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Abstract
Parameter-Efficient Fine-Tuning (PEFT) has recently garnered significant attention, due to
the enormous size of Large Language Models (LLM). Among various PEFT methods, Low-
Rank Adaptation (LoRA) demonstrates comparable performance to full fine-tuning, despite
having significantly fewer trainable parameters. In this work, we first generalize LoRA from
a low-rank linear adaptation/mapping to low- dimensional, non-linear adaptation/mapping,
called Low-Dimensional Adaptation (LoDA). We further propose LoDA+, which further im-
proves the expressiveness of the non-linear adaptation and still uses almost the same number
of tunable parameters as LoRA. Both LoDA and LoDA+ include LoRA as a special case.
To improve computational efficiency at inference, we further propose R-LoDA(+) and S-
LoDA(+), replacing the pretrained weight matrix by its low-rank or sparse approximation,
which is frozen during fine-tuning. Empirical evaluations on Natu- ral Language Generation
tasks show that LoDA(+) and some variants outperform LoRA as well as other baselines.
We will release a package that facilitates the integration of LoDA(+) and their variants with
PyTorch models.
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Abstract

Parameter-Efficient Fine-Tuning (PEFT) has recently garnered significant attention,
due to the enormous size of Large Language Models (LLM). Among various PEFT
methods, Low-Rank Adaptation (LoRA) demonstrates comparable performance
to full fine-tuning, despite having significantly fewer trainable parameters. In this
work, we first generalize LoRA from a low-rank linear adaptation/mapping to low-
dimensional, non-linear adaptation/mapping, called Low-Dimensional Adaptation
(LoDA). We further propose LoDA+, which further improves the expressiveness
of the non-linear adaptation and still uses almost the same number of tunable
parameters as LoRA. Both LoDA and LoDA+ include LoRA as a special case.
To improve computational efficiency at inference, we further propose R-LoDA(+)
and S-LoDA(+), replacing the pre-trained weight matrix by its low-rank or sparse
approximation, which is frozen during fine-tuning. Empirical evaluations on Natu-
ral Language Generation tasks show that LoDA(+) and some variants outperform
LoRA as well as other baselines. We will release a package that facilitates the
integration of LoDA(+) and their variants with PyTorch models.

1 Introduction
Large language models (LLMs), e.g., ChatGPT (OpenAI, 2023), PALM2 (Anil et al., 2023), and
LLaMA2 (Touvron et al., 2023) have shown great promise in generating human-like text and
have sparked excitement about their potential applications across various industries. The sizes of
large language models (LLMs) have been growing at an unprecedented rate, with current models
boasting parameter counts in the hundreds of billions or even trillions, necessitating massive amounts
of computational resources for training and inference. For domain-specific tasks, recent studies
show that the performance of the Pre-trained Languge Model (PLM) can be significantly improved
by further fine-tuning on domain-specific data. Therefore, fine-tuning PLMs for domain-specific
tasks has become the de facto procedure. However, full fine-tuning of such LLMs is still very
expensive. For instance, fine-tuning a 65 billion parameter model requires more than 780 GB of GPU
memory (Dettmers et al., 2023). Parameter-Efficient Fine-Tuning (PEFT) only fine-tunes a small
set of parameters, which may be a subset of the existing model parameters or a set of newly added
parameters, thereby greatly reducing the computational and memory costs. Another advantage of
PEFT is that, in addition to the pre-trained model, only a small number of (extra) model parameters
need to be stored for each fine-tuned task. For multiple downstream tasks, PEFT greatly saves
the storage, while full fine-tuning needs to generate a new large model for each downstream task1.
Besides parameter savings, PEFT makes it possible to quickly adapt to new tasks without catastrophic
forgetting (Pfeiffer et al., 2021), which has been observed during the full fine-tuning of LLMs. PEFT

1An example from Hu et al. (2022) is fine-tuning GPT-3 175B uses LoRA with rank 4. The model is 350GB,
and LoRA adapter size is only 35MB for each downstream task. Storing 100 adapted models only requires
350GB + 35MB × 100 ≈ 354GB as opposed to 350GB × 100 ≈ 35TB of the full fine-tuning for 100 tasks.
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Figure 1: Overview of (a) LoRA; (b) LoDA; (c) S-LoDA; (d) R-LoDA; (e) LoDA+. The blue part is
frozen during fine-tuning, and only the orange part is trained. In LoDA+, there is essentially only one
matrix B, but the non-linear part has additional non-linear operations after B (e.g., LeakyReLU).

approaches have also been shown to be better than full fine-tuning in the low-data regimes (Li &
Liang, 2021; Hu et al., 2022). Therefore, many PEFT methods have been proposed. For example,
prefix tuning (Li & Liang, 2021) and prompt tuning (Lester et al., 2021) prepend some tunable prefix
tokens to the input or hidden layers and only train these soft prompts during fine-tuning. Several
adapter tuning methods (Houlsby et al., 2019; Rebuffi et al., 2017; Pfeiffer et al., 2021; Rücklé
et al., 2020) insert (and tune) small neural modules called adapters to some layers of the PLM.
More recently, Hu et al. (2022) propose to use low-rank decomposition matrices to approximate the
parameter update of the weight matrix of a dense layer, and in particular, they propose to update the
Query and Value projection matrices in the Transformer architecture, which shows very promising
performance and has become a popular PEFT tool for LLMs in modern libraries, e.g., Hugging Face
PEFT library (Mangrulkar et al., 2022). For a comprehensive review and comparison, we refer the
interested readers to recent surveys (Pfeiffer et al., 2023; Lialin et al., 2023; Sabry & Belz, 2023;
Ding et al., 2023).

LoRA is motivated by the ‘intrinsic low-dimensional task adaptation’ hypothesis of Aghajanyan et al.
(2020). LoRA assumes that the change in weights during model adaptation has a low ‘intrinsic rank’,
leading to the Low-Rank Adaptation (LoRA) approach (Hu et al., 2022). For a dense layer of the
PLM, its original weight parameters, e.g., W ∈ Rd×d (blue part of Figure 1a) is frozen. During
fine-tuning, LoRA uses the low-rank decomposition matrices A ∈ Rd×r and B ∈ Rr×d to constrain
the weight update ∆W = AB (see orange part of Figure 1a). As the rank r is typically set to be very
small, the number of parameters in A and B are significantly less than that of the original W .

Further, let the input to that dense layer be x, the output of pre-trained dense layer is h0 = xW . After
LoRA fine-tuning of that dense layer, the new output h′

LoRA = h0 +∆hLoRA, where ∆hLoRA =
xAB. Thus, the mapping from input x to the update ∆hLoRA = xAB by LoRA is a low-rank (i.e.,
r-dimensional) linear mapping.

Though the update of mapping x → ∆h likely has an intrinsic low dimension for task adaptation, it
may not be well captured by the linear low-rank adaptation xAB in LoRA, but rather a more general
low-dimensional adaptation f(x). Therefore, we propose the Low-Dimensional Adaptation (LoDA)
approach and its variants, which will be detailed in next section.

Notation We follow the conventional terminologies for the Transformer architecture, where dmodel

denotes the input/output dimension of a Transformer block. We use Wq, Wk, Wv to refer to the
query/key/value projection matrices in the self-attention module.

2 Proposed Method
One key question is how to design and realize low-dimensional adaptation fLoDA(x) to generalize
LoRA, while keeping LoRA as a special case. We propose a deep neural network architecture for
LoDA as illustrated in Figure 1b. The function fLoDA(·) is realized by multi-layer neural networks
with a bottleneck structure (to maintain parameter efficiency) and a residual connection between
matrices A and B. It can be viewed as a non-linear version of LoRA with non-linear mapping
x → ∆hLoDA = fLoDA(x).

Mathematically, with our proposed residual connection architecture of LoDA in Figure 1b, we have
∆hLoDA = fLoDA(x) = xAB + f1(xA)B, where f1(·) is a non-linear function between matrix A
and matrix B, which consists of a series of linear layers and non-linear operations (e.g., LeakyReLU
activation, layer-normalization). Note that Figure 1b is just an example of a LoDA structure, e.g.,
the non-linear part between matrix A and matrix B could have more layers than illustrated, and may

2



use non-square matrices. LoRA is a special case of LoDA if f1(xA)B is zero (e.g., a hidden layer’s
weights in LoDA are zero) or if f1(·) is linear, for example.

Extension to LoDA+ Though LoDA generalizes LoRA from a low-rank linear mapping/adaptation
to low-dimensional, non-linear mapping/adaptation, and keeps LoRA as a special case, the image of
such non-linear mapping still lies in a low-dimensional linear subspace (i.e., the range of matrix B).
Is it possible to further generalize that to a low-dimensional (non-linear) manifold, while keeping
LoRA as a special case, and using almost the same number of tunable parameters as LoRA?

We further propose following mapping for LoDA+, illustrated in Figure 1e, that gives a positive
answer:

∆hLoDA+ = fLoDA+(x) = xAB + f2(f1(xA)B). (1)

Note that, the key difference between LoDA and LoDA+ is the additional non-linear function f2(·),
e.g., non-linear activation and/or layer-normalization. With this additional non-linear function, the
image of the mapping fLoDA+ becomes the combination of a linear subspace (the first term in Eq. 1)
and a non-linear manifold (the second term in Eq. 1). For convenience, we will use LoDA(+) to stand
for ‘LoDA and LoDA+’.

LoDA(+) viewed as deep parallel adapters He et al. (2022) viewed LoRA as a parallel adapter.
Similarly, the proposed LoDA can be viewed as a deep parallel adapter. Recent work He et al. (2022);
Zhu et al. (2021) propose to use the traditional shallow adapter in a parallel fashion instead of the
usual sequential fashion. The shallow adapter there only has a down-projection layer, followed by
a non-linear activation function (typically ReLU), then an up-projection layer, and the adapter is
attached to the input and output of the Attention module or the Feed-Forward Network module of a
Transformer block in an LLM. We refer the interested readers to Hu et al. (2023, Figure 1) and He
et al. (2022, Table 1) for more details. In contrast, the proposed LoDA, which aims at learning a
low-dimensional, non-linear mapping, has a deep structure to capture the underlying nonlinearity.
Further, in LLMs, LoDA and LoRA are attached to Wq and Wv, not attached to the whole Attention
module nor Feed-Forward Network module of Transformer block. Also, it is interesting to note that
LoDA has a Residual Connection inside, that is between the output of matrix A and the input of
matrix B (see Figure 1b), which is different from the existing adapters. More interestingly, LoDA+
can be viewed as a deep+shallow dual parallel adapter, where the shallow and deep parts correspond
to the first and second terms in Eq. 1 respectively.

S-LoDA(+) and R-LoDA(+) As the dimension of the non-linear layers in LoDA(+) is restricted to a
very small r, the additional computation cost during the inference is very small (see Appendix A.4 for
more details). Further, as LoDA(+) runs in parallel with the pre-trained weight matrix W , it will not
introduce apparent delay in the overall inference with parallelization, unlike the sequential adapters
in the literature. With LoDA(+), the main bottleneck of the computation is still on W . Is it possible
to further improve the computation efficiency of a LoDA(+) fine-tuned model, and even better than
the pre-trained model?

We also observe that the combined projection matrix Wproj = [Wq,Wk,Wv], inside the Attention
module of GPT2-medium (with size 1024×3072), can be well-approximated by a relatively low-rank
matrix or a relatively sparse matrix. More details can be found in Appendix A.1.

The above questions and observations motivate us to further propose R-LoDA(+) and S-LoDA(+),
which are LoDA(+) combined with the low-rank or sparsified approximations of W , which are
frozen during the fine-tuning, and the adapter part is learned/fine-tuned given such approximated
W . See Figure 1c and Figure 1d for illustrations2. They can be computationally more efficient than
the pre-trained model during inference, more details can be found in Section A.4. Our empirical
investigation shows that even when the pre-trained projection matrix Wproj is low-rank approximated
or sparsified, combining with LoDA(+) can still achieve competitive performance.

Number of fine-tuning parameters The number of trainable parameters of LoRA and proposed
methods are determined by the bottleneck dimension r and the shape of the original weights. More
specifically, in Figure 1, the matrices A and B in all methods are of shape d by r. The proposed
methods have additional two r by r bottleneck matrices. Their non-linear activation function is
LeakyReLU with fixed slope 0.8, and their layer-normalization is not trainable. So, the total number

2If applying R-LoDA (or S-LoDA) on Wq and Wv, one could approximate Wq and Wv separately, but we
directly approximate the whole Wproj = [Wq,Wk,Wv] to make the model inference more efficient.
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of trainable parameters for LoRA is 2rdL, and for all proposed methods is 2(rd+ r2)L, where L is
the number of weight matrices we apply LoRA/LoDA(+)/S-LoDA(+)/R-LoDA(+) to. Note that they
are almost the same when r � d. For example, in GPT-2 medium, d = dmodel = 1024 and r = 4
are used for all methods, r2 is negligible compared to rd. As in LoRA, we only apply the proposed
methods to Wq and Wv (of shape dmodel × dmodel) in the self-attention module.

3 Empirical Studies
We focus on Natural Language Generation (NLG) tasks, and we follow the setup of Hu et al. (2022);
Li & Liang (2021) on GPT-2 medium (Radford et al.) for a direct comparison. We compare the
downstream task performance of proposed methods with LoRA, adapter tuning methods by Houlsby
et al. (2019) (AdapterH) and Lin et al. (2020) (AdapterL), prefix-layer tuning (PreLayer), full fine-
tuning (FT), fine-tuning the top-2 layers (FTTop2), same as in Hu et al. (2022). We additionally
compare with directly fine-tuning the projection matrices Wq and Wv (denoted as FTWq,Wv ).

The benchmark datasets we evaluated on are E2E NLG Challenge (Novikova et al., 2017) and
DART (Nan et al., 2020). We notice that the model performs very poorly if not adapted. For
LoDA(+), we simply set their hyper-parameters (e.g., learning rate) the same as that used by LoRA
(indicated in Table 11 of Hu et al. (2022)3) without tuning, which may favor LoRA. For R-LoDA(+)
and S-LoDA(+), since the pre-trained Wproj is approximated, training a few more epochs may be
needed to pickup some details that are potentially lost during approximation. Therefore, we train
R-LoDA(+) and S-LoDA(+) up to 10 epochs and choose the best result from epoch 5 and epoch 10.

Table 1 compares performance on the E2E NLG Challenge. LoDA, LoDA+, and S-LoDA outperform
the baselines (including Fine-Tuning methods) on all 5 evaluation metrics. Other variants R-LoDA(+)
and S-LoDA+ perform better than or at least on-par with LoRA and other baselines. We also repeat
our experiments on DART (Nan et al., 2020) following the setup of Hu et al. (2022); Li & Liang
(2021). The results, where LoDA, LoDA+ and S-LoDA(+) outperform LoRA, are shown in Table 2
of Appendix A.2, due to space constraints, with further discussion also found in Appendix A.3.

Table 1: GPT-2 medium with different adaptation methods on E2E NLG Challenge. For all metrics,
higher is better. * indicates numbers published in prior works, as compiled by Hu et al. (2022).

Method Approx # Trainable E2E NLG Challenge
Wproj Parameters BLEU NIST MET ROUGE-L CIDEr

FT* No 354.92M 68.2 8.62 46.2 71.0 2.47
AdapterL* No 0.37M 66.3 8.41 45.0 69.8 2.40
AdapterL* No 11.09M 68.9 8.71 46.1 71.3 2.47
AdapterH* No 11.09M 67.3±.6 8.50±.07 46.0±.2 70.7±.2 2.44±.01
PreLayer* No 0.35M 69.7 8.81 46.1 71.4 2.49
FTTop2* No 25.19M 68.1 8.59 46.0 70.8 2.41
FTWq,Wv No 48.00M 69.4±.1 8.74±.02 46.0±.0 71.0±.1 2.48±.01
LoRA No 0.38M 69.0±.7 8.69±.07 46.5±.2 71.3±.4 2.51±.00
LoDA No 0.38M 70.2±.3 8.83±.03 46.6±.1 71.6±.1 2.53±.01
S-LoDA Keep 40% 0.38M 70.2±.3 8.83±.03 46.6±.1 71.6±.1 2.53±.01
R-LoDA Rank300 0.38M 69.7±.2 8.79±.03 46.7±.0 71.5±.3 2.52±.00
LoDA+ No 0.38M 69.9±.3 8.81±.04 46.5±.0 71.4±.0 2.52±.00
S-LoDA+ Keep 40% 0.38M 69.6±.5 8.77±.06 46.7±.1 71.6±.2 2.50±.01
R-LoDA+ Rank300 0.38M 70.1±.4 8.81±.05 46.4±.1 71.6±.3 2.52±.01

4 Conclusion and Future Work
We generalized LoRA to the framework of LoDA(+), where LoRA is a special case, and have
shown their very promising performance. To improve computation efficiency, we extended LoDA(+)
to R-LoDA(+) and S-LoDA(+), which show promising performance. One future direction is to
approximate W with other structured matrices, e.g., block-sparse matrix, Monarch matrix (Dao et al.,
2022), or with quantization of the pre-trained model, such as in QLoRA (Dettmers et al., 2023).

3We do not know the random seeds used in Hu et al. (2022). So we run LoDA(+) and LoRA under the same
random seeds for fair comparisons. On DART dataset, we can not reproduce the results of LoRA using the
default 5 epochs, and we run 10 epochs instead to obtain results similar to that reported in Hu et al. (2022).
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A Appendix
A.1 Low-rank or sparse approximation
We observe that the combined projection matrices Wproj = [Wq,Wk,Wv] (of size 1024 × 3072),
within the Attention module of GPT2-medium, can be well-approximated by a relative low-rank
matrix with rank < 500 or a relatively sparse matrix with more than half of the entries equal to zero.
More specifically, Figure 2a shows the percentage of total energy (i.e.,

∑R
i=1 σ

2
i /

∑1024
i=1 σ2

i ) w.r.t.
the number of top singular values R of Wproj in the first Transformer block of GPT2-medium. We
can see that, even using only the top 300 singular value components of Wproj preserves over 93%
of its total energy. Similarly, Figure 2b shows the percentage of total energy w.r.t. the percentage
of nonzero entries of Wproj (by zeroing out smaller magnitude weights). We see that keeping 40%
larger magnitude entries of Wproj can preserve over 96% of its total energy.
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(a) (b)
Figure 2: (a) Percentage of total energy w.r.t. the number of top singular values of Wproj. (b)
Percentage of total energy w.r.t. the percentage of nonzero entries of Wproj (by zeroing out smaller
magnitude weights).

A.2 Additional experiments and discussions

We also perform experiments on the DART dataset (Nan et al., 2020) following the setup of Hu et al.
(2022); Li & Liang (2021). This open-domain data-to-text dataset has a total of 82K examples.
DART is a significantly larger and more complex data-to-text task compared to the E2E NLG
Challenge dataset (Novikova et al., 2017). We evaluate with the BLEU (Papineni et al., 2002),
METEOR (Lavie & Agarwal, 2007), and TER (Snover et al., 2006) metrics, similar to Hu et al.
(2022), but with slightly higher precision, with the results shown in Table 2. Note that the number of
trainable parameters in FTWq,Wv accounts for nearly 1/7 of the total model parameters, and is 126
times more than that of LoRA and proposed methods.

LoDA and especially LoDA+ again outperform LoRA and FTWq,Wv . We notice that higher rank and
less sparseness, respectively, in R-LoDA(+) and S-LoDA(+), are needed for DART, as it is a more
complex task than the E2E NLG Challenge. Nevertheless, even with pruning 40% of the entries in
Wproj, S-LoDA(+) can outperform LoRA and FTWq,Wv . For R-LoDA(+), approximating Wproj with
the 300 top singular value components seems insufficient on DART, while it is sufficient on E2E
NLG Challenge in Table 1 (as R-LoDA and R-LoDA+ outperform baselines on E2E NLG Challenge
with Rank = 300). This is likely because the E2E NLG Challenge is a relative easier downstream task,
so a rough low-rank approximation of the pre-trained weights combined with LoDA(+) fine-tuning
is sufficient. R-LoDA+ with Rank = 500 shows reasonable performance. We observe a trade-off
between efficiency and accuracy in R-LoDA(+) and S-LoDA(+). This may shed light on how to
choose the Rank and Sparsity in R-LoDA(+) and S-LoDA(+), which depends on the downstream task
as well as its relation to the pre-trained tasks. Such (downstream) task-dependent auto-configuration
of Rank and Sparsity is a topic for our future work.

A.3 Why LoDA(+) can outperform FTWq,Wv?

From Table 1 and Table 2, one can see that LoDA and LoDA+ consistently outperform FTWq,Wv on
all evaluation metrics. Recall that LoDA(+) are applied to projection matrices Wq and Wv, while
FTWq,Wv directly fine tunes the whole matrices Wq and Wv. Naturally, one may question why
LoDA(+) does better.

It is important to note that directly fine tuning the weight matrix W of a dense layer still retains a
linear mapping. Mathematically, let the input to that dense layer be x, the output of pre-trained dense
layer is h0 = xW . After directly fine-tuning that dense layer, we have W ′ = W +∆W , and the new
output h′

FTW = xW ′ = xW + x∆W = h0 +∆hFTW , where ∆hFTW = x∆W . So the mapping
from input x to the update ∆hFTW is still a linear mapping, though this mapping is generally not
low-rank4.

4The definition of the rank of a linear mapping can be found at https://en.wikipedia.org/wiki/
Linear_map
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In contrast, recall that for LoDA and LoDA+, we have

∆hLoDA = fLoDA(x) = xAB + f1(xA)B, (2)
∆hLoDA+ = fLoDA+(x) = xAB + f2(f1(xA)B). (3)

These mappings are non-linear, and cannot be expressed in the form of ∆h = x∆W . This is in line
with the observation in Eq. 5 of Liao et al. (2023), when the authors discuss the limited learning
capacity of LoRA. From that perspective, our proposed LoDA(+) can be viewed as expanding the
learning capacity of LoRA, which further explains why LoDA(+) can do better.

Table 2: GPT-2 medium with different adaptation methods on DART. For TER metric, lower is better.

Method Approx # Trainable DART
Wproj Parameters BLEU↑ MET↑ TER↓

FTWq,Wv No 48.00M 47.1±.1 36.0±.0 0.480±.000
LoRA No 0.38M 47.2±.1 36.0±.0 0.480±.000
LoDA No 0.38M 47.3±.1 36.0±.0 0.480±.000
S-LoDA Keep 60% 0.38M 47.3±.2 36.0±.0 0.477±.006
S-LoDA Keep 50% 0.38M 47.1±.2 36.0±.0 0.480±.000
R-LoDA Rank500 0.38M 46.8±.7 35.9±.1 0.483±.006
R-LoDA Rank400 0.38M 46.6±.2 35.9±.1 0.483±.006
R-LoDA Rank300 0.38M 46.5±.2 35.5±.4 0.487±.006
LoDA+ No 0.38M 47.3±.2 36.0±.0 0.477±.006
S-LoDA+ Keep 60% 0.38M 47.3±.1 36.0±.0 0.473±.006
S-LoDA+ Keep 50% 0.38M 47.1±.2 36.0±.0 0.480±.000
R-LoDA+ Rank500 0.38M 47.1±.5 35.9±.1 0.480±.000
R-LoDA+ Rank400 0.38M 46.7±.2 35.9±.1 0.483±.006
R-LoDA+ Rank300 0.38M 46.3±.6 35.6±.5 0.483±.006

A.4 Computational efficiency during inference
In Figure 1, let the input embeddings be X ∈ Rn×d, where n is sequence length. For the LoDA(+)
part, recall that A ∈ Rd×r, B ∈ Rr×d, and the two bottleneck matrices in Figure 1b-Figure 1e are
r by r square matrices, and there are some non-linear activation and/or layer-normalization layers.
The computation complexity of a LoDA(+) adapter during the inference is O(rdn+ dn+ r2n+ rn),
where the dominant part is O(rdn), which is much lower than computing XWq (or XWv), which
costs O(d2n), since r � d (recall that r = 4 and d = 1024 in GPT2-medium).

For R-LoDA and S-LoDA, as mentioned earlier, if applying them on Wq and Wv, one could low-rank
approximate (or sparsify) Wq and Wv separately. To make the model inference more efficient, we
directly approximate the whole Wproj = [Wq,Wk,Wv] instead. More specifically, for Wproj ∈
Rd×3d, we can approximate it using the product of matrix WA ∈ Rd×R and matrix WB ∈ RR×3d,
i.e., WAWB . The computation complexity for XWproj is 3d2n; while the computation complexity
for the low-rank version (XWA)WB is ndR + nR3d = 4Rdn, which is lower than the former as
long as R < 3d/4 (e.g., in GPT2-medium, d = 1024, so we only need R < 768). One can calculate
that the R-LoDA(+) fine-tuned model is computationally more efficient than the pre-trained model
during inference, even setting R as high as 700 in our experimental settings. Similarly, the S-LoDA(+)
fine-tuned model is computationally more efficient than the pre-trained model, since r � d.
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