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Abstract
Self-optimizing efficiency of vapor compression cycles (VCCs) involves assigning multiple
decision variables simultaneously in order to minimize power consumption while maintaining
safe operating conditions. Due to the modeling complexity associated with cycle dynamics
(and other smart building energy systems), online self-optimization requires algorithms that
can safely and efficiently explore the search space in a derivative-free and model-agnostic
manner. This makes Bayesian optimization (BO) a strong candidate for self-optimization.
Unfortunately, classical BO algorithms ignore the relationship between consecutive optimizer
candidates, resulting in jumps in the search space that can lead to fail-safe mechanisms being
triggered, or undesired tran- sient dynamics that violate operational constraints. To this end,
we propose safe LSR-BO, a global optimization methodology that builds on the BO framework
while enforcing two types of safety constraints including black-box constraints on the output
and local search region (LSR) constraints on the input. We provide theoretical guarantees
that under standard assumptions on the performance and constraint functions, LSR-BO
guarantees constraints will be satisfied at all iterations with high probability. Furthermore,
in the presence of only input LSR constraints, we show the method will con- verge to the true
(unknown) globally optimal solution. We demonstrate the potential of our proposed LSR-BO
method on a high-fidelity simulation model of a commercial vapor compression system with
both LSR constraints on expansion valve positions and fan speeds, in addition to other safety
constraints on discharge and evaporator temperatures.
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Self-optimizing efficiency of vapor compression cycles
(VCCs) involves assigning multiple decision variables si-
multaneously in order to minimize power consumption while
maintaining safe operating conditions. Due to the modeling
complexity associated with cycle dynamics (and other smart
building energy systems), online self-optimization requires
algorithms that can safely and efficiently explore the search
space in a derivative-free and model-agnostic manner. This
makes Bayesian optimization (BO) a strong candidate for
self-optimization. Unfortunately, classical BO algorithms
ignore the relationship between consecutive optimizer can-
didates, resulting in jumps in the search space that can lead
to fail-safe mechanisms being triggered, or undesired tran-
sient dynamics that violate operational constraints. To this
end, we propose safe LSR-BO, a global optimization method-
ology that builds on the BO framework while enforcing two
types of safety constraints including black-box constraints on
the output and local search region (LSR) constraints on the
input. We provide theoretical guarantees that under standard
assumptions on the performance and constraint functions,
LSR-BO guarantees constraints will be satisfied at all iter-
ations with high probability. Furthermore, in the presence
of only input LSR constraints, we show the method will con-
verge to the true (unknown) globally optimal solution. We
demonstrate the potential of our proposed LSR-BO method
on a high-fidelity simulation model of a commercial vapor
compression system with both LSR constraints on expansion
valve positions and fan speeds, in addition to other safety
constraints on discharge and evaporator temperatures.

Nomenclature
BO Bayesian optimization

DFO Derivative-free optimization
EI Expected improvement
EIC Expected improvement with constraints
GP Gaussian process
GPR Gaussian process regression
HVAC Heating, ventilation, and cooling
LSR Local search region
LSR-BO LSR-constrained BO (pronounced ‘laser-BO’)
NEB No-empty-ball property
VCC Vapor compression cycle
VCS Vapor compression system

1 Introduction

Vapor compression cycles (VCCs) are a critical compo-
nent in many energy transfer systems due to their reliability,
especially in heat pumps and refrigeration [1]. Most com-
monly, these VCCs comprise of: compressors for pumping
and circulating fluids, expansion valves for regulating pres-
sures in different parts of the cycle, and heat exchangers for
thermal energy transfer from one medium to another. Actua-
tor variables associated with each of these components con-
tribute significantly to cycle performance, and therefore, en-
ergy efficiency. Two popular methods for designing control
policies for these actuators are through the use of decentral-
ized feedback loops with proportional-integral controllers [2]
and model predictive controllers [3]. Often, these controllers
are ‘legacy’: that is, their gains are pre-fixed by the manu-
facturer, and therefore, the only degree of freedom afforded
for online optimization is by adjusting outer loop parame-
ters such as setpoints to the legacy controllers. Selecting
good setpoints unfortunately introduces additional complex-



ity into the design. Proper assignment of actuator setpoints is
a well-understood approach for optimizing closed-loop per-
formance, despite having legacy feedback controllers already
deployed in the system by the manufacturer [4] and other
sources of uncertainties and disturbances arising in practice:
such as disturbances in ambient conditions, human occu-
pancy levels, end-user heat load variations. This is further
exacerbated by the fact that the closed-loop system dynam-
ics are nonlinear, multi-variable, and often contain unmod-
eled components.

To bring this problem into an optimization context, we
reiterate that closed-loop systems can be further optimized
after deployment by adapting decision variables given some
useful performance metric defined in terms of measured op-
erational data. Manually tuning these variables can be highly
inefficient or require considerable task-specific expertise that
does not generalize to new types of systems. We posit that
auto-tuning methods are a systematic and efficient approach
to attack this problem. Auto-tuning algorithms are capable
of automatically adjusting the control parameters to achieve
optimal performance as a way to save time, manual effort,
and cost of experimentation; see for instance [5–8] for some
examples where auto-tuning has been reported to improve
the performance of modern engineering systems.

Since the map between the control parameters and rel-
evant closed-loop performance functions are often unmod-
eled (unknown) and may be highly nonlinear, it is com-
mon to treat this map as a black-box function with fully un-
known structure. Therefore, we can treat auto-tuning as a
black-box optimization problem, which can be tackled us-
ing any derivative-free optimization (DFO) method; we refer
the reader to [9] for a detailed overview of DFO algorithms.
Since closed-loop experimentation or high-fidelity software
simulations (like so-called digital twins) are needed to accu-
rately represent true system behavior, the evaluation of which
is expensive, auto-tuning algorithms must be designed to re-
quire as few experiments/evaluations as possible.

Bayesian optimization (BO) is a sample-efficient DFO
method that uses a probabilistic machine learning model to
intelligently search over feasible parameter spaces [10, 11].
Due to its sample efficiency, BO has received significant at-
tention in the context of auto-tuning including real-world ap-
plications in wind energy systems [12], engines [13], and
space cooling [14, 15]. In addition, BO has been shown
to generalize well across a wide-variety of complex con-
trol problems such as controller parameter/reference setpoint
tuning [16–18], cascade controller tuning [19], and MPC
tuning [20–23]. An important challenge in the online de-
ployment of such traditional BO-based auto-tuning methods
is that they do not directly consider any form of safety. In
the energy optimization tasks of interest here, these safety
constraints can come in two forms: (i) constraints on the al-
lowable closed-loop output variables and (ii) constraints on
the movement of the input controller design parameters. An
example of (i) is any outcome that can lead to major eco-
nomic or social consequences such as the discharge or evap-
orator temperatures exceeding known limits that could lead
to failure of the VCC system. Constraints of the form (ii)

are more related to aggressive changes in the inputs. For ex-
ample, energy consumption in HVAC systems is correlated
with the electronic expansion valve (EEV) position setpoint.
Aggressively exploring the search space is tantamount to ag-
gressively opening and closing the EEV, which causes exces-
sive wear and tear of the mechanical components of the valve
and can produce oscillations in the refrigerant flow dynamics
that result in compromised heating/cooling performance and
can destabilize feedback loops that regulate the behavior of
other system actuators (e.g., compressor speed).

Recent work on so-called safe BO, e.g., [24,25] has con-
sidered black-box output constraints; however, these meth-
ods explore the search space without considering the distance
between consecutive optimization candidates. As such, they
have the tendency to suggest candidates at consecutive itera-
tions that are far apart in the search space, which leads to the
aggressive dynamic behavior described above. We recently
developed a novel BO extension, called LSR-BO, that en-
forces local search region (LSR) constraints to restrict how
much the controller tuning parameters can be varied at each
iteration as a way to address this issue [26]. However, our
prior work only considers a single closed-loop performance
indicator and thus cannot handle black-box safety-critical
output constraints and assumes perfect measurements so it
does not directly handle noisy observations. Therefore, the
main goal of this paper is to overcome these limitations by
extending LSR-BO to handle critical closed-loop safety con-
straints and noisy observations in the performance and con-
straint functions. The proposed extension, safe LSR-BO, is
conceptually simple and computationally efficient, making it
easy to implement in practice. Furthermore, we provide new
theoretical analysis of safe LSR-BO to show it confers some
useful safety and convergence properties.

In summary, our major contributions are:

(i) extending our recently proposed LSR-BO method [26]
to provide a high probability guarantee of closed-loop
safety constraint satisfaction, while balancing local and
global performance improvement;

(ii) introducing an effective strategy for handling noisy ob-
servations of the performance and constraint functions;

(iii) establishing that safe LSR-BO will generate a sequenc-
ing of candidate tuning parameters that lead to safe per-
formance for all iterations (with high probability) and
can converge to the true (unknown) globally optimal
solution under certain conditions; and,

(iv) demonstration of safe LSR-BO’s ability to ensure safe
energy optimization of industrial heat pump systems
using high-fidelity simulations.

The remainder of the paper is organized as follows.
In Section 2, we describe the importance of the safe LSR-
constrained BO problem, and provide a detailed overview
of our proposed solution in Section 3. We perform some
theoretical analysis on the safety and convergence properties
of LSR-BO in Section 4. We then demonstrate the ability
of safe LSR-BO to outperform existing BO algorithms on a
benchmark and real-world energy application in Section 5.
We present our conclusions in Section 6.



2 Self-Optimizing VCCs and the Criticality Of LSR
Constraints

As explained in §1, vapor compression systems with
legacy controllers in place can be treated as black-box
closed-loop systems as the internal dynamics are not fully
known for online optimization. Therefore, we consider
closed-loop systems abstracted by

x+ = F(x,θ), (1)

where x ∈ Rnx and x+ ∈ Rnx denote the current and one-step
future state of the vapor compression system, respectively,
and θ ∈Θ⊂ Rd denotes a set of control-relevant parameters
that can be assigned. More generally, the parameters θ can
represent any tunable variable in the control policy, which in-
cludes parameter choices (e.g., controller gains) or structural
choices (e.g., turning on or off a component of the policy),
but in this work, θ comprises references (e.g., setpoints) for
the legacy controllers to track.

To judge the efficiency of the cycle, we assume that
some performance function f 0 : Θ→ R can be defined; in
this work, f 0(θ) quantifies the energy consumption for any
given θ ∈ Θ over a pre-defined time interval. Temperature
constraints are often explicitly specified in addition to cycle
performance to prevent unsafe operating conditions: there-
fore, we assume that a set of m safety constraints f i : Θ→R
can be defined such that f i(θ)≥ 0 for all i = 1, . . . ,m defines
the safe operating region.

Consequently, the energy minimization task for the
VCC with safety constraints is formulated as:

θ
⋆ ∈ argmaxθ∈Θ{ f 0(θ) : f i(θ)≥ 0}, (2)

where θ⋆ denotes the globally optimal control policy param-
eters. The characteristics of the constraint functions { f i}m

i=0
restrict the types of algorithms that can be employed to tackle
(2). If the mathematical structure of these functions are
known and they are convex, we can apply established meth-
ods from the field of convex optimization to efficiently iden-
tify θ⋆. However, in the majority of real-world applications,
the structure of the cost and constraint functions is often un-
known and may be highly non-convex. This is especially true
when one attempts to solve (2) using closed-loop data col-
lected from experimental systems (such as VCCs) for which
f 0(θ), . . . , f m(θ) can have a complex dependence on θ due
to its interactions with several components (the system and
actuator dynamics, the control policy, and the cost and con-
straint specifications).

Therefore, we tackle the closed-loop optimization prob-
lem (2) by considering { f i}m

i=0 to be purely black-box con-
straint functions. This implies that we must interactively
learn about them through repeated queries at particular θ ∈
Θ values. Specifically, we must design some sequence
of N parameter values {θ1, . . . ,θN} for which we can si-
multaneously obtain the performance and constraint values
{{ f i(θ1)}m

i=0, . . . ,{ f i(θN)}m
i=0}. There has been a significant

amount of work on algorithms for generating this sequence
of points, with the goal of driving θN → θ⋆ as quickly as
possible, including Bayesian optimization (BO). The key ad-
vantage of BO is that it is specifically designed for expensive
functions for which limited data can be generated. This is
an important consideration in the applications of interest in
this work since closed-loop experimentation often requires
significant time and/or resources.

Although BO (and its variants) can be used to tackle (2),
BO methods are designed for static objective problems and
therefore, there is no restriction on the distance between con-
secutive optimizer candidates selected by the algorithms. In
fact, BO commonly exhibits the tendency to produce consec-
utive candidates that are a large distance (w.r.t. some met-
ric on Θ) apart. This is natural since BO wants to ensure
sufficient exploration of Θ; however, in most industrial ap-
plications, it is not possible to change θ by a large amount
within a short span of time. In the context of VCCs (1), large
changes in θ can induce aggressive dynamics causing safety
constraint violation and/or triggering of fail-safe mechanism
that limit performance quality. To prevent undesired dynam-
ics due to large jumps during online optimization, our pro-
posed method systematically restricts the consecutive candi-
dates θn and θn+1 to be within a domain-informed safe neigh-
borhood of the current candidate θn.

Formally, this restriction can be written as

θn+1 ∈ Bδ(θn) ∀n ∈ {0, . . . ,N−1}, (3a)
where, Bδ(θ) = {θ+ ∈Θ : ∥θ+−θ∥p ≤ δ}, (3b)

denotes a p-norm ball of radius δ > 0 centered at θ. We
refer to the proposed constraints (3) as local search region
(LSR) constraints. Traditional BO methods are not equipped
to handle such restrictions on their exploration capabilities.
Therefore, the main goal of this work is to develop a safe BO
method for solving (2) that respects LSR constraints (3). We
describe our proposed LSR-BO algorithm next, and establish
performance certificates (in terms of safety and convergence)
in the subsequent section.

3 A Practical Safe Bayesian Optimization Method with
Local Search Constraints

In this section, we begin by providing a brief overview
of classical BO and recent results on so-called “safe” BO
that are equipped to satisfy constraints during online opti-
mization (with high probability). With notation and parlance
borrowed from those methods, we subsequently discuss how
to handle LSR constraints while ensuring efficient online op-
timization via LSR-BO.

3.1 Classical Bayesian Optimization
Since the functions { f i}m

i=0 are unknown in (2), they
must be learned from data collected from the VCC during
online optimization experiments. Assuming these constraint



functions satisfy smoothness properties, they can be effec-
tively modeled as independent Gaussian processes (GPs) of
the form

f i(θ)∼ GP(µi(θ),ki(θ,θ′)), ∀i = 0, . . . ,m, (4)

where µi(θ) = E{ f i(θ)} denotes the prior mean function
and ki(θ,θ′) = E{( f i(θ)− µi(x))( f i(θ′)− µi(θ′))} denotes
the prior covariance (kernel) function. GP models are non-
parametric and have the nice property that the posterior
model, conditioned on noisy observations, remains a GP with
updated mean and covariance functions. In particular, let

D i
n = {(θ j, f i

j(θ))}n
j=1

denote the current set of n observations of function i, then
posterior prediction of f i(θ) at any future test point θ ∈ Θ is
given by

f i(θ)|Dn ∼N (µi
n(θ),k

i
n(θ,θ)), (5a)

where

µi
n(θ) = µi(θ)+ki⊤

n (θ)(Ki
n)
−1 f̃i

n, (5b)

ki
n(θ,θ

′) = ki(θ,θ)−ki⊤
n (θ)(Ki

n)
−1ki

n(θ
′), (5c)

with

ki
n(θ) = [ki(θ1,θ), . . . ,ki(θn,θ)]

⊤ ∈ Rn×1,

f̃i
n = [ f i(θ1)−µi(θ1), . . . , f i(θn)−µi(θn)]

⊤ ∈ Rn×1,

Ki
n = [ki(θi,θ j)](i, j)∈{1,...,n}×{1,...,n} ∈ Rn×n.

The choice of the prior determines the properties of the
fitted functions and plays an important role in the accuracy
of the GP. We will focus on covariance functions belonging
to the Mátern class that have a parameter ν that controls the
degree of smoothness of the performance function, i.e.,

ki
ν(θ,θ

′) = ζ
2 21−ν

Γ(ν)

(√
2νd(θ,θ′)

)
Bν

(√
2νd(θ,θ′)

)
,

where d(θ,θ′) =
√

(θ−θ′)L−2(θ−θ′) is a scaled Euclidean
distance with L = diag(l1, . . . , ld), ζ is a scaling factor for the
output variance, and Γ and Bν are the Gamma and modified
Bessel functions, respectively. The rate parameter ν ∈ (0,∞)
controls the smoothness of the prior and is a valid represen-
tation as long as f i has continuous derivatives of any order
less than ν (i.e., is at least ⌈ν−1⌉ times differentiable). Inter-
ested readers are referred to [27] for details on the different
hyperparameters.

Traditional BO methods take advantage of the statisti-
cal information embedded in the GP approximations to in-
telligently explore the search space Θ by defining a corre-
sponding acquisition function. The value of the acquisition
function should provide a good measure of the potential ben-
efit of querying the performance function f 0 at any particu-
lar θ ∈ Θ. Several acquisition functions have been proposed
in the literature, with one of the most popular being the so-
called expected improvement (EI) function, given by

EIn(θ) = En
[
( f 0(θ)− ( f 0

n )
⋆)+

]
, (6)

where a+ := max(a,0) and ( f 0
n )

⋆ is the incumbent solution
that corresponds to the best objective value observed so far.
By En, we refer to the expectation with respect to the poste-
rior distribution at iteration n. The following closed-form ex-
pression for EI has been derived for GP approximators [28]:

EIn(θ) = ρ
(
µ0

n(θ)− ( f 0
n )

⋆,σ0
n(θ)

)
, (7)

where σ0
n(θ) =

√
k0

n(θ,θ) is the posterior predicted standard
deviation for the performance function, ρ is given by

ρ(y,s) =

{
yΦ(y/s)+ sφ(y/s), s > 0,
max(y,0), s = 0,

(8)

and Φ and φ, respectively, denote the cumulative distribution
function (CDF) and probability density function (PDF) of a
standard normal distribution, i.e.,

Φ(x) =
1
2

[
1+ erf

(
x√
2

)]
, φ(x) =

1√
2π

exp
(
−x2

2

)
,

and erf(·) is the error function.

3.2 Constrained Bayesian Optimization
To account for the black-box safety constraints, we need

to ensure that the sequence of candidates {θ1, . . . ,θN} (for
any choice of N) will not violate the safety constraints. We
will denote the safety set by

S = {θ ∈Θ : f i(θ)≥ 0, ∀i ∈ Nm
1 }, (9)

where Nm
1 := {1,2, . . . ,m}. Therefore, our algorithm must

ensure that θ1, . . . ,θN ∈ S ; however, since we do not have
exact knowledge of the constraint functions, we cannot as-
certain S a priori. However, we can use the GP models to
construct an approximation of this safety set that is guaran-
teed to be an inner approximation (with high probability) via

Ŝn = {θ ∈Θ : µi
n(θ)−

√
βn+1σ

i
n(θ)≥ 0, ∀i ∈ Nm

1 }, (10)



where βn+1 ≥ 0 is a weighting parameter on the variance
term. Note that

ℓi
n(θ) := µi

n(θ)−
√

βn+1σ
i
n(θ)

represents a lower confidence bound for the unknown func-
tion f i that, for properly chosen βn+1, must be a lower bound
on the true function with high probability (under some as-
sumptions). If this holds, then Ŝn ⊆ S such that θn+1 ∈
Ŝn ⇒ θn+1 ∈ S .

Classical constraint-enforcing BO proposes scaling the
acquisition function by the probability of feasibility [29]. For
example, the expected improvement with constraints (EIC)
acquisition function is given by

EICn(θ) = EIn(θ)
m

∏
i=1

Φ

(
µi

n(θ)

σi
n(θ)

)
, (11)

where Pn{ f i(θ) ≥ 0} = Φ(µi
n(θ)/σi

n(θ)) is the probability
that the ith constraint is satisfied according to the posterior
distribution at iteration n. Sampling by maximizing EIC,
while discouraging constraint violation, can actually result
in frequent constraint violations in practice due to its soft pe-
nalization.

3.3 Proposed Safe LSR-BO Algorithm
To ensure safety, therefore, we wish to avoid sampling in

regions that are not deemed (at least with satisfactorily high
probability) to be safe. This can be done by sequentially
solving the following constrained optimization problem

θn+1 ∈ argmaxθ{EIn(θ) : θ ∈ Ŝn}. (12)

Note that, in the presence of constraints, the incumbent ( f 0
n )

⋆

in (6) should now be replaced by the best feasible observa-
tion, denoted by f ⋆c . Since EIn and the safety constraints (10)
are inexpensive to query (and if properly designed, gradient
information is available from the GP kernels), this problem
can be solved using well-known nonlinear optimization tech-
niques [30]. However, one can use a simplification [24] to
avoid solving this nonlinearly constrained optimization prob-
lem, by replacing (12) with a log-barrier penalty

θn+1 ∈ argmaxθ∈Θ{EIn(θ)− τ∑
m
i=1 Γℓi

n
(θ)}, (13)

where Γℓi
n
(θ) = − ln(ℓi

n(θ)) is the logarithmic barrier func-
tion [30] applied to a constraint ℓi

n(θ) ≥ 0 and τ > 0 is a
tunable parameter that ensures the barrier term converges to
the exact indicator penalty function in the limit τ→ 0.

Our proposed algorithm, which we refer to as safe LSR-
BO, leverages this EI acquisition function with log-barrier
in two ways. First, it performs a local optimization over the

Algorithm 1 Safe LSR-BO
Require: Domain Θ, initial dataset D0 = {x0,{ f i(x0)}m

i=0},
m+ 1 prior GP models (4), confidence bound parame-
ters {βi

n+1}n≥0, barrier parameter τ > 0, and switching
parameter γ≥ 0.

1: for n = 0,1, . . . do
2: Construct GP posterior for { f i}m

i=0 given Dn via (5).
3: θlocal

n+1 ← argmaxθ∈Bδ(θn){EIn(θ)− τ∑
m
i=1 Γℓi

n
(θ)}

4: θ
global
n+1 ← argmaxθ∈Θ{EIn(θ)− τ∑

m
i=1 Γℓi

n
(θ)}

5: Obtain θ⋆n+1 using safe switching rule (15)
6: Query at θ⋆n+1 and observe cost yn+1 = Ĵ(θ⋆n+1)
7: Update dataset Dn+1←Dn∪{θ⋆n+1,{ f i(θ⋆n+1)}m

i=0}
8: end for

LSR constraints (3) to find the best point θlocal
n+1 reachable in

one step, that is:

θ
local
n+1 ∈ argmaxθ∈Bδ(θn){EIn(θ)− τ∑

m
i=1 Γℓi

n
(θ)}. (14)

While θlocal
n+1 must satisfy LSR constraints, it is possible that

no nearby point has a reasonable chance of improving upon
the current incumbent – this will happen whenever the re-
gion Bδ(θn) and its neighborhood has been sufficiently well-
explored. When such situations arise, a reasonable alter-
native is to find the globally best point by solving (13) for
θ

global
n+1 ← θn+1. Clearly, we cannot always run an experiment

with θ
global
n+1 because it might violate the LSR constraint (3).

The most straightforward way to project this point onto

F̂n(δ) = Bδ(θn)∩ Ŝn,

which represents our current approximation of the feasible
set (feasible implies that it satisfies both safety and LSR con-
straints). Using such a projection approach at every iteration,
however, would result in us potentially missing out on local
improvements that may be available as we move throughout
the feasible space. The key idea in safe LSR-BO is to auto-
matically tradeoff between these “local” and “global” steps
in (14) and (13) using the following condition

θ
⋆
n+1 =

{
θlocal

n+1 , EIn(θ
local
n+1 )≥ γ,

ProjF̂n(δ)
(θ

global
n+1 ), otherwise,

(15)

where γ is a user-defined tuning parameter; increasing γ re-
stricts the degree of local search. We can see that (15) re-
duces to greedy local and a global search as γ → 0 and
γ→ ∞, respectively. We found that a reasonably small value
of γ = 0.01 appears to work well in practice. Pseudocode for
the safe LSR-BO algorithm is summarized in Algorithm 1.

Safe LSR-BO is extremely simple to implement and has
computational and memory requirements on the same order
as traditional (safe) BO methods. Furthermore, as we show
in the next section, we can guarantee it will satisfy safety



constraints for any choice of γ. We are also able to guarantee
convergence to the global solution, i.e., ( f 0

n )
⋆ → f 0(θ⋆) in

the absence of safety constraints.

3.4 Handling Noisy Observations in Safe LSR-BO
Suppose now that we do not directly measure f i(θ j) and

instead measure noise-corrupted values yi
j = f i(θ j)+ εi

j for
all i= 0, . . . ,m and j = 1, . . . ,n where εi

j represents the obser-
vation noise. The proposed safe LSR-BO method described
in the previous section does not directly handle noise since
we no longer can identify the feasible incumbent f ⋆c in the
presence of noise. However, we can take advantage of recent
methods that extend EI to the noisy observation case. These
methods rely on the fact that GP models can be easily applied
to noisy measurements whenever εi

j ∼ N (0,(λi
j)

2) is nor-
mally distributed where λi

j denotes the standard deviation of
the jth measurement of the ith unknown function. The struc-
ture of the posterior GP equations remain the same as (5),
with the vector of true function values fi

n being replaced by
the vector of noisy observations yi

n and Ki
n being updated to

include the noise characteristic Ki
n + diag((λi

1)
2, . . . ,(λi

n)
2)

(see, e.g., [31, Chapter 2] for details). We can use the GP
posterior to effectively “filter” the noise from the observa-
tion when defining the incumbent.

Two strategies for reducing the impact of noise, both of
which can be straightforwardly incorporated into the pro-
posed safe LSR-BO algorithm, are briefly discussed next.
First, we can use the idea of a “plug in” estimate to define
f ⋆c . Following [32], the incumbent can be defined as

f ⋆c = max
θ∈Θ

En{ f 0(θ)}, (16)

subject to: Pn
{

f i(θ)≥ 0, ∀i ∈ {1, . . . ,m}
}
≥ 1−δ,

where En and Pn denote the conditional expectation and
probability given all data up until iteration n, respectively,
and δ is the maximum allowed violation probability. The
probabilistic functions in (16) can be analytically expressed
in terms of the GP posterior mean and variance functions
such that f ⋆c can be found with minimal computational ef-
fort. As discussed in [33], this heuristic for setting f ⋆c can
be highly exploitative in the high-noise case since it results
in high EI values for replicating prior experiments until their
probability of feasibility is driven above 1− δ. An alterna-
tive approach to the plug-in method is the noisy EI (NEI)
acquisition function defined as follows [33]:

NEIn(θ) =
∫

f0
n,...,fm

n

EICn(θ | f0
n, . . . , f

m
n )

m

∏
i=0

p(fi
n |D0

n )dfi
n,

where EICn(θ | f0
n, . . . , fm

n ) denotes the standard EIC acqui-
sition function in (11) given noise-free observations {fi

n}m
i=0.

NEI is an intuitive extension of EI to the noisy case since one
is simply averaging over realizations of the true function val-
ues at the sample locations drawn from the posterior GP. The

main challenge with NEI is that we can no longer derive an
analytic expression for it; however, since we can easily sam-
ple from the posterior GP, NEI and its gradient with respect
to θ can be efficiently estimated with quasi-Monte Carlo in-
tegration. Therefore, we suggest using NEI only in cases
where the noise variance levels are expected to be quite high
relatively to the true function values.

4 Theoretical Analysis of Safe LSR-BO

In this section, we establish two useful properties of the
safe LSR-BO method. First, we show that, under a few tech-
nical assumptions, it guarantees safety constraints are sat-
isfied at all iterations up to some user-specified probability.
These safety constraints do place a fundamental limitation on
performance since we may not be able to accurately certify a
value θ∈Θ as safe or unsafe unless we are willing to sample
at potentially unsafe locations. Second, we establish a few
convergence results for safe LSR-BO, which depend on the
behavior of the estimated safe set Ŝn.

4.1 Safe Learning Property
To establish that the proposed safe LSR-BO algorithm

guarantees the black-box safety constraints are satisfied at
every iteration, we need to make one major assumption
that the GP models for the constraints are sufficiently well-
calibrated, as described below.

Assumption 1 (Well-calibrated GPs). The GP models
for the unknown constraint functions { f i}m

i=1 satisfy the in-
equality below for all θ ∈Θ, n≥ 0, and i = 1, . . . ,m

| f i(θ)−µi
n(θ)| ≤

√
βi

n+1σ
i
n(θ), (17)

with probability at least 1−δ for some δ ∈ (0,1). ◁

As shown in [34, Theorem 2], one can select the confi-
dence bound parameters {βi

n+1}n≥0 in a way that ensures As-
sumption 1 is satisfied as long as all f i have a bounded repro-
ducing kernel Hilbert space (RKHS) norm. This requirement
is satisfied by any function that meets some reasonable con-
tinuity and smoothness requirements. If these functions were
arbitrarily discontinuous, then two neighboring values could
be completely independent/uncorrelated and there would be
no way to guarantee safety in our problem setting (assump-
tion is necessary to make progress). We are now able to for-
mally state the safety guarantees conferred by (15).

Theorem 1 (Safe Learning Guarantees). Let Assump-
tion 1 hold for some δ∈ (0,1), the safety set S be non-empty,
and there exists at least one known safe starting point θ0 ∈ S .
Then, the sequence of query points {θn}n≥1 generated by
(15) satisfies

P
{

f i(θn)≥ 0, ∀i ∈ Nm
1 , ∀n≥ 1

}
≥ 1−δ. (18)



Proof. From Assumption 1, we must have

f i(θ)≥ µi
n(θ)−

√
βi

n+1σ
i
n(θ), ∀θ ∈Θ, ∀i ∈ Nm

1 , ∀n≥ 0,

holds with probability ≥ 1− δ. Given access to at least one
safe point θ0 ∈ S , we know that the partially revealed safe
region must be non-empty Ŝn ̸= 0 for all n ≥ 0. From the
definition of the log barrier term, we know that the solution
to (14) must satisfy the following restricted constraints

µi
n(θ

local
n+1 )−

√
βi

n+1σ
i
n(θ

local
n+1 )≥ 0, ∀i ∈ Nm

1 .

A similar result holds for the projected point in (15) since
the same constraints are enforced by the projected operation,
which implies these constraints are also satisfied by θn+1.
Combining these two inequalities proves the result. ■

Intuitively, Theorem 1 states that one can expect safety
constraints to be satisfied as long as the trained GP models
are able to capture the true function within its confidence
bounds with high probability. It also involves a very natu-
ral parameter δ, which is the maximum allowable violation
probability. As δ→ 0, the confidence bounds will neces-
sarily grow, leading to a reduction in the volume of Ŝn. In
other words, excessive caution during the optimization pro-
cess greatly limits the set of testable controller tuning param-
eters at each iteration.

Remark 1. The confidence bound parameters βi
n+1 can be

freely set by the user in accordance with desired safety re-
quirements. Larger values, by definition, will reduce the like-
lihood of violation and shrink Ŝn to the set of previously sam-
pled safe points as βi

n+1 → ∞. The values specified in [34,
Theorem 2] have been proven to be sufficiently large to guar-
antee Assumption 1, though smaller values have been found
to work reasonably well in practice. It is quite common to
select βi

n+1 ∈ [4,9], which ensures that 95% to 99.7% of the
predictions for f i(θ) lie above ℓi

n(θ) as a result of the out-
come having a Gaussian distribution. Alternative ways to
select βi

n+1 have been studied in [35,36], which is something
we plan to investigate further in future work.

4.2 Convergence Under LSR Constraints
We analyzed the convergence properties of LSR-BO in

the absence of constraints in our previous work [26]. We now
extend these results to the safety constraint setting. We need
one critical assumption on the covariance function k0 of the
performance function f 0, described next.

Assumption 2 (NEB Kernel). The GP model of the per-
formance function has a kernel k0 that satisfies the no-empty-
ball (NEB) property such that

inf
n≥0

θ1,··· ,θn∈Θ

∥θi−θ0∥≥ε,∀i

σ
0
n(θ0)> 0

for any sequence {θn}n≥1, any ε > 0, and any θ0 ∈Θ. ◁

As shown in [37, Proposition 10], kernel functions from the
Mátern class have the NEB property and such kernels can
be used to reconstruct sufficiently smooth performance func-
tions. We can now establish the following convergence result
for safe LSR-BO.

Theorem 2. Let Assumptions 1 and 2 hold and assume that
Ŝ = Ŝn⋆+i for all i ≥ 0 (i.e., estimated safe set converges
after some finite iteration n⋆). Suppose for γ > 0, there
exists a sequence {mn}n≥1 and M < ∞ such that the se-
quence generated by safe LSR-BO satisfies θmn+1 = θ

global
mn+1

with |mn+1−mn| ≤M for all n ≥ 0. Then, the safe LSR-BO
strategy generates a sequence {θn}n≥1 satisfying (18) and

f ⋆c = max
j=1,...,n

{ f 0(θ j) : f i(θ j)≥ 0} a.s.−→ f 0(θ⋆s ), (19)

as n→ ∞ and τ→ 0, where θ⋆s ∈ argmax
θ∈Ŝ f 0(θ) is the op-

timal parameter in the converged safe set.

Proof. The safety result in terms of (18) being satisfied fol-
lows directly from Theorem 1. To prove (19), we first note
that (13) converges to (12) as τ→ 0. Further, by assumption,
the safe set converges to a fixed set Ŝ after some iteration
n⋆ such that (12) can be interpreted as applying a standard
EI strategy in the reduced space Ŝ ⊂ Θ. Under the assump-
tion on the sample points, we can always take a subsequence
{θglobal

m0 , . . . ,θ
global
mn } from the sequence generated by LSR-

BO for any n ≥ 1. These “global” samples can be at most
a finite number of M steps apart in this sequence between
any n and n+1. Since the safe set is fixed for any n≥ n⋆, we
know that global EI provides dense sampling (almost surely)
in Ŝ under the NEB assumption, as proved in [37, Theorem
6]. This is equivalent to the statement in (19). ■

The additional assumptions made in Theorem 2 deserve
further elaboration. The first key assumption is that the esti-
mated safety set converges after some finite iteration. We do
not attempt to formally prove this here; however, we note that
this can always be achieved in practice by no longer perform-
ing posterior updates after a certain period of time. In other
words, reuse the functions {ℓi

n⋆(θ)} for all future n ≥ n⋆ it-
erations, which will also reduce computational cost since the
GP predictions scale with the number of data points. The
choice of n⋆ is flexible, though it is recommended to wait
until enough data has been collected such that most points
on the boundary of Ŝn has reasonably low variance. The
second key assumption is about the existence of a sequence
{mn}n≥0 that makes LSR-BO match the global EI policy. Al-
though formally proving this is difficult, we can simply mod-
ify LSR-BO to make it satisfy this requirement by construc-
tion by employing a terminal constraint θn+M = θ

global
n+1 for

all n ∈ {0,M,2M, . . .}. The choice of M needs to be at least
as large as the minimum number of steps required to move
between any two points in Θ, which is finite for any δ > 0.



A final implicit assumption is that the hyperparame-
ters of the covariance functions (such as length- and output-
scales) are known in advance. Since we consider black-box
functions in this work, these values are often unknown and
must be estimated from observed data. Typically, these es-
timates are updated at every iteration using, e.g., maximum
likelihood estimation; however, as shown in [38], the global
EI policy does not automatically converge in this case, as the
GP model may underestimate the predicted variance for cer-
tain observations. We can use the same modifications as pro-
posed in [38, Definition 3] to show that LSR-BO converges
in this more general case.

Note that Theorem 2 only guarantees convergence to the
true global maximum if θ⋆ ∈ S , which is not necessarily sat-
isfied. One way to ensure this holds is to guarantee Ŝn→ S as
n→ ∞; however, this is not true in general. Imagine the case
that Θ is composed of discrete elements and there is one safe
point that is far away from any other neighboring safe point –
this point will never be certified as safe unless queried (since
it is too far away from any neighbor to ensure its lower con-
fidence bound satisfies constraints). However, since we can
only query certifiably safe points, this point will always be
excluded from our search process. If this point happened to
be the global maximizer, then our method would be unable
to converge to the true solution. Recent work has shown that
one can guarantee convergence to the global maximizer in
the presence of constraints by relaxing constraints [39, 40]
but these methods do not guarantee any form of safety dur-
ing the search process. Convergence of safe BO remains an
open research challenge and is something we plan to study
more in our future work.

5 Benchmarking and Case Study
In this section, we present two examples that illustrate

the effectiveness of our proposed LSR-BO method. The
method was implemented using BOTorch [41] with default
settings. In particular, GP priors with µi(θ) = 0 and ki(θ,θ′)
from the Mátern class with ν = 2.5 for all i = 0, . . . ,m. The
safe EI acquisition function in (13) was maximized L-BFGS-
B algorithm [42] wherein the best 10 points from an initial
set of 1000 samples are used as the starting points. For each
example, we give a description of the problem and show sta-
tistical comparisons with competing alternative methods.

5.1 2-D Benchmark Example

The unknown performance function f 0(θ) is given by a
modified version of the Branin function from [43], which is
a benchmark problem for global optimization algorithms due
to its non-convex nature with multiple local optima

f 0(θ) =−∑
4
i=1 f 0

i (θ), (20)

where

f 0
1 (θ) = a

(
θ2−bθ

2
1 + cθ1− r

)2
,

f 0
2 (θ) = s(1− t)cos(θ1)+ s,

f 0
3 (θ) = 5e−5((θ2

1+3.14)2+(θ2
2−12.27)2),

f 0
4 (θ) = 5e−5((θ2

1−3.14)2+(θ2
2−2.275)2),

with constant values given by a = 1, b = 5.1/(4π2), c = 5/π,
r = 6, s = 10, and t = 1/(8π).

The compact domain is given by Θ = [−5,10]× [0,15].
We we also require LSR constraints to be satisfied to mimic
the requirement of safe exploration, which are given by

|θ1,n+1−θ1,n| ≤ 0.5, |θ2,n+1−θ2,n| ≤ 1.5, (21)

that must hold for all n≥ 0. These constraints force the next
sample to be within a hyperrectangle of the current sample,
which can be straightforwardly mapped to a hypercube of
the form (3) with p = ∞. Black-box safety constraints will
be considered in the next section.

We select simple regret (SR) as our key performance in-
dex, which is defined as follows

SRn(D0
0 ) = f 0(θ⋆)− ( f 0

n )
⋆ = f 0(θ⋆)− max

(θ,y)∈D0
n

y, (22)

and depends on the initial performance data D0
0 and the cur-

rent iteration n. SR simply measures the distance between
the global solution and the current best sample. To show that
LSR-BO performs well across a wide array of starting points,
we randomly generate 50 initial datasets D0

0 composed of 10
samples generated in quasi-uniform random fashion inside
of Θ. The starting value θ0 is always selected to the point in
D0

0 that maximizes the performance function. We use these
replicates to estimate statistical properties of the sequences
generated by LSR-BO as well as several competing alterna-
tives, described below.

Shortest-Path: The global EI problem is solved to gen-
erate the next desired sample. If the global point is outside of
the LSR, we sample the sequence of points along the shortest
path between the current and desired global point.

Projection: We sample by projecting the global EI point
onto the LSR constraints, i.e., θk+1 = ProjBδ(θk)

(θ
global
k+1 ). We

can think of this as a special case of the LSR-BO sampling
method (15), when γ→ ∞.

Random: The procedure is the same as the shortest-path
algorithm, except that the desired point is selected uniformly
at random. This approach is thus a simple modification to
random search to ensure satisfaction of LSR constraints.

TuRBO: The TuRBO method is a popular trust region-
based BO algorithm presented in [44]. The size of the trust
region is automatically updated in TuRBO based on the per-
formance of the objective function value obtained at each
sample. To ensure TuRBO satisfies LSR constraints, we only



Table 1. Average cost per iteration (in seconds) for all methods.

LSR Projection Shortest-path TuRBO Random

0.54 0.55 0.12 0.81 0.08

allow the trust region size to grow to a maximum radius value
of δ. Furthermore, although TuRBO can run several trust re-
gions in parallel, we select a single trust region to ensure a
fair efficiency comparison with the other methods. While we
modify the core TuRBO algorithm to make a fair baseline,
note that there are two key differences with TuRBO which
makes our LSR-BO algorithm quite different both in con-
cept and in implementation. First, TuRBO uses the trust
region to limit where the model is constructed (inherently
local) whereas LSR-BO uses a global GP to understand the
full landscape. Second, TuRBO adaptively updates the size
of the trust region depending on the quality of the step, so
it does not have a mechanism to limit growth and satisfy the
safety constraints.

The statistical results for SRn(D0
0 ) for all methods up to

n = 80 iterations are shown in Figure 1. We see that LSR-
BO clearly outperforms all considered methods, achieving
up to 1-4 orders of magnitude improvement in the median
and 90% confidence interval values compared to the base-
line methods. In particular, TuRBO performs poorly for two
reasons: (1) It is a local method by design and we only use a
single trust region to keep its implementation closer to LSR-
BO. This means that it loses the globalization property that
made it perform better in the original paper (notice that this
requires substantially more samples overall and would not be
implementable on a physical system). (2) Since TurBO does
not limit growth of trust region, we needed to artificially limit
it to a maximum value to satisfy LSR constraints. This likely
introduces performance losses since it only has a local view
of the function. Furthermore, we see that LSR-BO consis-
tently makes improvement in the early stages (indicative of
a quickly finding a nearby local solution) and then expands
outward toward the global solution. Note that the average
computational cost per iteration for all considered optimiza-
tion methods are also shown in Table 1. We see that the cost
of LSR-BO is less than one second per iteration, implying
the improved performance does come at the cost of increased
planning time relative to alternative methods.

We also study the impact of the hyperparameter γ on
the performance of LSR-BO in Figure 2 wherein we show
a violin plot for the distribution of final simple regret values
obtained for γ ∈ {10−5,10−4,10−3,10−2,10−1,100,101}. It
is interesting to note that for a sufficiently small γ value (be-
low 0.1), we see similar overall performance after 80 itera-
tions. There is a slight increase in the worst-case sample of
the simple regret value for very small choices of γ but this
is relatively small (as we can also observe in Figure 1). As
such, it seems like one should preferentially set smaller γ val-
ues to emphasize local exploitation, though very small values
definitely have the tendency to result in performance losses.
The degree of those losses will depend heavily on the subop-
timality of the nearby local optimum compared to the global

Figure 1. Comparison of simple regret statistics (median and 90%
confidence interval) versus number of iterations for proposed (LSR-
BO), shortest-path, projection, random, and TuRBO algorithms.

Figure 2. Violin plot for the final simple regret values obtained with
LSR-BO under different γ values.

optimum, so future work is needed to more generally under-
stand the impact of γ on performance. The development of an
adaptive procedure to set γ based on the expected quality of
the local solution may be an interesting direction to pursue.

In addition to the LSR constraints, we additionally in-
corporate a black-box safety constraint of the form

f 1(θ) = θ1−θ2− sin(θ2)+(θ1/4)2. (23)

To highlight the importance of the safe BO formulation, we
compare the performance of the safe formulation in (15) to
the EIC formulation wherein we replace the barrier-based ac-
quisition function with the EIC function in (11). The result-
ing sampling trajectory generated by both of these methods
are shown in Figure 3. We clearly observe that EIC ends
up violating the safety constraint whereas the safe LSR-BO
method satisfies constraints at all iterations. We also observe



Figure 3. Comparison of black-box safety constraint handling ca-
pabilities of the EIC (top) and the proposed safe LSR-BO (bottom)
acquisition functions. The black stars denote the initial data, the
magenta boxes denote the LSR constraints, and the large magenta
dots denote optimal solutions that (locally) maximize the performance
function subject to safety constraints.

that the proposed method is able to more effectively iden-
tify a path of high-performance values. As such, the method
is able to practically enable safe learning without significant
performance losses in this case, which provides confirmation
of the theoretical results established in Section 4.

We also demonstrate the ability of LSR-BO to accom-
modate noisy observations by using the plug-in incumbent
strategy described in Section 3.4. The statistical results for
SRn(D0

0 ) (now with respect to random initial data and mea-
surement noise) for all methods up to n = 80 iterations are
shown in Figure 4. We see that LSR-BO continues to outper-
form all other considered methods, reaching a simple regret
value of the same order as the noise standard deviation within
around 40 evaluations.

5.2 Case Study: Energy Self-Optimization for Indus-
trial VCCs

5.2.1 With LSR constraints: LSR-BO
In this paper, the main purpose of the proposed LSR-

BO algorithm is to tackle the real-world problem of tuning
setpoints of a vapor-compression heat pump to minimize the
operating power consumption while enforcing implementa-
tion and safety constraints.

A block diagram of the heat pump of interest is shown

Figure 4. Comparison of simple regret statistics (median and 90%
confidence interval) versus number of iterations for proposed (LSR-
BO), shortest-path, pprojection, and TuRBO algorithms in the case
of noisy observations with noise variance λ2 = 1.

in Fig. 5A, which consists of a compressor, a condenser, an
expansion valve, and an evaporator that exchanges heat be-
tween an indoor occupied setting and the ambient environ-
ment. We can cast this problem in the form of (2) by defining
the performance function f 0(θ) =−P∞(θ) as the negative of
the steady-state power consumption P∞ that is a function of
the VCC with closed-loop references set to θ. In the VCC,
we first close a feedback loop from compressor frequency
to room temperature, which leaves us with three tunable set-
points θ representing the electrical expansion valve (EEV)
position, the indoor fan speed (IFS), and the outdoor fan
speed (OFS). By assigning fixed setpoint values θ, we wait
for an adequate amount of time until the power signal resides
within a 95% settling zone and use that to represent J(θ):
from domain experience, this takes around 10 min after a
setpoint change. The setpoints search space is defined by the
following ranges: EEV ∈ [200,300] counts, IFS ∈ [200,500]
rpm, and OFS ∈ [500,1000] rpm.

As mentioned before, recklessly changing these actua-
tor setpoints can result in wear and tear of the actuators, and
lead to undesired transients in the refrigerant flow and ther-
mal dynamics. To avoid these harmful operating modes, we
restrict the setpoint changes via the LSR constraints (3) and
restrict the valve positions to change at most ±5 counts, IFS
at most ±10 rpm, and OFS at most ±25 rpm in consecutive
LSR-BO iterations. An illustrative schematic of the proposed
data-driven optimization approach for the heat pump system
is shown in Fig. 5B.

To validate our method, we use a high-fidelity dynamic
model of a prototype vapor-compression system (VCS)1

written in the Modelica language [45] to collect power
consumption data and optimize the set-points on-the-fly. For
more details about the model, we refer the reader to [14]. The

1Note that while the behavior of this model have been validated against
a real VCS, the numerical values and/or performance presented in this work
is not representative of any product.



Figure 5. (A) Schematic of industrial heat pump system. (B) Illus-
tration of the proposed LSR-BO method for minimizing power con-
sumption through manipulation of setpoints.

simulation model was first developed in the Dymola [46]
environment and then exported as a functional mockup unit
(FMU) [47] for connecting with Python. The current version
of the model comprises over 12000 differential equations
and software modules that are not differentiable, motivating
our use of zeroth-order/gradient-free optimization methods.
We use the same GP model and optimization settings as dis-
cussed in Example 1.

We again compare the LSR-BO method to the shortest-
path and projection methods defined previously. Since the
true global optimum is unknown in this problem, we directly
compare the power consumption values produced over 40 al-
lowed high-fidelity function evaluations. Similar to Exam-
ple 1, we initially populate D0 with high-fidelity evaluations
at 10 domain-informed samples in Θ, and select θ0 as the
point within this set that produces the largest J(θ) (mini-
mal power consumption). We again repeat all algorithms 50
times to estimate statistical properties of the generated sam-
ple trajectories. The resulting minimal power consumption
profiles, i.e., min(θ),P∞(θ)∈Dk

P∞(θ) for the LSR-BO, shortest-
path, and projection algorithms are shown in Fig. 6. We see
that that the proposed method achieves tighter confidence in-
tervals, implying LSR-BO can reliably find setpoint values
that lead to lower power consumption in a shorter amount of
time. The complete dynamic simulation profiles for the VCS
for the median LSR-BO run are also shown in Fig. 7. Note
that the grey shading in the figure denotes the ‘offline’ ex-
periments on the heat pump system: they are actually done
online, which is why they appear in the trace, but with man-
ual safety configurations running to avoid deleterious behav-

ior. This is why there are LSR constraint violations in the
grey shaded areas, and after that, the LSR constraints are
consistently satisfied. Furthermore, we see a clear reduction
in the power consumption over time, without generating any
intermediate harmful transient states. We also note that the
sensitivity of the power varies among the actuators; because
the power is more sensitive to the EEV position, the EEV
tends to converge to a steady-state value as the power is min-
imized. In comparison, the lower sensitivity of the power to
the fan speeds, and in particular OFS, causes these actuators
to continue to vary after power has converged to a minimum
value because these variations do not translate to a significant
change in the power consumption.

Figure 6. Comparison of minimum power statistics (median and
95% confidence interval) versus number of iterations for proposed
(LSR-BO) method, shortest-path, and projection algorithms for the
VCC.

5.2.2 With LSR and Safety Constraints: Safe LSR-BO
We also illustrate the self-optimization of VCCs with ad-

ditional safety constraints. Two safety constraints are consid-
ered here: one is on the temperature of the refrigerant leaving
the compressor, also referred to as the ‘discharge tempera-
ture’. Excessively high compressor discharge temperatures
may break the composition of refrigerant oils and increase
wear and tear. Furthermore, high discharge temperatures are
often correlated with high fluid pressures, which can cause
metal fatigue and compromise the integrity of the pressurized
refrigerant pipes. The second constraint is on the evaporat-
ing temperature: this must be managed because of the effect
that this temperature has on the accumulation of condensed
water on the coil. As the evaporating temperature becomes
smaller, significant amounts of condensation can accumulate
on the heat exchanger, which will increase the pressure drop
on the air traveling through the heat exchanger and poten-
tially entrain water droplets into the air stream that could be
expelled into the occupied space. In more extreme examples,
evaporating temperatures below freezing will cause frost and
ice to accumulate on the heat exchanger, reducing the cooling



Figure 7. VCC power, compressor frequency (CF), EEV position,
OFS, and IFS values over time for median LSR-BO run. ∆EEV,
∆OFS, and ∆IFS represent the change in setpoints at each iteration
with the red lines denoting the LSR constraints. The grey shaded re-
gions denote the offline experiments used to initialize the GP model.

capacity of the cycle and potentially causing damage via the
thermal expansion of the ice. Such constraints, among oth-
ers, must clearly be managed effectively to ensure the safe
and satisfactory operation of these variable-capacity vapor-
compression systems. While managing the constraints men-
tioned above in the long run is critical, we also the flexi-
bility that small violations over short periods of time have
limited potential for harm. Concretely, we constrain the dis-
charge temperature Tdis(θ) ≤ 150◦C and Tevap(θ) ≥ 23◦C.
In the format of (2), f 1(θ) := −150+Tdis(θ) and f 2(θ) :=
Tevap(θ)− 23. In order to make the algorithm more dexter-
ous as it navigates complex feasible regions, we relax the
LSR constraints to ±10 counts, ±20 rpm, and ±50 rpm for
the EEV, IFS, and OFS, respectively. To avoid constructing
multiple GPs, we coalesce the two constraints into the sin-
gle constraint: min{ f 1, f 2} ≥ 0. Note that these constraint
values are not indicative of the actual values tested for real-
world deployment.

We compare the proposed safe LSR-BO with safe pro-
jection and safe shortest-path. We show the results of the
power minimization performance in Fig. 8. As we have
seen in the previous subsection, the proposed and shortest-
path-based methods consistently outperform the projection
approach, in terms of the median regret and confidence in-
tervals obtained across 20 simulations (with unique initial
setpoint values). An interesting thing to note from the figure
is that the proposed method converges faster and to a better
minimal power value in comparison with the shortest-path
variant as well, indicating that the local and global trade-off
proposed in (15) are more important when the feasible region
is more complex than having only an LSR constraint. This
can be justified by understanding that the shortest-path ap-
proach is not flexible when the algorithm updates its feasible
region as more constraint function data becomes available
over iterations. Indeed, it is probably that the the shortest-

path approach will move greedily in a direction that will not
contain a feasible optimizer candidate; this greed is explicitly
curtailed by our trade-off approach.

Figure 8. Comparison of minimum power statistics (median and
95% confidence interval) versus number of iterations for Safe LSR-
BO, shortest-path, and projection algorithms for the VCC with tem-
perature constraints.

An exemplar safe LSR-BO run is illustrated in Fig. 9.
The LSR constraints are depicted by red horizontal lines, and
the temperature constraints with magenta horizontal lines.
The power plot shows that the safe LSR-BO exploits a direc-
tion in which the power exhibits lowering, until it achieves a
feasible minimal power of 470 W around 3 hr. Then the al-
gorithm begins to explore in search of a lower power value,
and in its explorations, it slightly violates the evaporator con-
straint around the 4 hr mark when the evaporator tempera-
ture attains 22.98◦C. The discharge temperature constraint is
not violated after initialization; this is because the expansion
valve is dilated for most of the run. The LSR constraints
are never violated, although they are often grazed. Another
interesting comparison is that with Fig. 7, where the mini-
mum power was far below 470 W, since temperature viola-
tions were not explicitly considered there.

While we do not include those trajectories in the fig-
ure, we also make a comparison of the proposed approach
against an LSR-BO of the form (15) but with the log-barrier
removed and the EI acquisition replaced with a classical
constrained EI acquisition function [29]; we refer to this as
LSR-BO-EIC. Some interesting insights are obtained in this
comparison. First, the minimal feasible power obtained by
both methods are similar, but the median of safe LSR-BO
is 470 W, whereas the median of LSR-BO-EIC is slightly
higher at 478 W. Second, the LSR constraints are enforced
by both methods, but the safety constraints are significantly
worsened with LSR-BO-EIC. In fact, out of the 6 simulation
hours, our safe LSR-BO violated an evaporating temperature
constraint by 0.02◦C for a sampling period, that is, 10 min.



Figure 9. VCC power, compressor frequency (CF), EEV position,
OFS, IFS, compressor discharge (TDis) temperature, and evaporat-
ing temperature (TEvap) values over time for median Safe LSR-BO
run. ∆EEV, ∆OFS, and ∆IFS represent the change in setpoints
at each iteration with the red lines denoting the LSR constraints, and
magenta lines are safety constraints. The grey shaded regions de-
note the offline experiments used to initialize the GP model and the
orange ‘+’ indicates the optimal (and therefore, feasible) power value.

Alarmingly, the LSR-BO-EIC spends over 2 hr in constraint
violated states, with violations as large as 50◦C on the dis-
charge temperature. This is primarily owing to the EIC func-
tion’s philosophy of ‘discouraging’ safety constraint viola-
tions, rather than strongly penalizing them as we do with the
log-barrier.

6 Conclusions
In this paper, we developed a novel Bayesian optimiza-

tion framework that is capable of handling local search re-
gion constraints, which arise in a variety of practical engi-
neering problems, especially for performance optimization
of closed-loop dynamical systems such as vapor compression
cycles. We also illustrate how LSR-BO can handle additional
safety constraints via a log-barrier formulation. Our pro-
posed method is extremely simple to implement and comes
with theoretical guarantees of optimization and constraint-
enforcement performance. There are several interesting di-
rections for future work including improved understanding
of the impact of the local/global switching parameter on per-
formance, deriving explicit bounds on the convergence rate,
and extensions to more complex observation noise models.
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