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Abstract— Physics-based computational models of va-
por compression systems (VCSs) enable high-fidelity simu-
lations but require high-dimensional state representations.
The underlying VCS dynamics are stiff, constrained by
conservation laws, and only a small fraction of states
can be measured. While recent advances on constrained
extended Kalman filtering (EKF) have provided a system-
atic framework for estimating VCS states via simulation
models, two major bottlenecks to efficient implementation
include: (i) expensive forward predictions requiring cus-
tomized stiff solvers; and, (ii) frequent and computation-
ally expensive linearization operations on high-dimensional
nonlinear models. In this paper, we circumvent these bot-
tlenecks by constructing deep autoencoder (AE)-based
state-space models (SSMs) from simulation data for which
both forward predictions and linearization operations via
automatic differentiation can be performed efficiently. In
addition, we incorporate physical constraints based on
pressure gradients explicitly into the autoencoder, and
demonstrate, on a Julia-based high-fidelity simulator, that
the physics-constrained model improves the estimation
performance compared to a AE-based SSM that does not
enforce physics.

Index Terms— Physics-informed machine learning, con-
strained systems, Koopman operators, energy systems,
Kalman filters.

I. INTRODUCTION

VAPOR compression systems (VCSs) are crucial in vari-
ous heat transfer applications due to their versatility and

wide range of operating temperature. Technologies that can
improve operation and overall performance of these systems
are critical for mankind to achieve sustainable and habitable
living conditions. Many technological solutions for VCSs use
simulation models and digital twins [1], [2] for predicting
their behavior. Accurate predictions of VCSs dynamics are
needed for control [3], estimation [4]–[6], and performance
optimization [7], [8]. High-fidelity models of VCSs are gener-
ally derived based on the physics of the individual components
in VCS and the overall system [9]. Developing physics-based
models of these systems require equation-oriented program-
ming environment and face several computational challenges,
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even when simplified and combined with efficient data-driven
learning modules [10].

While physics-oriented models are necessary for accurate
system predictions, their computational complexity becomes
a bottleneck for efficient deployment, where rapid forward
simulation and frequent model linearization is often required.
Therefore, computationally efficient surrogates of high-fidelity
physics-based models of VCSs which mirror the behavior of
underlying complex physical system are critical for analysis
and design.

Recently, an autoencoder (AE)-based approach was pro-
posed to directly learn a predictive surrogate using the sim-
ulation data collected from a high-fidelity model [11]. AEs
have recently been used to learn transformations that ‘lift’
the dynamics of the nonlinear system to a latent space where
a finite-dimensional linear state-space model can provide a
satisfactorily accurate predictive model [12]. The benefit of
AE-based approaches, therefore, is that the observer design
can leverage the linear system representation and classical ob-
server gain tuning methods can be applied. Since the decoder
of the AE performs an inverse transformation of the encoder,
one can tractably project the dynamics to and from the latent
space, respectively. In fact, the effectiveness of learning lifting
transformations in nonlinear system identification has been re-
ported in [13]–[17]. However, they do not explicitly investigate
the problem of estimating the simulator states from measured
outputs, which is necessary for simulator-based prediction. Re-
cent studies have identified and proposed methods to attack the
problem of estimating hidden/latent states; c.f. [11], [18], [19]
with deep neural networks used as surrogate models and post-
hoc estimation frameworks for estimating states. While they
have exhibited good performance on benchmark dynamical
systems, this paper extends these ideas to a specific energy
systems application leveraging physics-constrained neural net-
works as surrogate models. These neural surrogate models
inform constrained Kalman filters for physically consistent
state estimation in a vapor compression system for downstream
applications such as heat exchange capacity estimation or
refrigerant mass estimation for leak detection.

In particular, we explicitly include physics-informed con-
straints into the neural SSM architecture proposed in [11],
which enforces model predictions to be consistent with the
fundamental physical laws governing vapor compression cy-



cles. A fundamental constraint which VCS states must sat-
isfy is the decreasing pressure gradient in the direction of
refrigerant flow. Since high-fidelity VCSs models are based
on physics, they inherently satisfy this constraint. On the other
hand, neural SSMs which are learned only from the data do
not guarantee satisfaction of such physical constraints unless
they are explicitly embedded in the SSM architecture. While a
post-hoc projection can be employed to enforce this constraint,
it often leads to degraded prediction accuracy as we show in
the numerical results. To this end, we explicitly incorporate
pressure gradient constraint in the SSM architecture using a
neural operator. This physically-constrained neural SSM can
be used as the core predictive model in an extended Kalman
filtering (EKF) framework: we refer to this combination of
a deep neural network and the filter as a deep autoencoded
EKF. In this paper, we seamlessly integrate the neural SSM
for enforcing the constraint on filter estimates in a computa-
tionally efficient manner. In particular, we constrain the filter
estimate by simple forward passes through neural layers rather
than using a more expensive projection-based approach with
quadratic programming (QP).

Some contributions of this work include: (i) incorporating
physically motivated pressure constraints explicitly into neural
state-space surrogate models of VCS dynamics; (ii) leveraging
these physics-constrained neural networks for constrained state
estimation via a deep autoencoded EKF; (iii) replacing QP-
based constraint enforcement with a more efficient trans-
formation that involves the pre-trained encoder-decoder pair
of the trained neural SSM; and (iv) demonstration of the
proposed framework on a high-fidelity Julia-based simulator of
an industrial VCS system with complex nonlinear dynamics.

II. PRELIMINARIES

We can abstract the VCS in the general form

xk+1 = f(xk, uk) + wk, yk = h(xk) + ηk, (1)

where xk ∈ X ⊂ Rnx denotes the state of the system at
time k ∈ N with x0 being the initial state, u ∈ Rnu denotes
the control inputs, y ∈ Rny denotes the measured outputs, f
denotes the dynamics, h denotes the measurement model, and
wk and ηk denote the zero mean Gaussian uncertainties with
covariance matrices Qwk and Qηk, respectively. The functions
f and h are often not accessible to the user, as they may
be represented in high-fidelity simulation software such as
‘digital twins’ that contain black-box components. However,
we assume that one has access to simulation data. In particular,
we are capable of generating trajectories {(xk, yk)}Nk=0 of
finite length N ∈ N for specified x0 and {uk}Nk=0. Subse-
quently, we use this simulation data to learn a neural state-
space representation of the black-box simulator utilizing the
training dataset Dtrain ≜ {(xk, yk, uk)}Nk=0. Since the simulator
has its own specific representation of the states, and we wish
to use the simulator for prediction and eventually, control,
we need to estimate the state of the simulator online using
only measurements {yk}. Therefore, our objective is to learn
the autoencoder-based predictive model to design a ‘deep
autoencoded EKF’ in order to estimate the simulator states
{xk} in a model-based manner.

Fig. 1. Neural architecture of deep state-space model. [A] With split
(x, u) encoders. [B] With mixed (x, u) encoder.

We consider an autoencoder-like deep neural SSM; see
Fig. 1[A]. The key operations in this architecture are:

ψk = Ex(xk), (2a)
ψk+1 = A(ψk) + Eu(uk), (2b)
x̄k = P ◦ Dx(ψk), (2c)
ȳk = Dy(ψk), (2d)

where ψk ∈ Rnψ denotes the latent encoding of the state
vector xk obtained using the encoder Ex : Rnx 7→ Rnψ .
Similarly, the control vector uk is mapped to the latent space
by the encoder Eu : Rnu 7→ Rnψ . The latent state update
ψk+1 based on ψk and uk is determined by (2b) using the
state transition operator A : Rnψ → Rnψ . The latent encoding
ψk is mapped back to the original state-space by the decoder
Dx : Rnψ → Rnx . The operator P : Rnx 7→ Rnx is used
for enforcing physics-informed constraints described later. A
separate decoder Dy : Rnψ 7→ Rny maps the latent to the
reconstructed output vector ȳk.

We can now describe how to train the neural SSM (2)
without the constraint layer P . Ignoring P , training the neural
SSM involves optimizing the weights of Ex, Eu, A, Dx, and
Dy by minimizing a suitable loss function. To this end, we
construct the training loss*:

L = Lrecon + Lpred,x + Lpred,y (3)

where Lrecon = MSE0:N (xk ,Dx ◦ Ex(xk)) denotes the
reconstruction loss of the auto-encoder pair (Ex,Dx).
The next term Lpred,x in (3) denotes one-step predic-
tion error loss in the state vector, i.e., Lpred,x =
MSE0:N−1

(
xk+1,Dx (A ◦ Ex(xk) + Eu(uk))

)
, and Lpred,y de-

notes the prediction error loss in outputs Lpred,y =
MSE0:N (yk,Dy◦Ex(xk)). Since these losses are differentiable,
we use standard optimization tools such as stochastic gradient
descent or its variants to train the neural SSM.

An alternative to splitting the encoder into Ex and
Eu is to use a single mixed encoder Exu that encodes

*Note that the mean-squared-error (MSE) between any two vectors of
vk, v̂k ∈ Rnv for k ∈ {0 . . . N} is defined by MSE0:N (vk, v̂k) ≜

1
nv(N+1)

∑N
k=0 ∥vk − v̂k∥2 .



(x, u) 7→ ψ by mixing the state and control inputs; see
Fig. 1[B]. The latent state update (2b) would become ψk+1 =
A(ψk). The decoders would remain the same, but the
losses would be: Lrecon = MSE0:N (xk ,Dx ◦ Exu(xk, uk)),
Lpred,x = MSE0:N−1

(
xk+1,Dx (A ◦ Exu(xk, uk))

)
, and

Lpred,y = MSE0:N (yk,Dy ◦ Exu(xk, uk)).

III. PHYSICS-CONSTRAINED DEEP AUTOENCODED
KALMAN FILTERING

High-fidelity simulators (1) used in VCS applications are
typically developed based on physics of the system [6],
therefore, they inherently satisfy any fundamental constraints
imposed by the physics. An example of such a constraint
relevant to VCSs is the pressure gradient constraint, i.e., the
non-increasing pressure in the direction of refrigerant flow. In
order to ensure consistency with the physical laws, it is imper-
ative that state estimates obtained using a learned neural proxy
model and EKF must also satisfy these physics-informed
constraints. We explicitly incorporate these constraints into the
autoencoder and the filtering algorithm.

A. Equipping physical constraints to the predictive model

Formally, we can write these physical constraints as a linear
inequality Gx≤0, and define its feasible set

G := {x ∈ X : Gx ≤ 0} , (4)

which is a polytope for our pressure gradient matrix G. We
know from the Minkowski-Weyl Theorem that the polytope G
admits an equivalent description using rays [20]†. That is, for
some finite set of rays R :=

[
R1 · · · Rr

]
∈ Rnx×r we

can write G = cone(R), where cone(R) :=
∑r
j=1 µjRj for

some µj ≥ 0. In order to incorporate the physics constraint
into the network, we add a constraint layer after the decoder
Dx, given by

P := Rµ, where µ := ReLU ◦ FCr ◦ Dx(ψ),

with ReLU(·) denoting the rectified linear unit activation
function, and FCr denoting a fully connected layer with
output dimension r. That is, we pass the decoder output
Dx(ψ) through a fully connected layer activated by a ReLU
function to make the vector element-wise non-negative, and
therefore fulfil the requirement to act as µ ≥ 0 in the conic
constraint. This fully connected layer also maps Dx(ψ) to
a vector µ that is compatible in dimensions with the ray
matrix R. This is because we take the product of R and µ,
which by construction, results in a feasible predicted state
x̄. Note that all operations added in the constraint layer
maintain differentiability, so any gradient-based solver is still
compatible for training the proposed network.

The total loss function for the physics-constrained neural
SSM is

L = L̄recon + L̄pred,x + Lpred,y (5)

†To be accurate, Minkowski-Weyl states that the feasible polytope of an
inhomogeneous linear inequality Gx ≤ g can be equivalently described by a
conic combination of rays and a convex combination of vertices. When g = 0,
only the conic combination remains.

with reconstruction and prediction losses

L̄recon = MSE0:N (xk ,P ◦ Dx ◦ Ex(xk)),
L̄pred,x = MSE0:N−1

(
xk+1,P ◦ Dx (A ◦ Ex(xk) + Eu(uk))

)
for the split encoder, and

L̄recon = MSE0:N (xk ,P ◦ Dx ◦ Exu(xk, uk)),
L̄pred,x = MSE0:N−1

(
xk+1,P ◦ Dx (A ◦ Exu(xk, uk))

)
for the mixed encoder.

Remark 1. Our neural SSM architecture does not impose
any specific structure on A and Dy . One may choose them
to be linear operators by implementing them as linear layers
with zero bias. Such a choice can be defended by Koopman
operator theory; c.f. [15]. If the dimension of x is large (e.g.,
in refrigerant flow dynamics), an encoder could be used to
induce a low-dimensional latent space, wherein a nonlinear
A may prove more expressive.

Remark 2. Note that (5) can be extended to multi-step
prediction by recursively generating a sequence of latents
ψk+1:k+NS for NS steps starting from ψk using the state-
transition operator A and inputs uk:k+NS−1. Decoding these
latents would result in multi-step state and output prediction,
with which MSE losses could be computed.

B. Enabling constrained state estimation

After the SSM (2) is learned by minimizing the loss (5), it
is used for state estimation. We adopt an EKF framework in
this paper, but it is noted that it can be readily extended to
other filtering approaches. We rewrite (2) in a form similar to
(1) that is amenable to filtering formalism, as follows.

xk+1 = P ◦ Dx
(
A ◦ Ex(xk) + Eu(uk)

)
+ wk, (6a)

yk = Dy ◦ Ex(xk) + ηk, (6b)

We use the following notations for deep autoencoded EKF
(DA-EKF) estimates. (x−k ,P−

k ) and (x+k ,P+
k ) respectively de-

note the prior (measurements assimilated up to time k − 1)
and posterior (measurements assimilated up to time k) mean-
covariance pairs of the state vector at time k, i.e.,

xk|k−1 ∼ N (x−k , P
−
k ) and xk|k ∼ N (x+k , P

+
k ), (7)

where N (·) denotes the multivariate normal distribution.
For a given (x−0 , P

−
0 ) and neural predictive model (6), the

DA-EKF equations are given by the time update:

P−
k+1 = FkP

+
k F

⊤
k +Qwk (8a)

x−k+1 = P ◦ Dx
(
A ◦ Ex(x+k ) + Eu(uk)

)
(8b)

and the measurement update:

Kk = (P−
k H

⊤
k )(HkP

−
k H

⊤
k +Qηk)

−1 (8c)

P+
k = (I −KkHk)P

−
k (8d)

x+k = x−k +Kk

(
yk −Dy ◦ Ex(x−k )

)
(8e)



where Fk and Hk are Jacobian matrices defined as

Fk ≜
∂

∂x
P ◦ Dx ◦ A ◦ Ex(x+k ), (9a)

Hk ≜
∂

∂x
Dy ◦ Ex(x−k ). (9b)

Note that computing the Jacobian matrices in (9) requires tak-
ing gradients of the operators, i.e., differentiating the outputs
of the deep neural networks with respect to their inputs. To this
end, we utilize auto-differentiation (AD) capabilities available
in standard deep learning libraries such as PyTorch.

Despite designing the neural SSM (6) to satisfy the state
constraints (4), the filter updates using (8) are not designed to
explicitly satisfy the constraints, which could yield physics-
inconsistent state estimates. Therefore, we deem it necessary
to explicitly incorporate state constraints during the filtering
process as well [6], [21].

There are several approaches [22] such as density trun-
cation [21], estimate projection [6] and pseudo or perfect
measurements [5], available in the literature that can be
adapted for enforcing constraint in state estimation algorithms.
However, unlike previous works, here we leverage the inherent
constraint-satisfying nature of the SSMs in order to enforce the
same constraints on state vectors estimated by the EKF. In par-
ticular, we propose the use of auto-encoder pair (Ex ,P ◦Dx)
for projecting the filter estimate obtained in (8e) on the feasible
set to enforce constraints. The constraint layer P ensures
that the decoded state vector satisfies the gradient constraint.
Therefore, a constrained state estimate can be obtained by the
following reconstruction using the auto-encoder

x+k ← P ◦ Dx ◦ Ex(x
+
k ).

The constraint-projection operation in (III-B) is expected to
computationally efficient as it involves only forward evaluation
of neural networks. This is in contrast to other prevalent
constraint enforcement approaches which typically requires
solving a constrained quadratic program (QP) [6], [21].

IV. SIMULATION RESULTS

A. Data Generation from VCS Simulator
A VCS consists of a variable-speed compressor, a variable-

position electronic expansion valve (EEV), two heat exchang-
ers (condenser and evaporator), and two fans that force the air
to flow through the heat exchangers. This system transfers heat
from the air passing through the evaporator to the air passing
condenser via the refrigerant flowing through the system. We
use a physics-based simulator of the VCS [6] for generating
the training dataset.

The model implements two heat exchangers which dominate
the overall system dynamics by discretizing them in four
finite volumes each, while algebraic models are used for
the compressor and expansion valve. Furthermore, a heat
exchanger is comprised of interconnecting components that
describe the thermal behavior of the pipe wall, the flow of air
across the heat exchanger, and the one-dimensional refrigerant
pipe-flow, forming an index-1 system of differential algebraic
equations (DAEs). The one-dimensional flow of refrigerant
through the pipe is modeled using fundamental physical laws,

namely, the conservation of mass, momentum, and energy.
After order reduction via Pantelides’ algorithm, the DAEs are
transformed to a set of ordinary differential equations (ODEs).
The state vector contains the pressure P[i], specific enthalpy
h[i], and temperature θ[i] for each finite volume i ∈ {1 · · · 8}
and the control inputs to the model are compressor frequency
and expansion valve position, thus, nx = 24 and nu = 2.
The measurements include temperatures and pressures at select
volume locations in the heat exchangers. In particular, the
measurement vector is given by

y =
[
P[1] θ[2] θ[4] θ[6] P[8] θ[8]

]
∈ R6, (10)

that is, only 6 of the 24 states are directly measured.
This model implements an initialization routine in which

all variables are set to their default values. A set of 21 initial
conditions to be used for generating the training dataset was
constructed by driving the model (with default initialization) to
a steady state over a simulation of 50 s with constant control
inputs. While the EEV position was set to 300 counts for
all runs, a set of uniformly spaced 21 values of compressor
frequency was selected within the interval [40, 80] Hz. This
eliminates effects of default initialization to some extent and
allows construction of a meaningful, controlled set of initial
conditions to test our proposed methods.

The model was simulated to generate a set of 21 trajectories
over 500 seconds with the afore-mentioned set of initial
conditions. The control inputs, compressor frequency (Hz),
and expansion valve position were randomly sampled from the
uniform distributions U(40, 80) and U(282, 312), respectively,
to generate a rich dataset with persistently excited inputs.
These trajectories were sampled at 0.1 second intervals with
sample-and-hold control inputs. We emphasize that the trajec-
tories generated from the specified initial conditions are not
steady-state trajectories and they do exhibit transient behavior
due to time varying control inputs. Since the model enforces
fundamental physical laws, the data generated using this model
inherently satisfies the pressure gradient constraint (4).

B. Performance of Autoencoded SSM

The set of 21 trajectories is split into train, test, and
validation sets of 11, 5, 5 trajectories respectively, such that the
underlying compressor frequencies associated with the initial
conditions of the trajectories in each set are uniformly spaced
in the interval interval [40, 80] Hz.

After a preliminary neural architecture search, the dimen-
sion of the latent space was selected to be nψ = 32. Each
of the operators Ex, Eu, Dx, and Exu was implemented as a
fully connected neural network with 4 layers and the hidden
dimension of 64. Activation functions used in the input and
hidden layers were ReLU and the output layer was configured
as a linear transformation. Furthermore, the operators A and
Dy were implemented as linear layers with no biases.

We consider different neural SSM architectures tabulated in
Table I. The ‘Constrained’ column indicates whether an SSM
is equipped with a constraint layer P as discussed in §III-
A, whereas the ‘Encoder’ column indicates whether the SSM
employs a split or mixed encoder.
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Fig. 2. True state trajectories and those predicted by the learned neural
SSMs.

TABLE I
DIFFERENT SSM ARCHITECTURES AND THEIR PREDICTION SSE.

SSM Architecture Constrained Encoder SSE
Uncon-SSM - Split 323.75

Con-SSM Yes Split 68.42
ConMix-SSM Yes Mixed 58.37

All SSMs were trained for 2000 iterations on identical
training datasets using an Adam optimizer with a learning
rate of 10−4 with weight decay of 0.999 and learning rate
scheduling. Weights of the neural SSM were saved when the
validation loss decreased. A holdout test dataset was used
to compare the prediction accuracy of these two SSMs. The
SSM predictions for select states and the corresponding true
trajectories are shown in Fig. 2. The prediction accuracy is
quantified in terms of sum squared error (SSE). The SSE
between a predicted or estimated xk and the true trajectory
x∗k is defined as follows: SSE(xk, x∗k) ≜

∑N
k=1 ∥xk − x∗k∥

2.
The cumulative SSEs computed over five test trajectories

for different SSMs are shown in Table I. The Uncon-SSM
yielded the largest SSE making it the least accurate SSM.
Comparison of Con-SSM against Uncon-SSM implies that
explicitly incorporating the physics-informed pressure gradient
constraints into the SSM architecture significantly improves
the prediction accuracy. The accuracy is further improved
by employing a mixed (x, u) encoder in the architecture as
ConMix-SSM is found to demonstrate the smallest SSE. All
neural SSMs took approximately 1 s of CPU time to simulate
the VCS behavior over 5000 time steps whereas Julia-based
high-fidelity VCS simulator took more than 110 s CPU time
for predictions over the same time horizon.

C. Performance of DA-EKF
We consider different implementations of DA-EKF based on

the type of SSM used for predictions from Table I; and the type
of projection method (QP or AE) used for constraining filter
estimates. We use the following convention for referring to dif-
ferent implementations of DA-EKF: the implementation which

uses ConMix-SSM for predictions and AE-based projection
is referred to by ConMix-AE; the implementation which
uses Uncon-SSM for predictions and QP-based projection is
referred to by Uncon-QP, etc.

We performed 100 Monte-Carlo runs of the DA-EKFs to
gather statistical metrics of performance. For every filter run,
a reference or true trajectory was randomly sampled with
replacement from the test dataset. The initial filter estimate
x−0 was obtained by perturbing the true initial condition x∗0
using a randomly drawn sample from N (0, P−

0 ). A set of
measurements to be used in filter updates was constructed
by perturbing the true outputs using randomly drawn samples
from N (0, Qηk). Different DA-EKFs were subject to identical
reference trajectories, identical perturbed measurements and
identical initialization during each run. Further, we set the
scaled covariances to be P−

0 = 10−3Inx , Qwk = 10−4 · 18 ⊗
[2, 1, 0.1], and Qηk = 10−4 · [2, 0.1, 0.1, 0.1, 2, 0.1] for all runs
of all filters, where In denotes the identity matrix of dimension
n, 1n denotes an n-vector of all ones, and ⊗ is the Kronecker
product.
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Fig. 3. True state trajectories and those estimated by DA-EKFs. Shaded
area around the estimated trajectories shows the 95% confidence
interval.

Fig. 3 shows the true and estimated trajectories for selected
states (temperatures and pressures) along with the 95% con-
fidence interval for an arbitrary filter run. While the Con-AE
and ConMix-AE demonstrated better estimation accuracy,
the confidence intervals for different DA-EKFs were found
to be comparable. Fig. 4 shows the performance of different
DA-EKFs using box plots for estimation SSE calculated for
each individual filter run, as well as the cumulative time
required during each run for projecting filter estimates onto
the feasible set. The DA-EKFs, which use constrained SSMs
as prediction models demonstrate improved estimation accu-
racy over Uncon-QP which uses an unconstrained neural
SSM as the prediction model. The DA-EKFs, ConMix-AE
and ConMix-QP, which employ both constrained SSMs and
mixed (x, u) encoders, exhibit the smallest estimation SSEs
that are approximately 50% of those observed in the naive
implementation of DA-EKF Uncon-QP. This indicates the
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beneficial effect of directly incorporating physics-based con-
straints into the neural predictive model and mixed (x, u)
encoders, and this benefit is likely due to an improved predic-
tion accuracy on the test data. The execution times required
to project states onto the constraint set for DA-EKFs which
enforce constraints by solving a quadratic program, are orders
of magnitude greater than those using AE-based projections.
It is evident that Con-AE and ConMix-AE, both of which
enforce constraints by a simple forward evaluation of the auto-
encoder with a median projection times of less than 5 ms,
are one of the most efficient DA-EKFs in terms of enforcing
constraints on the filter estimates.

Comparing projection times for Uncon-QP, Con-QP, and
ConMix-QP also provides an interesting insight into the
effectiveness of constrained-SSMs; see Fig. 4. Although all
of these three DA-EKFs use QP-based projection, the cu-
mulative projection times over an entire run for Con-QP
and ConMix-QP are significantly smaller than that of
Uncon-QP. Since these DA-EKFs solve QPs of identical
size for enforcing constraints, the larger cumulative projec-
tion time incurred by Uncon-QP is an indication that it
solves the QP more number of times than Con-QP and
ConMix-QP. In other words, using a constrained-SSM for
predictions in DA-EKFs leads to less frequent constraint-
violating filter estimates than the unconstrained-SSM. The
improved constraint-enforcement time without compromising
the estimation accuracy is a particular benefit of our approach
that leverages the neural SSM architecture and obviates the
need to explicitly add QP solvers for our particular physical
constraint.

V. CONCLUSIONS

We demonstrated the effectiveness of neural surrogate state-
space models for informing state estimators for complex
physical systems such as vapor compression systems. These
neural surrogate models, which explicitly enforce physics-
based constraints in their architecture, are directly learned

using the data obtained from a physics-based high-fidelity
simulator. The simulation models allow rapid forward sim-
ulations that can be useful to evaluate various scenarios in a
digital twin. We show via high-fidelity simulations that the
proposed physics-constrained SSMs can improve the quality
of downstream state estimation.
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