures PESQ,
STOI, and SI-SDR. PESQ measures the perceptual quality of
the extracted speech signal and is in the range of −0.5 to 4.5;
STOI measures the intelligibility of the extracted speech sig-
nal and is in the range of 0 to 1; and SI-SDR measures the
signal quality of the extracted speech signal in dB and is un-
bounded. The higher the better for all three metrics. We use
PESQ as our main measure when describing the results, as
other measures show similar trends.

4.1. Comparison with baseline and ablation study
In Table 1, we present the results of our baseline and proposed
models on the development set. For our baseline AV-DPRNN,
it is seen that using hybrid loss (Sys. 2) outperforms (Sys. 1)

https://challenge.cogmhear.org/


Table 1. Development set results on the 2nd COG-MHEAR Audio-Visual Speech Enhancement Challenge benchmark. Exper-
iments are done for track 1, in which only the provided dataset is used in training. We use the system number (Sys.) to identify
different systems. Init. indicates which (if any) other system is used to initialize that system’s parameters (note that the opti-
mizer parameters are always re-initialized). DM stands for dynamic mixing, which involves simulating the mixture utterances
on the fly during training using the protocol provided by the challenge organizers. We report performance on the speech+speech
scenario, the speech+noise scenario, and overall. The symbol * indicates the model used the oracle scenario labels.

Speech+Speech Speech+Noise Overall

Sys. Model Init. DM Loss PESQ STOI SI-SDR PESQ STOI SI-SDR PESQ STOI SI-SDR

- Noisy - - - 1.17 0.60 −5.0 1.15 0.68 −4.4 1.16 0.64 −4.7

1 AV-DPRNN -
✗

LSI-SDR 1.68 0.84 8.8 1.71 0.82 9.8 1.69 0.83 9.3
2 1 Lhybrid 2.23 0.90 12.6 2.02 0.86 11.4 2.12 0.88 12.0

3 AV-GridNet - ✗ Lhybrid
3.07 0.95 17.3 2.36 0.87 12.8 2.78 0.92 14.6

4 3 ✓ 3.10 0.95 16.7 2.62 0.91 13.9 2.86 0.93 15.3

5 AV-GridNets 3 ✓ Lhybrid
3.23 0.95 17.5 2.56 0.90 13.4 2.89 0.93 15.5

6 AV-GridNetn 1.27 0.61 −4.7 2.68 0.91 14.2 1.98 0.76 4.8

7 SAV-GridNet
- ✓ Lhybrid

3.22 0.95 17.4 2.68 0.91 14.2 2.95 0.93 15.8
8 + post-proc1 3.23 0.95 17.5 2.68 0.91 14.2 2.95 0.93 15.8
9 + post-proc2 3.23 0.95 17.5 2.68 0.91 14.2 2.95 0.93 15.8

10 SAV-GridNet* - ✓ Lhybrid 3.23 0.95 17.5 2.68 0.91 14.2 2.95 0.93 15.8
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Fig. 3. Confusion matrix of the scenario classification on the
development set.

by 0.43 on the overall PESQ, showing the effectiveness of the
frequency-domain loss on the speech perceptual quality.

Our first proposed AV-GridNet (Sys. 3) outperforms AV-
DPRNN (Sys. 2) by 0.66 for PESQ. With additional dynamic
mixing (Sys. 4), the PESQ further improves by 0.08. Our
expert models, AV-GridNets and AV-GridNetn, improved
PESQ compared to AV-GridNet by 0.13 in the speech+speech
scenario and by 0.06 in the speech+noise scenario, respec-
tively. Thanks to adaptively choosing the expert models,
our proposed SAV-GridNet (Sys. 7) outperforms the AV-
GridNet (Sys. 4) regardless of the scenarios. While the post-
processing techniques (Sys. 8 and 9) do not appear to show
performance improvements on the averaged metrics, they do
reduce outliers, as will be investigated in the next subsection.
The performance of our best system is nearly identical to that
of SAV-GridNet with the oracle scenario labels (Sys. 10).

4.2. Analysis for speech and noise interfering signals
Fig. 3 illustrates the confusion matrix of the scenario classi-
fication with and without post-processing. Our scenario clas-
sification network achieved accuracy over 99% without post-

processing. Since the false-positive cases (predicting noise
when the ground-truth label is speech) severely deteriorate
the subsequent target speech extraction performance accord-
ing to Sys. 6 in Table 1, it is important to reduce the number of
false-positive cases, which post-proc1 does successfully. This
however increased the false-negative cases to 58, but post-
proc2 mitigated this increase and performed best overall in
terms of target speech extraction.

This tendency is also confirmed from the distributions of
PESQ shown in Figs. 4–6. SAV-GridNet (Sys. 7, Fig. 5)
improved the overall performance from AV-GridNet (Sys. 4,
Fig. 4), but it had more outliers in the speech+speech sce-
nario. This is likely because AV-GridNetn was applied to
some speech+speech samples due to misclassification. As
the post-processing techniques successfully reduced the false-
positive cases, Sys. 9 reduced the number of outliers with low
PESQ in the left panel of Fig. 6, while substantially preserv-
ing the distribution in the speech+noise scenario. Overall, the
number of samples with a PESQ value smaller than 1.5 went
down from 62 for Sys. 7 to 54 and 53 for Sys. 8 and 9, respec-
tively, post-proc1 thus reducing the number of such failing
samples by 13%, and post-proc2 by 14.5%.

Analyzing low performing samples: When informally lis-
tening to samples with the lowest objective metrics, we
noticed that, while a few samples did have mid-utterance
switching between target and interfering speakers in the
speech+speech scenario, the main issue was that many of the
target speech signals were not very clean, e.g., they contained
impulsive disturbances from microphone contact or crowd
noises such as cheering and clapping. To quantify objectively
the quality of the target speech signals, we used the P808
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Fig. 4. PESQ of extracted speech signal from system 4 for the
speech (left) and noise (right) interfering signals.
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Fig. 5. PESQ of extracted speech signal from system 7 for the
speech (left) and noise (right) interfering signals.
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Fig. 6. PESQ of extracted speech signal from system 9 for the
speech (left) and noise (right) interfering signals.

DNSMOS [51] score, a reference-free measure for evaluating
overall audio quality. Figure 7 displays the distribution of
SI-SDR vs. DNSMOS. We chose SI-SDR over PESQ as the
reference metric for this figure because the larger dynamic
range makes outliers more visible. We note that all of the
lowest SI-SDR samples output by our model have DNSMOS
values below 3.0 in Fig. 7, and we found by informal listening
that these samples contained noisy target speech. As datasets
become larger, using a reference-free speech quality metric
could help remove noisy target speech samples.

4.3. Performance on leaderboard
In Table 2, we present the performance of our models on the
hidden evaluation set, for which the numbers are obtained
from the submissions to the leaderboard4. We can see that our
AV-DPRNN baseline (Sys. 2) outperforms the challenge base-
line by 0.53 in terms of PESQ, thanks to the combined use
of the presented pre-trained models, hybrid loss, and training
settings. We also report the results of the top 3 other teams on
track 1 in terms of PESQ. Results for track 2 are not reported
as they did not improve upon those of track 1.

AV-GridNet outperforms AV-DPRNN by 0.65 in terms of

4https://challenge.cogmhear.org/#/results
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Fig. 7. Development set SI-SDR improvement [dB] vs. P808
DNSMOS for system 9 for speech (left) and noise (right) in-
terfering signals. Many of the lowest performing samples ap-
pear to have noisy ground-truth signals based on their low
score under the reference-free DNSMOS quality measure.

Table 2. Evaluation set results on the second COG-MHEAR
Audio-Visual Speech Enhancement Challenge benchmark.
We only present the top-3 teams on track 1 out of 8 other
teams based on the PESQ ranking.

Sys. Model Track PESQ STOI SI-SDR

- Noisy - 1.14 0.44 −5.1
Baseline 1.41 0.56 3.7

-
Team 1

1
1.61 0.68 8.8

Team 2 1.66 0.68 6.7
Team 3 1.76 0.71 7.7

2 AV-DPRNN

1

1.94 0.73 10.4
4 AV-GridNet 2.59 0.83 13.8
7 SAV-GridNet 2.71 0.84 14.5
8 + post-proc1 2.71 0.84 14.5
9 + post-proc2 2.71 0.84 14.5

PESQ, while SAV-GridNet further outperforms AV-GridNet
by 0.12. Similarly to the results obtained on the develop-
ment set, we cannot see a difference on the averaged metrics
from using post-processing with SAV-GridNet (Sys. 8 and
9), but we hope that the number of outliers will again be re-
duced. This will need to be confirmed when/if the evaluation
set is released. Furthermore, in a listening test, we achieved
an overall word intelligibility score of 84.54%, compared to
57.56% for the baseline and 80.41% for the next best team.
The Fisher’s least significant difference (LSD) was 2.14%,
indicating that our model offered statistically significant in-
telligibility improvements compared to all other systems.

5. CONCLUSION

In this work, we explored visually-grounded target speaker
extraction based on the TF-GridNet separation architec-
ture. Considering the different characteristics of noise and
speech as interfering signals raised by the 2nd COG-MHEAR
Audio-Visual Speech Enhancement Challenge, we proposed
a scenario-aware model named SAV-GridNet that is capable
to apply an expert model to individual scenarios indepen-
dently. Experimental results show that the scenario-aware
model generally improves the quality of the extracted speech,
while reducing the number of samples with very low quality.

https://challenge.cogmhear.org/#/results


6. REFERENCES

[1] Z. Pan, Z. Luo, J. Yang, and H. Li, “Multi-modal at-
tention for speech emotion recognition,” in Proc. Inter-
speech, 2020.

[2] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and
S. Khudanpur, “X-vectors: Robust DNN embeddings
for speaker recognition,” in Proc. ICASSP, 2018.

[3] X. Qian, M. Madhavi, Z. Pan, J. Wang, and H. Li,
“Multi-target DoA estimation with an audio-visual fu-
sion mechanism,” in Proc. ICASSP, 2021.

[4] J. Wang, X. Qian, and H. Li, “Predict-and-
Update network: Audio-visual speech recognition in-
spired by human speech perception,” arXiv preprint
arXiv:2209.01768, 2022.

[5] R. Tao, Z. Pan, R. K. Das, X. Qian, M. Z. Shou, and
H. Li, “Is someone speaking? Exploring long-term tem-
poral features for audio-visual active speaker detection,”
in Proc. ACM Multimedia, 2021.

[6] A. W. Bronkhorst, “The cocktail party phenomenon: A
review of research on speech intelligibility in multiple-
talker conditions,” Acta Acust. United Acust., vol. 86,
no. 1, pp. 117–128, 2000.

[7] K. Zmolikova, M. Delcroix, T. Ochiai, K. Kinoshita,
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