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Abstract
We explore user-level gradient inversion as a new attack surface in distributed learning. We
first investigate existing attacks on their ability to make inferences about private information
info beyond training data reconstruction. Motivated by the low reconstruction quality of ex-
isting methods, we propose a novel gradient inversion attack that applies a denoising diffusion
model as a strong image prior in order to enhance recovery in the large batch setting. Unlike
traditional attacks, which aim to reconstruct individual samples and suffer at large batch
and image sizes, our approach instead aims to recover a representative image that captures
the sensitive shared semantic information corresponding to the underlying user. Our exper-
iments with face images demonstrate the ability of our methods to recover realistic facial
images along with private user attributes.

International Workshop on Federated Learning in the Age of Foundation Models in Con-
junction with NeurIPS 2023

c© 2023 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Exploring User-level Gradient Inversion
with a Diffusion Prior

Zhuohang Li
Vanderbilt University

zhuohang.li@vanderbilt.edu

Andrew Lowy
University of Wisconsin-Madison

alowy@wisc.edu

Jing Liu
Mitsubishi Electric Research Laboratories

jiliu@merl.com

Toshiaki Koike-Akino
Mitsubishi Electric Research Laboratories

koike@merl.com

Bradley Malin
Vanderbilt University Medical Center

b.malin@vumc.org

Kieran Parsons
Mitsubishi Electric Research Laboratories

parsons@merl.com

Ye Wang
Mitsubishi Electric Research Laboratories

yewang@merl.com

Abstract

We explore user-level gradient inversion as a new attack surface in distributed
learning. We first investigate existing attacks on their ability to make inferences
about private information info beyond training data reconstruction. Motivated by
the low reconstruction quality of existing methods, we propose a novel gradient
inversion attack that applies a denoising diffusion model as a strong image prior
in order to enhance recovery in the large batch setting. Unlike traditional attacks,
which aim to reconstruct individual samples and suffer at large batch and image
sizes, our approach instead aims to recover a representative image that captures the
sensitive shared semantic information corresponding to the underlying user. Our
experiments with face images demonstrate the ability of our methods to recover
realistic facial images along with private user attributes.

1 Introduction

Computing and storing gradients is essential for training most types of modern deep-learning models,
ranging from compact neural networks [1] designed for edge applications to massive foundational
models [2] that are fine-tuned using gradient descent. In circumstances such as distributed training
and federated learning [3], gradients are directly exchanged in place of raw training data to facilitate
joint learning from large-scale distributed data.

Plainly sharing gradient information was long presumed to be safe. However, gradient inversion, a
new type of privacy threat was recently demonstrated that calls this assumption into question. Zhu et
al. [4] demonstrated that an adversary can recover the underlying private training data via an iterative
gradient-matching optimization procedure. While plausible, this optimization problem becomes
ill-posed and difficult to solve when the data is high-dimensional [5] and from a large batch size [6],
or if local defenses are applied to obfuscate the gradients [7]. As a result, existing solutions based
on total variation [5] or generative adversarial network (GAN) based image priors [8, 7] are prone
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Figure 1: Illustration of user-level gradient inversion with diffusion prior. Top: user’s private batch
of 30 images. The measured pairwise facial similarity in the private batch ranges from 0.5217 to
0.9579. Bottom: reconstructed image from gradients using the proposed method. The average facial
similarity to the original batch is 0.5565.

to degradation in their reconstructed image quality with decreasing amounts of details as batch size
and image resolution increase. Further, GAN-based approaches are also known to suffer from mode
collapse [9], which can result in limited sample diversity and degrade overall attack performance.

In this work, we explore user-level gradient inversion as a new attack surface in distributed learning,
beyond the risks of training data recovery. This is motivated by collaborative learning settings,
where data across users may be neither independent nor identically distributed, and particularly when
the data from each user may consistently belong to a distinct individual. Thus, while recovering
individual data samples may be difficult, the potential inference of sensitive user-level characteristics
may still pose a risk.

We empirically investigate the user-level privacy risks of existing gradient inversion methods, re-
vealing their abilities to recover some level of private information albeit with low image quality. To
improve reconstructed image quality and enable attacks against large batch sizes, we also propose
a new type of user-level gradient inversion attack, utilizing a pre-trained diffusion model prior to
assist the reconstruction of meaningful images. Specifically, in contrast to existing sample-level
attacks that attempt to fully reconstruct every image in the target batch, we instead aim to synthesize
a single representative image that captures the overall semantics of the private image batch, which
makes the search space dimension invariant to the target batch size and thereby significantly reduces
computational overheads and improves convergence stability.

Our method is motivated by the recent success in the research domain of using diffusion priors to
solve inverse problems [10, 11, 12, 13]. However, most existing research focuses on typical image
inverse problems, such as denoising and inpainting, which have well-defined linear forward operators.
By contrast, the forward process in our problem involves the calculation of model gradients, which
involves a complex series of non-linear operations. Moreover, the measurements in gradient inversion
are the observed gradients, which contrasts with traditional inverse problems, where both the original
and measured signals are in the image space, rendering many existing methods inapplicable. To
address these challenges, we apply a plug-and-play diffusion prior technique [14] that formulates the
inference of the posterior distribution as an optimization problem and propose a dynamic optimization
scheme that focuses on recovering the high-level semantics at early stages and then fine-tune image
details at the later stage. To the best of our knowledge, this is the first study to investigate the
application of a diffusion model prior for improving gradient inversion.

Distinct from the prior literature, our evaluation extends beyond the conventional performance metrics
for gradient inversion which measure only image-level similarity to inspect the recovery of certain
private attributes that are more semantically meaningful and interpretable. Through experiments on
the CelebA facial image dataset [15], we show that the proposed user-level gradient inversion method
can effectively recover high-level semantics of large-batches of images that carry important private
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information about the person, including gender, race, age, and facial identity, without relying on
strong adversarial assumptions such as the BatchNorm statistics [16].

2 User-level Gradient Inversion with Diffusion Prior

2.1 Problem Formulation

We consider the typical supervised distributed learning setting with a set of clients C, where the goal
is to find the optimal model parameters w of a neural network fw such that the empirical risk is
minimized, i.e., minw

∑
c∈C

∑
(xi,yi)∈Dc

L(fw(x(i),y(i)), where x(i),y(i) denotes the i-th image
and corresponding label, respectively, Dc represents the client’s local training dataset, and L is the
loss function (e.g., cross-entropy). The most common practice is to optimize w through stochastic
gradient descent. Specifically, at each training step, the client node samples a batch of B images
{(x(i),y(i))}Bi=1 to compute the averaged gradients ∇w = 1

B

∑B
i=1∇wL(fw(x(i)),y(i)), which

are then transferred over the communication channel to the server (in the parameter server setting)
or its peers (in the peer-to-peer setting). In the gradient inversion attack, the adversary observes the
user’s gradients ∇w and global model weights w and tries to recover the original images and labels.
When the adversary’s access is limited to aggregated gradients (e.g., under secure aggregation), they
may first initiate a disaggregation attack [17] to obtain gradients at the user level. Following prior
work [18, 5, 6, 8, 7], we assume the labels can be analytically recovered from the gradient of the last
layer. Therefore, the images can be reconstructed by solving the following optimization problem:

x̂∗
(1), ..., x̂

∗
(B) = argmin

x̂(1),...,x̂(B)

d(F (x̂(1), ..., x̂(B)),∇w), (1)

where d is a distance metric (e.g., Euclidean squared distance [4] or cosine distance [5]), x̂(1), ..., x̂(B)

is a batch of synthetic data, and F (x̂(1), ..., x̂(B)) =
1
B

∑B
i=1∇wL(fw(x̂(i)),y(i)) is the correspond-

ing gradient. This technique is referred to as gradient matching [4] in the literature and it has been
empirically shown that as the distance in the gradient space reduces, the synthetic images will
gradually recover the original images.

2.2 User-Level Gradient Inversion

2.2.1 Challenge of Sample-level Reconstruction

The gradient inversion attack in its canonical form (Eq. 1) suffers poor scalability in multiple aspects.
First, due to the ill-posedness of the inverse problem, the returned synthetic image through naively
minimizing the gradient matching loss may not be a natural image. These effects become more
significant on deeper networks and higher-resolution images. One mitigation is to instead solve:

x̂∗
(1), ..., x̂

∗
(B) = argmin

x̂(1),...,x̂(B)

d(F (x̂(1), ..., x̂(B)),∇w) +Rprior(x̂(1), ..., x̂(B)), (2)

whereRprior is an additional prior term (e.g., total variation [5]) introduced to regularize the synthetic
image. A more recent line of work considers using the generator G from pre-trained GANs [8, 7] as a
regularization and solve for low-dimensional latent vectors z1, z2, ..., zB that minimizes the gradient
matching loss, i.e.,

ẑ∗(1), ..., ẑ
∗
(B) = argmin

ẑ(1),...,ẑ(B)

d(F (G(ẑ(1)), ..., G(ẑ(B))),∇w). (3)

Although this form enables the gradient inversion to generalize to larger images, it still does not
address the other challenge that the search space scales linearly with the batch size B and the attack
performance quickly degrades as B increases. As such, most existing gradient inversion attacks
are confined to small-sized images with relatively small batch sizes (e.g., [8] considered a batch
of 4 images rescaled to the size of 64 × 64px). The only exception is the work by Yin et al. [6],
which is based on the strong assumption that the clients share additional BatchNorm statistics beyond
regular gradients [16]. Another common assumption by prior work is that images in the batch are
uncorrelated [19] or from different classes [6], which may not hold when learning across non-IID
data. Extending gradient inversion attacks to practical batch sizes without such strong assumptions
remains a challenging research problem [16].
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2.2.2 From Sample-level to User-level Inversion

In the sample-level gradient inversion attacks as described above, the adversary observes the gradients
∇w computed from a batch of B images, and the goal is to reconstruct every sample in the original
batch, which is equivalent to estimating images to maximize p(x1,x2, ...,xB |∇w) [20]. However,
in many practical distributed learning scenarios, such as cross-device federated learning on mobile
devices [21, 22], data may often have strong local correlation (and may not be identical between
users), i.e., local data samples are from the same user and thus have similar semantics. In these
settings, the ultimate goal of a practical attack may not be image reconstruction, but rather recovery
of private information about the user, such as demographics and identity. To account for this semantic
consistency across local batches, we extend the Bayesian model of the data to introduce a latent
encoding hc that captures the user demographics that the adversary wishes to recover (e.g., gender,
age, race, etc.). Joint recovery of the images and latent encoding, given a fixed ∇w, is guided by the
probabilistic model

p(x(1), ...,x(B),hc|∇w) ∝ p(x(1), ...,x(B),hc,∇w) (4)

= p(∇w|x(1), ...,x(B))p(hc|x(1), ...,x(B))p(x(1), ...,x(B)), (5)

where the equality is due to hc → (x(1), ...,x(B)) → ∇w forming a Markov chain, and which
suggests the reconstruction optimization

argmax
x(1),...,x(B),hc

log p(∇w|x(1), ...,x(B))︸ ︷︷ ︸
grad matching

+ log p(hc|x(1), ...,x(B))︸ ︷︷ ︸
consistency

+ log p(x(1), ...,x(B))︸ ︷︷ ︸
image prior

. (6)

Hence, the adversary should consider three terms, where the third term is the image prior, which
will be discussed in the next section. The first term implies the recovered images should produce the
observed gradient, which is achievable through gradient matching. The second term implies that the
images should be consistent with the latent encoding, i.e., sharing semantics due to being from the
same user.

Exploiting this semantic similarity, while obtaining computational advantages, the adversary can
instead aim to recover a single representative image x̂ that captures the semantics of the original
batch {x(i)}Bi=1 by solving

x̂∗ = argmin
x̂

− log p(∇w|A(x̂))− log p(x̂), (7)

where A(x̂) = {T (x̂)}Bi=1 is a batch of B augmented images produced from x̂ with ran-
dom semantics-preserving image transformation(s) T (i.e., p(hc|T (x̂)) ≡ p(hc|x̂)), and use
argmaxhc

p(hc|x̂) as the predicted value for hc. This approach has the benefits of simplifying
the reconstruction of a potentially large batch to a single image, which substantially reduces the
computational cost and memory consumption, accelerates the optimization, and thereby enables the
attack to be extended to larger batch sizes. Despite this, in practice optimizing the first term in Eq. 7
drives the synthetic image x̂ towards the direction where its produced gradient approximates the
observed gradient computed from a batch of images, which is likely to result in x̂ converging to an
unrealistic noisy image. To obtain a natural image, we need to employ a strong prior to regularize x̂
during the optimization process, which we introduce next.

2.3 Diffusion Prior for Gradient Inversion

2.3.1 Denoising Diffusion Probabilistic Model as Prior

The denoising diffusion probabilistic model (DDPM) [23] is a generative model based on a Markov
chain capturing a forward diffusion process that progressively adds Gaussian noise, given by

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (8)

where x0 := x ∼ q represents a data sample from the distribution being modelled, and βt ∈ (0, 1)
are fixed noise schedule hyper-parameters. This forward process can be summarized as

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (9)
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where ᾱt :=
∏t

s=1 αs, and αt := 1− βt. The forward process contains no trainable parameters, and
DDPMs ultimately model the data distribution through a parameterized reverse process, given by

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I) (10)

where p(xT ) = N (0, I) ≈ q(xT ), σt is specified as a function of βt, and

µθ(xt, t) :=
1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
, (11)

where ϵθ is a neural network parameterized by θ that is essentially trained to denoise, i.e., by
recovering

(
(xt −

√
ᾱtx0)/

√
1− ᾱt

)
, given samples xt drawn from the forward process in Eq. 9.

The training of a DDPM (see [23] for further details) involves minimizing a variational upper bound
of the negative log likelihood of the model,

Eq[− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T )

q(x1:T |x0)

]
=: L. (12)

With further derivation and discarding terms that are constant with respect to the trainable parameters
(see [23]), this likelihood bound can be expressed as∑

t

wtEx0∼q,ϵ∼N (0,I)

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2], (13)

where the weights wt are a function of the noise schedule βt.

Similar to the procedure of [14], we use Eq. 13 as an effective proxy for the model likelihood,
by evaluating it with respect to q(x0) = δ(x0 − x̂0), i.e., the delta distribution centered on the
estimate variable x̂0. Combining this into Eq. 7, we obtain an overall inversion strategy employing a
pre-trained DDPM model as a prior, given by

x̂∗ = argmin
x̂

− log p(∇w|A(x̂))−
∑
t

wtEϵ∼N (0,I)

[∥∥ϵ− ϵθ
(√

ᾱtx̂+
√
1− ᾱtϵ, t

)∥∥2]. (14)

2.3.2 Optimization

In our implementation, we employ cosine distance [5] as a proxy for the gradient matching term in
Eq. 14, which allows the overall optimization to be solved with standard gradient descent. However,
due to the stochasticity of the reverse diffusion process, in practice the optimization becomes
stochastic and may produce different estimates from different runs that could potentially deviate from
the observed gradient. To ensure the production of reliable results that satisfy both the diffusion prior
and the gradient constraint, ideally, the early stage of the optimization should coarsely explore the
search space, while the later stage of the optimization should carefully fine-tune the estimated x̂0 to
steadily converge to a local maximum [14].

To this end, we make the following refinements to the optimization process. First, we observe
that to achieve the best recovery, the gradient matching loss should be adjusted according to the
phase of the optimization: in the early stage, we should first focus on recovering the correct high-
level semantics such as gender and race; then the later stage we can extend to reconstruct detailed
facial attributes. Therefore, instead of assigning equal weights to all gradients, we apply a sliding
asymmetric Hamming window function to dynamically adjust the weight of the gradient of each layer.
Second, instead of simultaneously optimizing for all t, we optimize according to a schedule that
gradually anneals from T to a small value tmin. Third, similar to [23], we use constant weights wt to
simplify the optimization objective. To balance the two terms, we instead clip the gradient norm of
the gradient matching loss dynamically according to the gradient norm of the diffusion prior loss
term. The full algorithm and a detailed description of the procedure are included in the Appendix.

3 Experiments

Setup. We consider the binary classification task of attractiveness on the CelebA dataset [15]. The
images are resized to 64× 64 px and gradients are computed on a randomly initialized ResNet-18
with a default batch size of 30. To simulate cross-device FL settings, images are grouped according
to user ID. The experiments use the first 50 users with ≥ 30 images as the evaluation set.

5



Table 1: Numerical comparison of the proposed method and baselines on the CelebA dataset.

(a) Image quality

MSE↓ PSNR↑ LPIPS↓
Intra-user 0.4981 3.7879 0.4392

Inverting 0.5163 3.2927 0.7324
w/ disambiguation 0.3192 5.2633 0.7165

GIAS 0.5024 3.5402 0.6173
w/ disambiguation 0.2820 5.8809 0.5887

DiffULA 0.4210 4.6789 0.5039

(b) Semantics

Face
Detection Rate↑

Facial
Similarity↑

Gender
Accuracy↑

Race
Accuracy↑

Age
Error↓

Original Batch 0.95 0.7112 0.94 0.89 2.37

Inverting 0.03 0.3939 0.16 0.12 2.54
w/ ensemble (0.22) 0.1275 0.44 0.48 4.91

GIAS 0.17 0.5986 0.18 0.84 2.64
w/ ensemble (0.96) 0.6129 0.52 0.80 2.90

DiffULA 1.00 0.5740 0.71 0.29 3.61

Figure 2: Visual comparison of reconstruction results from a batch of 30 images.

Baselines. We compare user-level attack with diffusion prior (DiffULA) with two baselines, namely,
inverting gradients [5] based on total variation image prior and GIAS [8] based on GAN prior. We
set hyperparameters by following original works [5, 8]. For GIAS, we use the state-of-art Diffusion-
StyleGAN [24] pretrained on CelebA for generating 64 × 64 px images. We note that this is an
unrealistically strong threat model, as the private evaluation images were included in the GAN
training, however this can be viewed as a conservative upper bound on this baseline performance. For
the diffusion prior, we use the DDPM weights from prior work [25], which are pre-trained on the
FFHQ dataset [26] for generating 256× 256 px images.

Evaluation Metrics. Following prior works [5, 6, 8, 7], we use image space Mean-Squared
Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Learned Perceptual Image Patch Similarity
(LPIPS) [27] as image quality metrics. Additionally, we introduce the following metrics for measuring
the semantic similarity between the original and reconstructed images: (1) Face Detection Rate: ratio
of reconstructions with at least one image that can be successfully detected by an MTCNN [28]
face detector; (2) Gender Accuracy: ratio of reconstructions with correct gender; (3) Race Accuracy:
ratio of reconstructions with correct race; (4) Age Error: average error between the age of original
images and the reconstructed images; (5) Facial Similarity: the similarity between the original and
the reconstructed images measured in the embedding space. We use pre-trained neural networks
provided in the DeepFace [29, 30] package for evaluating (1)-(5).

Image Quality. Table 1a presents the results on reconstructed image quality with respect to the
original data. For reference, we also report the average pairwise (intra-user) score measured across
the original private image batch. We observe that DiffULA achieves the best image quality scores
compared to inverting and GIAS. However, as the optimization problem in Eq. 1 is permutation-
invariant, the reconstructed images by sample-level attacks are arbitrarily ordered, which creates
ambiguity for comparing pair-wise image quality. To disambiguate, we apply the Jonker-Volgenant
algorithm [31] to solve for the optimal original-reconstructed image pairing that minimizes total
MSE. Although the measured MSE and PSNR of inverting and GIAS improved significantly after
disambiguation and even surpassed the intra-user reference, this result does not agree with the visual
comparison shown in Figure 2 (see Appendix A for the full version). Overall, LPIPS is the most
interpretable metric that is better aligned with human perception.

Semantics. Table 1b compares the performance in terms of facial semantics. We also report the
results on the original batch as a reference for the experimental errors induced by the variation in the
original images and the inaccuracies of the facial attribute predictors. We notice that inverting and
GIAS may generate extremely distorted images that fail to be detected by face detectors. To account

6



for this effect, we employ a simple batch ensemble strategy to disregard images without a detected
face within each batch for evaluation. When there is no single image with a detected face in the
batch, we set the attack to random guessing. The results show that reconstructed images by inverting
and GIAS have a very low sample-level face detection rate (3% and 17%). Applying the ensemble
strategy, 22% of reconstructed batches by inverting and 96% by GIAS have at least a single image
with a detectable face. Although DiffULA is able to reliably generate realistic facial images (100%
detection rate), it shows no advantage over baselines in terms of recovering most facial attributes
(except for gender). This indicates that the reconstructed images by inverting and GIAS might still
contain useful cues for recovering private information despite their poor visual quality.

Computational Costs. We measure the computational times for running the attack on an Nvidia
A100 GPU. Inverting gradients takes 23.2 minutes to run 24,000 optimization steps. GIAS takes 60.7
minutes to run 1,000 latent space search steps and 8,000 parameter space search steps. In comparison,
DiffULA, which requires 4,000 optimization steps, takes only 23.3 minutes. This computational
advantage enables DiffULA to be applied to larger batch sizes that were previously hard to achieve
with traditional methods (e.g., see Appendix B for results with batch size of 100).

4 Conclusion

This work investigates user-level gradient inversion as a new attack surface in distributed learning.
We first examine existing attacks in this new scenario and reveal the inefficacy of the existing method
on practical batch sizes. We then explore employing diffusion prior for efficient reconstruction of
representative images from large batches of images under the user-level assumption. Our study
highlights the importance of designing pragmatic attacks that recover semantically meaningful private
information under practical assumptions, as well as the need for better privacy metrics that are more
aligned with human intuition, which are both interesting avenues for future research.
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Figure 3: Visual comparison of reconstruction results (full batch).
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Table 2: Numerical results with a batch size of 100.

MSE↓ PSNR↑ LPIPS↓ Face
Detection Rate↑

Facial
Similarity↑

Gender
Accuracy↑

Race
Accuracy↑

Age
Error↓

DiffULA 0.4028 3.1416 0.5101 1.00 0.5859 0.57 0.86 8.08

B Results on Large Batch Size

To explore the feasibility of reconstructing from larger batch sizes using DiffULA, we take the first
100 images (resized to 64×64 px) from the first 7 celebrities from the PubFig83 dataset [32]. Figure 4
provides a visualization of the reconstruction and the numerical scores are summarized in Table 2.
We observe similar performance as with a batch size of 30.

C Implementation Details

We employ a cosine-modulated linear annealing time schedule with added uniform noise similar
to [14]. As shown in Figure 5a, τ is scheduled to start from 1, 000 and gradually decreases to 500.
We balance the effects of recovering the user’s private image and generating a realistic facial image
by clipping the norm of the gradient of the gradient matching term. The clipping scale factor ζ is
scheduled to follow a cosine ramp down from 1.5 to 1.0. Additionally, as visualized in Figure 5b, we
apply a window function to focus on the deeper layers and gradually introduce the shallower layers
to the computation of the gradient-matching term as the optimization progresses.

We implemented T as a series of random image transformations, including Gaussian noise injection,
random color jitter, random perspective transformation, and Gaussian blur. Each transformation has a
probability of 0.5 to be applied for a given image. As the synthesized image from DDPM is of higher
resolution, they are further resized before being fed into the learning model fw.

After optimization, we run some additional denoising steps on the reconstructed image using DDPM
starting from t∗ = 200 to further improve image quality. The complete procedure of the proposed
attack is presented in Algorithm 1.

D Discussion

One inherent limitation of the proposed single-image-based, user-level gradient inversion is that it
suffers from the “regression toward the mean” effect, that is, the best reconstruction of this strategy is
to approximate the average of images in the batch. As such, its reconstruction performance highly
depends on the image variance within the batch.

Many previous works have reported observing varying reconstruction performance across different
images, i.e., some images are innately more susceptible to gradient inversion than others (e.g., Figure
3 in [5]). Currently, there is a lack of theoretical explanation for this phenomenon. The diffusion
approach may perform poorly if the target image is not well-represented in the prior distribution
pθ(x0), which is a common limitation shared with all reconstruction methods relying on a generative
prior. Additionally, in our experiments, we find that the utilization of diffusion prior may amplify this
invariance due to the instability of reconstruction caused by the stochasticity of the diffusion process.
For instance, as shown in Figure 8, we observe that in most of the failed cases, the reconstruction
diverges when it approaches the end of the process. This is likely because the diffusion prior is prone
to hallucinate when optimizing low t values where it attempts to add details to the image. This can
also be seen from the progression of the facial similarity score of the reconstructed image during the
optimization process, as shown in Figure 6. Adjusting the time schedule to only optimize for high
t values may improve the accuracy of the inferred private attributes, but would result in generating
lower-quality images, i.e., there is an inherent trade-off between the reconstruction of high-level
semantics and image details.

Regarding evaluation, we note that the facial semantics analysis relies on deep learning models that
are trained on different data distributions which may introduce noise to the derived predictions. For
instance, the face embedding model is trained on VGG Face data, while the DDPM is trained on the
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Algorithm 1: User-level gradient inversion with diffusion prior
Input :observed gradient∇w, model parameters w, pretrained DDPM ϵθ
Parameter :number of steps S, image transformation(s) T , time schedule {τi}Si=1, gradient

clipping schedule {ζi}Si=1, denoising timestep t∗, learning rate η
Randomly initialize x0 ∼ N (0, I);
for i = 1, ..., S do // Optimization steps

Sample ϵ ∼ N (0, I);
xτi ←

√
ᾱτix0 +

√
1− ᾱτiϵ;

gp ← ∇x0
||ϵ− ϵθ(xτi , τi)||2 ; /* Evaluate prior term */

A(x0)← {T (x0)}Bi=1;
ggm ← ∇x0

d
(
F (A(x0)),∇w

)
; /* Evaluate gradient matching term */

ggm ← ggm/max(1, ||ggm||
ζτi ||gp|| );

x0 ← x0 − η · (gp + ggm) ; /* Update via gradient descent */
end
xt∗ ← x0;
for t = t∗, ..., 1 do // Denoising steps

if t > 1 then
Sample z ∼ N (0, I);

else
z← 0;

end
xt−1 ← 1√

αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
+ σtz;

end
x̂← x0, hc ← argmax p(hc|x0);
return reconstructed image x̂, inferred hc

FFHQ dataset. In addition, the data selected for experiments are skewed, as shown in Figure 7, which
may cause the results to be biased toward certain demographics.

E Alternative Formulation

There are several alternative ways to implement the user-level inversion as described in Eq. 6. For
instance, apart from the single-image-based formulation explored in this paper, one may modify
the sample-level approach to enforce the consistency of the latent encoding in the reconstructed
images through the guidance of external classifiers. Alternatively, an adversary with access to the
private data distribution may learn a model to directly predict hc and further leverage the recovered
hc as a condition for synthesizing private images, i.e., model p(hc|∇w) and then sample from
p(x|hc) ∝ pθ(x)p(hc|x). Regarding the utilization of the diffusion prior, an alternative approach is
to use guided sampling from diffusion with modified conditions [33, 13]. We leave explorations in
these spaces as future work.
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(a) Original batch of 100 images

(b) Reconstructed image of every 100 optimization steps

(c) Denoised image

Figure 4: Example of reconstructing from a batch of 100 images. The measured pairwise facial
similarity in the private batch ranges from 0.4371 to 0.9528. The average facial similarity of the
reconstructed image to the original batch is 0.7080.
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(a) Time schedule (b) Window function

Figure 5: Time schedule and sliding window for optimization.

Figure 6: Facial similarity score per optimization step.

Figure 7: Demographics of the users involved in experiments.
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Original Reconstruction – Incorrect Race

Reconstruction – Incorrect Hair ColorOriginal

Original Reconstruction – Incorrect Gender

Figure 8: Reconstruction process of failed cases.
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