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Abstract
Machine learning and deep learning techniques have been proposed to facilitate the design
optimization of electric machines. Most of the existing research focuses on the development of
surrogate models, while iterative optimization is still needed. Inverse design approach, on the
other hand, can directly provide design candidates with trained deep learning model without
iteration. One major challenge in deep learning based inverse design is the so-called one-to-
many mapping problem. In this paper, we propose an intelligent inverse design approach for
electric machines based on a variational autoencoder (VAE), which can effectively address the
problem and provide desired motor design candidates for multiple design targets at the same
time. We demonstrate the feasibility of the proposed strategy with multi-objective design
task of a surface-mount permanent magnet motor, and show that it is generally applicable
for different types of electric motors.
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Abstract: Machine learning and deep learning techniques
have been proposed to facilitate the design optimization of
electric machines. Most of the existing research focuses on the
development of surrogate models, while iterative optimization
is still needed. Inverse design approach, on the other hand, can
directly provide design candidates with trained deep learning
model without iteration. One major challenge in deep learning
based inverse design is the so-called one-to-many mapping
problem. In this paper, we propose an intelligent inverse
design approach for electric machines based on a variational
autoencoder (VAE), which can effectively address the problem
and provide desired motor design candidates for multiple
design targets at the same time. We demonstrate the feasibility
of the proposed strategy with multi-objective design task of a
surface-mount permanent magnet motor, and show that it is
generally applicable for different types of electric motors.

I. INTRODUCTION

In recent years, the demand for high-density, efficient, and
cost-effective electric motors has grown significantly due to
their crucial role in various societal systems, including trans-
portation, industrial equipment, and household appliances. To
achieve optimal motor designs, a common approach is multi-
objective design optimization, which considers factors such
as average torque generation, torque ripple, cogging torque,
weight, and material cost. This optimization process involves
iteratively updating design parameters using evolutionary algo-
rithms like genetic algorithms and evaluating the performance
of each design through numerical simulations with finite
element analysis.
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However, this optimization process presents several chal-
lenges [1]. Firstly, the design targets are interrelated, leading to
trade-offs or conflicts when attempting to satisfy all targets si-
multaneously. Secondly, evaluating multiple design candidates
through numerical simulations is computationally expensive
and time-consuming, particularly when analyzing multiple
rotor positions or operating points. Lastly, the optimization
process relies on iterative trial and error, offering no guarantee
of finding the global optimum design in a single step. Conse-
quently, combining these challenges makes the multi-objective
design optimization process highly time-consuming.

Recently, intelligent design methods utilizing contemporary
numerical optimization and machine learning algorithms have
gained significant traction in multiple fields, including pho-
tonics [2], acoustics [3], and mechanics [4]. For example,
researchers have successfully utilized deep neural networks
(DNNs) to revolutionize the design of optical devices, enabling
them to adapt to different demands under varying illumination
conditions [2]. Overcoming limitations faced by traditional
approaches, DNN-based intelligent inverse design has ex-
panded the number of channels for these devices, allowing
for more comprehensive functionality. Consequently, there is
immense potential for applying these approaches to address
the challenges encountered in electric motor design, offering
a highly efficient and effective solution.

As a powerful tool that recently achieves great success,
DNNs are machine learning models that have gained signif-
icant popularity due to their ability to solve complex tasks.
Inspired by the functioning of neurons in the human brain,
DNNs aim to mimic the information processing capabilities
of biological neural networks. DNNs consist of intercon-
nected layers of artificial neurons. Each layer performs linear



transformations by computing weighted sums of inputs using
learnable parameters. Nonlinear activation functions introduce
nonlinearity to capture complex patterns [5]–[7]. Stacking
multiple layers enables learning hierarchical representations:
initial layers learn simple features, deeper layers learn complex
features, and the final layer performs task-specific computa-
tions such as classification or regression. DNNs can approx-
imate any function by stacking layers of neurons, making
them ideal data-driven tools for a wide range of applications.
Consequently, DNNs serve as valuable tools for constructing
forward surrogate models that accurately predict the response
of specific physical designs, eliminating the need for time-
consuming physical simulations and significantly expediting
the design optimization process.

Numerous deep learning models have been proposed as
surrogate models for electric motors. These models have
the capability to predict responses for a given motor design
candidate within a fraction of second. Such trained models can
be used to replace time-consuming finite-element simulations
(which typically takes several minutes or even hours for single
simulation) during the optimization process [8]–[12]. For such
surrogate model approach, the iterative process is still required
in order to find a suitable design candidate that meets the
objectives.

An even more fascinating application is to utilize deep
learning models for the inverse design process. These inverse
models have the ability to directly generate design candidates
that fulfill specific requirements, thus bypassing the con-
ventional iterative optimization process. However, achieving
optimal performance with inverse models necessitates more
intricate configurations tailored to specific tasks. This is due
to the fact that inverse models utilizing DNNs face a chal-
lenge known as the one-to-many mapping problem. Unlike
surrogate models, which yield deterministic responses for a
given design, inverse models often encounter situations where
multiple design candidates satisfy the specified requirements.

In this paper, we propose the use of a variational auto-
encoder (VAE) [13] as an inverse design and generation
strategy for electric motors, which addresses the one-to-many
problem in motor design tasks. We apply this method to a
surface-mount permanent magnet (SPM) motor design prob-
lem and show that it is capable of providing motor designs that
meet a set of design objectives without iteration. The results
are validated with finite-element simulations.

II. PROBLEM SETTING & DATASET GENERATION

In this paper, we investigate the design optimization of
surface-mount permanent magnet (SPM) motor, and use it
to demonstrate the effectiveness of the proposed VAE based
inverse design method. This particular motor consists of 10
magnetic poles in the rotor and 12 slots for the stator winding,
as shown in Fig. 1. A total of 9 specific design parameters is
subject to design optimization, while all other parameters are
fixed. Table I list the design parameters, the corresponding
range of values and the step size used when generating
design candidates during dataset preparation. For each design

candidate, we evaluate the following responses: slot area r1,
12th Fourier order of cogging torque r2, 1st Fourier order of
induced voltage r3, and its total harmonic distortion r4.

For dataset generation, we employed finite-element sim-
ulations using JMAG, a commercial simulation software.
Each individual design is characterized by a specific set of
geometrical parameters, denoted as D : [d1, d2, ..., d9], along
with a corresponding set of motor responses, denoted as R :
[r1, r2, ..., r4]. Table I provides a comprehensive representation
of each design parameter (di) for reference. The range and step
size of each parameter are set to generate design candidates
with parameter sweeping. Removing the non-physical designs
created in the process, these simulations enabled us to create a
comprehensive SPM dataset comprising a total of 8, 916 motor
designs.

Fig. 1. The schematic of the SPM model and the representation of the design
parameters.

TABLE I
LIST OF DESIGN PARAMETERS AND DATA RANGE IN THE DATASET

Name min. [mm] max. [mm] step. [mm]
d1 Magnet height at the center 2.0 5.0 0.2
d2 Stator inner diameter 45.0 50.0 0.5
d3 Magnet curvature radius 8.0 20.0 1.0
d4 Magnet width 5.0 13.0 0.5
d5 Back yoke width 3.0 6.0 0.5
d6 Tooth shoe height 1 0.2 1.6 0.2
d7 Tooth shoe height 2 1.0 3.0 0.5
d8 Slot opening 0.0 2.0 0.2
d9 Tooth width 5.0 10.0 0.25

III. INVERSE DESIGN BASED ON VAE

DNN-based surrogate models can learn the relationship
between motor design and its performance metrics. These
models take in a motor design as input and predict the
corresponding responses or performance metrics. The map-
ping in this scenario is straightforward as it is a one-to-one
relationship. In other words, for any given inputs (which are
motor design parameters in our case) to the model, there is
only one possible and deterministic output (which are motor
responses in our case).



TABLE II
DIFFERENT MOTOR WITH SIMILAR RESPONSES

Unit: mm d1 d2 d3 d4 d5 d6 d7 d8 d9
Motor 1 3.4 50.0 9.0 5.5 3.0 1.0 2.6 0.6 7.75
Motor 2 3.6 47.0 10.0 5.5 5.0 0.4 2.8 0.6 6.50

Response: r1 (mm2) r2 (N· m) r3 (V) r4 (1)
Motor 1 30.73 0.090 18.78 0.279
Motor 2 30.72 0.094 18.77 0.249

However, the situation is totally different in motor design
tasks, where the objective is often to find the best motor
design that meets specific design targets among quite a lot of
candidates. This process, known as inverse design, can result
in multiple motor designs with different parameters producing
similar or identical responses. In this case, when generating a
large dataset using finite element analysis (FEA) simulation,
it is possible to encounter “conflicting” data. For instance, we
may discover two designs, denoted as D1 and D2, that exhibit
very similar or even identical responses, R. This situation
creates a scenario of one-to-many mapping. To illustrate this
problem, we consider two different motor designs from the
dataset, as shown in Table II, along with their corresponding
responses. It is evident that these two motors display nearly
identical response sets despite having distinct parameters. This
represents just one instance of “conflicting” data, and there
may be more occurrences of this nature when generating a
very large dataset. The presence of this one-to-many mapping
problem can pose challenges in training deep neural networks
(DNNs), potentially leading to convergence issues.

Identifying the cause of this confusion helps in finding
appropriate solutions. To avoid the neural network becoming
confused by the different branches of the design, it is possible
to employ two different approaches: (i) Allow the neural
network to converge to a single branch, disregarding the
conflicting data. By forcing a convergence towards one branch
over the other, the network can focus on learning and gener-
ating designs that align with the branches. (ii) Alternatively,
let the neural network converge at distinct branches based
on different circumstances. This approach acknowledges that
different situations may require different design solutions. By
training the network to adapt its convergence behavior, it
becomes capable of generating designs that are better suited
for specific requirements.

In our previous study [14], we employed a tandem neural
network to tackle the one-to-many mapping problem. This
kind of neural network belongs to the aforementioned ap-
proach (i), which aimed to converge on only one single branch
for each input. This was achieved by combining the inverse
design model with a pretrained surrogate model. Although
this approach demonstrated effective convergence, it only
provided a single motor design candidate for a given target
response. However, the tandem network has the drawbacks.
While it can overcome the one-to-many mapping problem
and exhibit excellent inverse design performance, it can only

offer one solution for the target response. In reality, there are
often additional constraints, such as material cost, feature size
and robustness, that restrict motor designs. This deterministic
nature of the tandem neural network fails to account for
multiple available solutions that exist and may be better
suited. Therefore, it is crucial for an inverse design model
to have the ability to generate multiple candidates for a single
target response, adopting the idea of approach (ii). Essentially,
directly resolving the one-to-many mapping issue by exploring
all design branches would be highly desirable instead of
settling for the solution to one single branch.

Toward this end, it is more beneficial to use a genera-
tive model which can generate multiple design candidates
instead of a deterministic inverse design model. Some pop-
ular examples of generative neural networks include VAEs
[15], [16], Generative Adversarial Networks (GANs) [17] and
Transformer-based Models [18]. VAEs are generative models
that combine elements from autoencoders and probabilistic
models. They consist of an encoder network that maps input
data to a latent space and a decoder network that reconstructs
the input data from the latent space. VAEs are trained using
a probabilistic approach that maximizes the evidence lower
bound (ELBO), which consists of two main loss terms, namely
reconstruction loss and Kullback–Leibler (KL)-divergence,
allowing them to generate new design candidates by sampling
from the learned latent space. The advantage of VAEs is their
ability to learn meaningful latent representations and offer a
principled framework for generating new data while allowing
for interpolation and controlled synthesis. GANs, on the other
hand, consist of a generator and a discriminator network that
are trained simultaneously. The generator learns to produce
synthetic data samples to deceive the discriminator, while
the discriminator learns to distinguish between real and fake
samples. GANs can generate realistic and diverse samples by
effectively capturing the underlying data distribution. How-
ever, they can be challenging to train and may suffer from
model collapse and/or instability issues. Lastly, Transformer-
based models, known for their success in natural language
processing tasks, have also been applied to generative mod-
eling. By leveraging self-attention mechanisms, transformers
can capture long-range dependencies in the data, making them
effective in generating sequences. Transformers offer paral-
lelizability and have achieved state-of-the-art results in tasks
such as language generation and image synthesis. Overall,
generative neural networks provide a range of approaches for
data generation. While GANs and transformer-based models
each have their own strengths and applications in generating
diverse and realistic data samples, VAEs stand out for their
ability to learn meaningful latent representations, principled
probabilistic framework, and the control they offer through
the latent space. They find applications in image generation,
data compression, and anomaly detection.

In this study, we will focus on DNN-based inverse design
models for motor design tasks by utilizing a VAE that presents
a solution to fully resolve the one-to-many mapping problem.
The VAE architecture encodes the information about the motor



Fig. 2. The schematic of a variational auto-encoder (VAE) model.

design (x) and its response (y) into a latent distribution
(qϕ(z|y, x)), as illustrated in Fig. 2. The latent distribution
is typically chosen to be a multivariate Gaussian distribution
for two main reasons: first, it can be simply represented by
a mean vector (µ) and a standard deviation vector (σ), and
the dimension of this distribution is a hyper-parameter in
the VAE referred to as the latent dimension (Nl). Second,
it is straightforward to evaluate the similarity between two
Gaussian distributions using the analytical formula for the KL-
divergence loss.

The goal of the VAE is to encourage the distribution
produced by the encoder to approximate a prior distribution,
denoted as pθ(z). This prior distribution is often chosen to
be a standard Gaussian distribution N (0, I) with the reasons
discussed before, where I represents the Nl dimensional iden-
tity matrix. By imposing this constraint, the VAE ensures that
the latent space is well-structured and allows for meaningful
interpolation and sampling. To achieve this, the VAE employs
an encoding process that maps the input data to a distribution
in the latent space, characterized by the mean (µ) and standard
deviation (σ). The encoder network takes the input data and
maps it to these parameters, which define the shape of the
distribution. Then, a random sampling procedure is performed
to generate a latent vector (z) from this distribution. It is
important to note that multiple latent vectors can be generated
from the same latent distribution, specified by the same µ and
σ, through a random process. This stochasticity is crucial in
addressing the problem of one-to-many mappings, allowing
the VAE to capture the underlying variability in the data.
Once the latent vector is obtained, it serves as an input to
the decoder network along with the target response y. The
decoder reconstructs the original input data by decoding the
information contained in the latent vector and incorporating
the target response. By feeding both the latent vector and the
target response to the decoder, the VAE can generate a motor
design that not only captures the characteristics of the latent
distribution but also fulfills the desired target response. This
fusion of information enables the VAE to produce meaningful
and context-aware motor designs.

IV. MODEL IMPLEMENTATION & TEST RESULTS

In this section, we first explain the details of the VAE based
inverse model architecture and its implementation process, and

then show the test results on the SPM dataset.
As shown in Fig. 2, the VAE model requires a surrogate

model f and a design-response dataset (x, y) during the train-
ing phase. In the VAE model, the encoder component takes
a batch of data and produces µ and log σ2, which define the
latent distribution qϕ(z|y, x). This equation indicates that the
latent distribution is conditioned on the input data pair x and y.
In other words, the encoder network generates a distinct latent
distribution for each input data pair. This particular VAE model
is referred to as the conditional-VAE (cVAE). However, for
the sake of simplicity, we will still use the abbreviation VAE
to denote this model in subsequent text. During the inverse
design stage, we lack information about the design x and
only possess the target response y. Consequently, we cannot
obtain the exact latent distribution qϕ. Hence, the approach is
to ensure that the latent distribution for all data pairs closely
approximates a fixed, user-defined prior distribution pθ(z) that
remains independent of both x and y. The KL-divergence loss
is minimized to bring the distribution closer to the Gaussian
prior distribution N (0, I), which is expressed as follows when
pθ and qϕ are both Gaussian distributions:

DKL(qϕ||pθ) ≡
∫
z

qϕ log
qϕ
pθ

dz = log
1

σ
+

σ2 + µ2

2
− 1

2
(1)

Then, a batch of random latent vectors z is sampled from the
distribution qϕ, combined with the target motor responses y
as input to the decoder part of VAE model, generating motor
designs x̂ and a reconstruction loss is calculated using root-
mean-square error (RMSE):

Lr(x, x̂) =

√√√√ 1

n

n∑
i=1

(xi − x̂i)2 (2)

On the other hand, the surrogate model predicts responses ŷ
and a prediction loss is calculated using RMSE:

Lp(y, ŷ) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3)

In the generation phase, the VAE only receives target response
y as input, and a latent vector z is generated from the prior
distribution pθ = N (0, I), which is decoded to produce design
x̂ and evaluated with the surrogate model to get a response ŷ.
The final motor design is x̂ for target response y.

Although the prediction loss is the most important metric to
describe the performance of the inverse design model because
it directly tells the difference between the target response and
the response of the motor design suggested by the model,
the reconstruction loss should also be included in the training
phase to ensure that the reconstructed designs have a similar
data range and distribution as the training data, though not
necessary to be exactly minimized. Therefore, the total loss
function used for backpropagation is defined as:

L = wr · Lr(x, x̂) + Lp(y, ŷ) +DKL(qϕ||pθ) (4)

where wr is the weight of the reconstruction loss as a hyper-
parameter.



To implement the inverse model, we first partition the
dataset employing an 80:20 split ratio, allocating 80% of the
dataset for training purposes and reserving the remaining 20%
for testing the model’s performance.

Fig. 3. Comparison of results from different loss functions in VAE and tandem
network settings. The red dashed line represents the Pareto front considering
the two loss functions as objectives.

In order to evaluate the performance of the VAE model
and investigate the impact of the weight parameter, we trained
multiple models with varying loss functions by adjusting the
weight wr from 0 to 1, while maintaining consistent model
configuration and other hyper-parameters. Figure 3 illustrates
the RMSE values for both prediction and reconstruction of
each model, including two tandem neural network-based mod-
els: one with solely reconstruction loss (wr = 0) and the
other with only prediction loss (wr = ∞). The red dashed
line represents the Pareto front [19], indicating the optimal
solutions in the two-objective optimization (minimizing both
RMSEs), where enhancing one objective necessitates compro-
mising the other. Ideally, we aim for minimal prediction loss
disregarding reconstruction loss; however, a high reconstruc-
tion loss can lead to errors in the surrogate model and po-
tentially yield physically infeasible designs. Considering both
factors, the plot suggests that achieving moderate prediction
and reconstruction loss is more attainable with a weight for
the reconstruction loss ranging from 0.5 to 0.8.

To provide a comprehensive demonstration of the perfor-
mance of a well-trained VAE model, we present a visual-
ization of the prediction and reconstruction distributions for
wr = 0.5 in Figure 4. Figure 4(a) displays the ground
truth motor responses (target responses R) on the horizontal
axis, while the vertical axis represents the responses of the
reconstructed motor designs generated by the VAE model
using the surrogate model for prediction instead of FEA
simulation, thereby improving efficiency. The plot exhibits
a strong agreement between predicted and target responses,
confirming the accuracy of the VAE-based inverse design.
However, it is essential to note that the error encompasses
both the surrogate model’s prediction error and the discrepancy
between the target and predicted response. In Figure 4(b),
we illustrate the distributions of the design parameters in

the dataset (blue) and those generated by the inverse model
(orange) to qualitatively evaluate the prediction error of the
surrogate model. The figure demonstrates that all reconstructed
parameters fall within a reasonable range, indicating the effec-
tiveness of the surrogate model in predicting motor responses.
Therefore, we confidently assert that the VAE-based inverse
model exhibits excellent performance in proposing new motor
design candidates that align with user-defined responses.

Furthermore, one of the significant advantages of proba-
bilistic generation models like VAE is the ability to generate
multiple design candidates for a fixed target response. To
showcase this capability of the VAE model, we select one
specific set of target responses from the test dataset, as listed
in the first row of the table in Figure 5. Subsequently, we
run the VAE model to simultaneously generate over 1000
distinct sets of design parameters. To visualize this behavior,
we plot the distribution of all generated parameters of the
design candidates, as depicted in Figure 5. Notably, we observe
that the parameters span a certain range rather than converge
to only a single parameter set. Although this range may not be
extensive, it still provides a finer level of variation that enables
users to consider physical constraints and material costs when
seeking an optimal design. It is important to highlight that
all these design candidates exhibit a high level of accuracy
in approximating the target responses, as demonstrated in the
three examples presented in the table. Consequently, we estab-
lish that the VAE model possesses the capability to generate
multiple design candidates that closely align with user-defined
design targets, ensuring both accuracy and efficiency.

As a final step, we aim to validate that the motor design
candidates generated by the VAE model indeed fulfill the
design targets. To achieve this, we conducted FEA simulations
instead of relying solely on the surrogate model trained on
the same dataset. By comparing the responses of randomly
selected reconstructed designs generated from the VAE model
(wr = 0.5) to the target responses through FEA simulations,
we evaluate their validity. A total of 30 designs D and their
corresponding true responses R were randomly selected from
the dataset and used as target responses for the VAE. The VAE
suggested designs D̂ for each target response, and both D and
D̂ were evaluated through simulations. Figure 6 demonstrates
that the majority of designs exhibited excellent agreement
with the target responses, particularly for metrics such as
slot area, induced voltage, and harmonic distortion. Although
larger errors were expected for cogging torque, the results still
closely aligned with the target response.

The capability of VAE to simultaneously match all target
responses with high accuracy renders it suitable for multi-
objective optimization and multitask design problems. Addi-
tionally, the ability of VAE to generate multiple designs when
executed multiple times enhances its robustness in real-world
applications, providing multiple candidates for a single design
task.



Fig. 4. Test results of the optimized VAE models.(a) The response plot shows the predicted response vs. the target response. (b) The distribution of the
ground-truth design parameters (blue) and the retrieved design parameters (orange).

Motor reconstructions D∗

Unit: mm d1 d2 d3 d4 d5 d6 d7 d8 d9 r1 (mm2) r2 (N· m) r3 (V) r4 (1)
Target / / / / / / / / / 29.49 0.018 28.76 0.03

Motor 1 3.65 48.01 15.14 10.03 4.06 0.9 2.20 0.99 7.66 29.73 0.0177 28.84 0.025
Motor 2 3.51 47.72 15.42 10.08 4.28 0.9 2.06 1.00 7.54 29.73 0.0153 28.68 0.028
Motor 3 3.59 47.82 15.77 10.20 4.17 0.9 2.08 1.13 7.63 29.64 0.0185 29.02 0.029

Fig. 5. The distribution of the reconstruction of design parameters for the same design target. Three examples of the reconstructed motors including their
design parameters and their responses are shown in the table in comparison to the target responses.

Fig. 6. Comparison between the target responses (x-axis) and the responses of the reconstructed motors from FEM simulation.



V. CONCLUDING REMARKS

In summary, we proposed an inverse design method for
electric machines using a VAE-based deep learning model,
which is capable of generating multiple motor designs based
on a set of design objectives without iteration. We showed
with an SPM design task that the proposed method is effective
in finding optimal designs, whose performances are in good
agreement with objective responses. Unlike machine learning
and deep learning based surrogate models, the VAE inverse
model is able to generate optimal designs without iteration.
Compared with other inverse models such as tandem network,
the VAE model can handle multi-objective optimization and
multi-task design problems, and provides multiple candidates
for user-defined design tasks, offering higher robustness in
real-world applications. The reconstructed parameters also fall
within a reasonable range defined by the training dataset, en-
suring the accuracy of predictions from a pretrained surrogate
model. The actual performance of the VAE generated motor
designs have also been validated by finite-element simulations,
showing the effectiveness of the approach.
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