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Abstract

In this extended abstract we present two recent contributions in the context of Physics In-
formed black-box inverse dynamics identification using Gaussian Processes (GPs). The first
contribution consists in a novel kernel, named Geometrically inspired Polynomial Kernel
(GIP) for single joint GP-based inverse dynamics identification. Driven by the fact that the
inverse dynamics can be described as a polynomial function on a suitable input space, the
GIP kernel restricts the regression problem to a finite-dimensional space which contains the
inverse dynamics function, thus leading to improved data efficiency and generalization proper-
ties. The second contribution consists in the derivation of a multidimensional GP framework,
named Lagrangian GPR, which overcomes the single joint approach and learns the inverse
dynamics in a multidimensional setting. Exploiting the properties of GPs in connection with
linear operators, Lagrangian GPR allows to impose by design the known symmetric structure
of the Euler-Lagrange equation on the learned models. Moreover, since information is shared
between different degrees of freedom (DOFSs), this approach strongly improves data efficiency
and generalization properties.
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Abstract—In this extended abstract we present two recent
contributions in the context of Physics Informed black-box
inverse dynamics identification using Gaussian Processes (GPs).
The first contribution consists in a novel kernel, named
Geometrically inspired Polynomial Kernel (GIP) for single joint
GP-based inverse dynamics identification. Driven by the fact that
the inverse dynamics can be described as a polynomial function
on a suitable input space, the GIP kernel restricts the regression
problem to a finite-dimensional space which contains the inverse
dynamics function, thus leading to improved data efficiency and
generalization properties. The second contribution consists in
the derivation of a multidimensional GP framework, named
Lagrangian GPR, which overcomes the single joint approach
and learns the inverse dynamics in a multidimensional setting.
Exploiting the properties of GPs in connection with linear
operators, Lagrangian GPR allows to impose by design the
known symmetric structure of the Euler-Lagrange equation
on the learned models. Moreover, since information is shared
between different degrees of freedom (DOFs), this approach
strongly improves data efficiency and generalization properties.

I. INTRODUCTION

Inverse dynamics identification is a fundamental but chal-
lenging task in robotics. In the recent years black-box learning
techniques have drawn the attention of the robotics community.
Among them, a promising framework is represented by
Gaussian Process Regression (GPR) [1]. Despite their ability
to approximate very complex dynamics, however, GPR based
black-box methods have two main limitations:

(i) they typically require large amount of samples and in
general do not show satisfying generalization properties;

(i) each torque component is typically modeled by an
independent GP, which ignores the correlations and sym-
metries between different degrees of freedom (DOFs).

In order to address the aforementioned issues, a promising
research line is represented by the so called Physics-Informed
methods, which are based on the idea of embedding insights
from physics as model prior. Instead of learning the inverse
dynamics in a completely unstructured manner, which makes
the problem unnecessarily hard, geometrical and physical
properties are exploited both to improve learning performance
and to impose physical consistency.

In this work we present our recent developments in the
context of Physics-Informed GPR-based inverse dynamics
identification of robot manipulators. In particular:
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(1) inspired by the property of the inverse dynamics map
components of being a polynomial function in an
augmented input space, we proposed in [2] a novel black-
box polynomial kernel named Geometrically Inspired
Polynomial (GIP) kernel. This kernel aims at improving
generalization and data efficiency by constraining the re-
gression problem, for each DOF, into a finite dimensional
space that contains the inverse dynamics equations.

(i1) Inspired by the fact that the inverse dynamics equations
are obtained applying a linear operator to the Lagrangian
function, we derived a multidimensional GPR framework,
named Lagrangian GPR, where the inverse dynamics is
learned considering correlation between different DOFs.
Whitin this framework, symmetries of the system are
imposed by design. Moreover, information is shared
between different DOFs, which leads to improved data
efficiency and generalization properties.

II. ROBOT INVERSE DYNAMICS

Consider a robotic arm with n joints, connected by n + 1
links and let g € R™ be the vector of joint positions. The
inverse dynamics is defined as the function mapping the
robot state = (q, ¢, ) € R>" into the vector of generalized
torques 7 € R™. Under the rigid body and energy conservation
assumptions, the robot dynamics can be derived from the
Lagrangian mechanics. Let the Lagrangian be the difference
between kinetic energy T' and potential energy V', namely
L =T — V. Then, the system dynamics satisfies the Euler-
Lagrange (EL) equation, expressed as

d . .
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where Vyf(-) denotes the gradient of f with respect to x.

III. GAUSSIAN PROCESS REGRESSION

GPR can be employed to approximate an unknown function
f:R? - R, given a training dataset D = {X, y}. The input
samples are collected in X € RQ*YN while y € RV contains
the corresponding output measurements, with /N being the
number of observations and @ the input dimensions.

The output measurements y are assumed to be generated
by the following probabilistic model
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where w is i.i.d Gaussian noise with standard deviation o. The
unknown function f is modeled a priori as a zero-mean GP,



namely f(X) ~ N(0,K). Each element of the covariance
matrix K, known also as kernel matrix, is defined through
a kernel function k(-,-). In particular, the element of K in
position (h, j) is equal to k(zp, z;). Given the observations
D and a new input location x., it can be proved that the
posterior distribution of f(z) is Gaussian, with mean

fe=kia 3)
and covariance
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where
ky = [k(xy, 1), ... k(xy, wN)]T

and
a=K+ol) 'y

The maximum a posteriori estimator coincides with the
posterior mean f* Within the GPR framework, a fundamental
role is played by the kernel function: the whole complexity
of GPR reduces to the choice of the correct kernel function
for the problem at hand.

A. Single joint GPR Inverse dynamics identification

The GPR framework described above can be applied to
the inverse dynamics identification problem. In particular,
within the so called single-joint approach, each joint is
considered individually and its torque 7 is modeled as
an unknown function of the robot state & € R3™. Thus, the
inverse dynamics identification problem reduces to solve n
independents GPR problems.

IV. GEOMETRICALLY INSPIRED POLYNOMIAL KERNEL

As already pointed out, the choice of the kernel is a crucial
aspect in GPR. State of the art methods for single-joint
Inverse dynamics identification rely on the so called Squared
Exponential (SE) kernel [1]. This kernel function, however,
capture only similarities between data and it ignores existing
relations imposed by the physics and geometry of the problem.
As a consequence, it shows the same data inefficiency and
poor generalization issues mentioned above.

The Geometrically Inspired Polynomial (GIP) kernel,
instead, is based on the property that each component 7% in
eq. (1) is a polynomial function in a proper transformation
of the GP input, fully characterized only by the type of each
joint. Specifically, g is mapped in q, the vector composed
by the concatenation of the positions of prismatic joints and
the sines and cosines of the positions of revolute joints. As
proved in [2], the inverse dynamics eq. (1) is composed by
polynomial functions in ¢, ¢ and g, where the elements of ¢
have maximum relative degree of one, whereas the ones of
q and g have maximum relative degree two. To exploit this
property, the GIP kernel is defined through the sum and the
product of different polynomial kernels [3], hereafter denoted
as kgf)(~, -) where p is the degree of the polynomial kernel.
In particular,

Karp(x, @) = (K5 (d,d) + k% (d,d)ko(@,d). (5

where kg is given by the product of polynomial kernels with
degree two. In this way, the GIP kernel allows defining a
regression problem in a finite-dimensional function space
where (1) is contained. From experimental results, the GIP
kernel showed better data efficiency and generalization prop-
erties if compared to other black-box estimators. If compared
to parametric models, instead, it shows similar generalization
properties while requiring less prior information.

V. LAGRANGIAN GPR FRAMEWORK

The single joint approach is simpler and more computation-
ally efficient, but it ignores known correlation between joints.
As a result, the learned model is not guaranteed to respect
the structure and symmetries imposed by the EL equation
in (1). Our idea is to model the Lagrangian function as a
zero-mean GP and then to exploit the invariance property of
GPs under linear operators [4] to obtain a multidimensional
GP framework for Inverse dynamics identification.

First, let L(q,q) ~ GP(0,kr(q,q,q’,q")). Then consider
the following proposition.

Proposition 1: Let T, be a linear operator and f be a
GP such that

f(@) ~ GP(m(z), k(z,a")). (6)
Then, g = T, f is a (possibly multidimensional) GP such that
9(x) ~ GP(my(x), ky(, z")) (7

with mean m,(x) =
T ok(x, )T & .

Defining the Lagrangian operator as L (g 4.4) = %Vd +Vg,
from eq. (1) we have that 7 = L(q, q, §)L(q, q). Moreover,
applying proposition 1 we obtain

T ~ GP(0, kr(x,x')) (8)

with kr (2, 2') = Lig.4.5)%.(2,9,4,4)L(q ¢ .4) Where
x = (q,q,q) is the robot state. Note that this way we
obtained a multidimensional GP. The extension of the GPR
presented in section III to the multidimensional setting is
straightforward [5].

Preliminary results showed that this approach provides
improved data effeciency and generalization properties with
respect to single joint methods. Moreover, the remaining
degree of freedom represented by the choice of the lagrangian
kernel k7, can be exploited to further improve the learning
performances or to impose other constraints on the model,
e.g. the positivity of the kinetic energy.

=m(x) and kernel k,(x,z’) =
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