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Abstract
Imaging photoplethysmography (iPPG) is the process of estimating a person’s heart rate from
video. In this work, we propose Un- rolled iPPG, in which we integrate iterative optimization
updates with deep learning-based signal priors to estimate the pulse wave- form and heart
rate from facial videos. We model the signal extracted from video as the sum of an underlying
pulse signal and noise, but instead of explicitly imposing a handcrafted prior (e.g., sparsity
in the frequency domain) on the signal, we learn priors on the signal and noise using neural
networks. We solve for the underlying pulse sig- nal by unrolling proximal gradient descent;
the algorithm alternates between gradient descent steps and application of learned denoisers,
which replace handcrafted priors and their proximal operators. Using this method, we achieve
state-of-the-art heart rate estimation on the challenging MMSE-HR dataset.
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ABSTRACT

Imaging photoplethysmography (iPPG) is the process of estimating
a person’s heart rate from video. In this work, we propose Un-
rolled iPPG, in which we integrate iterative optimization updates
with deep learning-based signal priors to estimate the pulse wave-
form and heart rate from facial videos. We model the signal extracted
from video as the sum of an underlying pulse signal and noise, but in-
stead of explicitly imposing a handcrafted prior (e.g., sparsity in the
frequency domain) on the signal, we learn priors on the signal and
noise using neural networks. We solve for the underlying pulse sig-
nal by unrolling proximal gradient descent; the algorithm alternates
between gradient descent steps and application of learned denoisers,
which replace handcrafted priors and their proximal operators. Us-
ing this method, we achieve state-of-the-art heart rate estimation on
the challenging MMSE-HR dataset.

Index Terms— Heart rate estimation, imaging photoplethys-
mography, remote photoplethysmography, unrolling algorithms.

1. INTRODUCTION

Recent years have witnessed increasing interest in non-contact mon-
itoring of vital signs, particularly for telemedicine [1], including es-
timation of heart rate [2, 3, 4, 5], breathing rate [6, 7], and blood
pressure [8] from video of the face. In addition to healthcare, re-
mote monitoring can be used in safety-critical applications such as
driving [9, 10] or heavy equipment operation. In this work, we es-
timate heart rate from facial video using the technique of Imaging
Photoplethysmography (iPPG).

Prior work has shown that cameras recording facial videos cap-
ture the subtle changes in skin color corresponding to the blood vol-
ume pulse [4, 11, 12]. However, the blood volume pulse signal is
a small fraction of the pixel intensity and can be easily masked by
illumination changes and motion. We consider heart rate estimation
systems in which estimation is predicated on extracting the weak and
noisy pulse signal from the face, followed by denoising the resulting
pulse wave.

Of particular interest are works such as SparsePPG [9] and Au-
toSparsePPG [10], which aim to model the pulse wave as a sparse
signal in the Fourier domain and use variations of the Iterative
Shrinkage Thresholding Algorithm (ISTA) to estimate this sparse
signal from a noisy time series obtained from various facial regions.
These methods model the signal as sparse in the frequency domain
and noise as sparse in the spatio-temporal domain, based on two
assumptions: (1) that the true pulse signal can be modeled using a
sparse set of frequencies that are shared across face regions; and (2)
that the noise primarily affects a small number of regions. Solving
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for the signal and noise components can be done via alternating
gradient updates and soft-thresholding projection.

More recent methods are based on deep learning and use training
data consisting of videos and their ground-truth waveforms. They
are trained to map from either the face videos [13, 14, 15] or time
series extracted from the videos [16] to the pulse wave.

In this work, we propose Unrolled iPPG, which combines the
advantages of model-based iterative algorithms with the expressive
power of deep neural networks. In particular, rather than explic-
itly enforcing signal sparsity in Fourier domain, we use deep neu-
ral networks to learn priors on the pulse signal and noise compo-
nent. The proximal gradient descent algorithm is unrolled, and the
traditional gradient updates are followed by two learned denoisers,
one for the pulsatile signal and the other for the noise component.
We achieve state-of-the-art results on the task of heart-rate estima-
tion on the challenging MMSE-HR dataset [17], outperforming both
purely handcrafted methods like AutoSparsePPG [10] and purely
data-driven methods like InverseCAN [15].

2. RELATED WORK

2.1. Unrolling iterative algorithms to solve inverse problems

Unrolling algorithms integrate learnable parameters into traditional
iterative algorithms such as FISTA [18], harnessing the power
of learning while exploiting known structure and retaining inter-
pretability. These algorithms repeatedly apply two steps: first, they
ensure that the intended result is consistent with measurements by
minimizing a data fidelity term using a learned or fixed forward
operator, and second, they apply a signal denoiser – parametrized
as a learnable function – to fit the solution to an implicit prior.
Unrolling has been applied to a diverse set of inverse problems
including super-resolution [19], blind image denoising [20], and
multi-spectral image fusion [21]. Early work, called Learnable It-
erative Shrinkage Thresholding Algorithm (LISTA) [22], aimed to
improve sparse coding by learning the sparsifying basis upon which
the sparse code is generated. Research in compressive sensing [23]
specifically learned the proximal operators with neural networks
using pixel losses and GAN-based perceptual losses to replace con-
ventional sparsity terms. Similarly, our work learns a denoising
operation to capture the structure of the pulse signal in the Fourier
domain.

2.2. Heart rate estimation from videos

Remote estimation of the pulse wave and heart rate from videos,
known as imaging photoplethysmography (iPPG) or remote photo-
plethysmography (rPPG), can be categorized into blind source sep-
aration methods, model-based methods, and data-driven methods.



Fig. 1: Illustration of the proposed Unrolled iPPG algorithm. We show two unrolled iterations of the algorithm, which integrates gradient
update steps with respect to a fixed forward model and learned neural network denoisers R and Q.

Blind source separation [3, 4] assumes that the extracted time-series
signal is composed of both the noise and the underlying pulse sig-
nal, and that these signals are either statisically independent or un-
correlated. Techniques such as Independent Component Analysis
(ICA) and Principal Components Analysis (PCA) separate the signal
from the noise. Several model-based algorithms [24, 25, 5] explic-
itly model light absorption and reflection in the skin; [25, 5] both
aim to reduce the dependence of the extracted signal on the average
skin reflection color. The model based methods SparsePPG and Au-
toSparsePPG [9, 10] model the underlying pulse waveform as the
sum of a sparse set of periodic signals, and they aim to solve for the
underlying pulse waveform. Data-driven methods [13, 14, 15, 16]
learn directly from the training data and are typically instantiated as
neural networks, whose parameters are learned by minimizing a loss
between the output of the network and the ground-truth waveform.
Methods such as [13, 15] take frames as input directly, learn which
regions of each frame contain the signal using attention mechanisms,
extract the signal, and reconstruct the underlying pulse waveform.

Our work incorporates data-driven methods into a model-based
algorithm, achieving state-of-the-art performance while maintaining
interpretability. Instead of imposing handcrafted sparsity constraints
on the underlying pulse signal, we use deep neural networks to learn
implicit priors from data.

3. METHOD

3.1. Signal model

For each input time window containing S frames, we first extract a
time series containing the average intensity of each of K face regions
in every frame. Stacking these signals into a matrix Z ∈ RS×K , we
assume that these region-specific signals share a quasi-periodic pulse
signal that admits a structured representation in the Fourier domain.
Therefore, we can model the observation of the heartbeat signal as

Z = Y +E = F−1X+E, (1)

where F−1 ∈ CS×N is the oversampled inverse Fourier Transform
matrix, Y ∈ RS×K and X ∈ CN×K represent the pulsatile signal
in all K regions in the time domain and the frequency domain, re-
spectively, and E ∈ RS×K is a noise component that captures the
non-pulse-related fluctuations in the iPPG signals Z.

AutoSparsePPG [10] formulated the recovery of X and E as a
joint-sparse recovery problem:

min
X,E
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t

√
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same small set of Fourier coefficients to be nonzero across multiple
regions, while ∥ET∥2,1 encourages the noise to be limited to a sparse
set of regions. The data fidelity term, D, encourages the solution to
be close to the observed data. We can rewrite it as:

D =
1
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, where A = [F−1 I]. (3)

3.2. Unrolled iPPG

While AutoSparsePPG [10] has shown good performance, the ℓ2,1
penalty function employed by AutoSparsePPG assumes that the
nonzero frequency components are independent of each other. How-
ever, this assumption does not hold in general since the shape of the
heart beat signal necessitates that a group of frequency bins should
be nonzero together to describe the heart beat waveform. To that
end, we train a deep denoiser to discover the appropriate structure
in the Fourier domain. Instead of using explicit priors defined by
ℓ2,1 regularization in Eq. 2, our contribution is to encode the signal
and noise priors as an implicit penalty function ρ(·, ·) and employ
its learnable scores R and Q as deep denoisers for X and E, respec-
tively. Using the same data fidelity formulation as in Eq. (3), we aim
to solve:

min
X,E
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+ λ · ρ(X,E), (4)

where A = [F−1 I]. Unlike AutoSparsePPG [10], which solves
Eq. (2) through alternating gradient update and soft-thresholding
projection steps, we unroll proximal gradient descent in Eq. (4) for
T iterations. In each iteration, we perform gradient updates on X
and E followed by forward propagation through R and Q. Given a
step size α, the updates on X and E are given by

[
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is the gradient of D with respect to[
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]
evaluated at the desired point

[
Xt

Et

]
. The full algorithm



Fig. 2: Facial landmark detection and construction of regions. We
segment the face into 5 regions (left cheek, right cheek, left forehead,
right forehead, and chin) and spatially average the pixels to obtain
the noisy 5-dimensional time series Z.

is shown in Fig. 1. During training, we update the parameters
of the neural networks R and Q to minimize the mean squared
error loss between the output signal after T unrolled iterations,
YT = F−1XT , and the ground-truth waveform Zgt.

To find the heart rate, we sum the power in every frequency bin
across all K regions, then select the frequency with the most power.

4. IMPLEMENTATION AND RESULTS

4.1. MMSE-HR dataset

The MMSE-HR dataset [17], with 23 female subjects and 17 male
subjects, contains 102 videos capturing the face and simultaneous
blood pressure wave from a finger sensor as various emotions are
elicited. This results in substantial motion in some videos, to which
our algorithm is robust. Videos were captured at a resolution of
1040× 1392 at 25 frames per second, while the blood pressure wave
was measured at 1000 samples per second. The ground-truth data
are downsampled to match the frame rate of the videos. We train
and evaluate on this dataset using leave-one-subject-out cross vali-
dation. For each of the 40 subjects, we test using a model that was
trained on the other 39 subjects.

4.2. Time series extraction

We extract the time-series Z by first detecting the face in each RGB
video frame using FaceBoxes [26]. Next, we use LUVLi [27] land-
mark localization and interpolate/extrapolate its 68-landmark output
to 145 landmarks. These landmarks are grouped into 48 small spa-
tial areas, in each of which we compute the mean pixel intensity of
the Red and Green channels. Instead of using multiple color chan-
nels, we take the ratio of the Red and Green Channels for further
processing [5]. We then group these small areas into K = 5 facial
regions as indicated in Figure 2, taking the median intensity value
of the areas within each facial region. This yields a 5-dimensional
time series for each video. We then apply a Butterworth filter with
cutoff frequencies [0.7, 2.5] Hz as in [15] to capture frequencies in a
typical range of heart rates.

4.3. Neural network denoiser architecture and training details

In Unrolled iPPG, the learned neural network denoisers R and Q
are modeled using an encoder-decoder architecture. Since the net-
work R operates on Fourier coefficients Xt, its network weights are
complex-valued, while the network weights for Q (which operates

on Et) are real-valued. The networks consist of two downsampling
convolutional blocks with a stride of 2, in which the number of chan-
nels is increased from 5 to 32 and then from 32 to 64. The two up-
sampling blocks are implemented using transposed convolution with
a stride of 2, decreasing the number of channels from 64 to 32 and
from 32 to 5. Each convolutional layer has a kernel size of 16 and
is followed by a ReLU nonlinearity and then a batch normalization
layer. We initialize Q to output 0, and we initialize R to the iden-
tity transform by initializing the convolution layers to output 0 and
adding a single skip connection at the highest convolution layer. The
variable X, which is input to R, is initialized as the Fourier trans-
form of Z. The noise E, which is input to Q, is initialized as the
0 matrix. We calculate the mean squared error between each of the
five output channels and the ground-truth, and update the network
using the Adam [28] optimizer with a learning rate of 3 × 10−4 for
8 epochs. To be able to estimate heart rates at the lower and higher
end that are not well represented in the dataset, we augment the train-
ing data using augmentations called “SpeedUp” and “SlowDown”.
For the “SlowDown” augmentation, an input window of length S is
cropped by a random percentage between 20% and 40%, and inter-
polated back to the original window size S using linear interpolation.
For the “SpeedUp” augmentation, given our window length S, we
randomly chose an input window length that is 20% to 40% larger
than our target time windows (e.g. 1.2×S), and linearly interpolate
it back to length S.

During training, we partition each empirical and ground-truth
waveform into 10-second windows, then shift the window by 2.4
seconds to get the next partially overlapping window for training.
The windows are loaded randomly during training with a batch size
of 100. At test time, we reconstruct 10-second segments in a non-
overlapping fashion.

4.4. Evaluation protocol

Following the protocol in [15], we report the mean absolute error
(MAE) and root mean squared error (RMSE) of the ground-truth and
predicted heart rate computed for 30-second time windows for the
test videos. However, as our algorithm uses 10-second windows, we
concatenate our output signal for three adjacent 10-second windows
in order to evaluation on 30-second windows as in [15]. The MAE
and RMSE metrics, which are averaged over all B windows for all
test videos and over all test set partitions, are given by

MAE =
1

B

B∑
i=1

|Ri − R̂i|, RMSE =

√√√√ 1

B

B∑
i=1

(Ri − R̂i)2 (6)

where R̂i is the predicted heart rate and Ri is the ground-truth heart
rate for the time window. We also report a metric that we call PTE6,
the percent of time the heart rate error is less than 6 beats per minute
(bpm), which is a way to measure how often the estimated heart rate
is correct:

PTE6 =
1

B

B∑
i=1

Pi, where Pi =

{
1 if |Ri − R̂i| < 6 bpm,

0 otherwise
(7)

4.5. Results

We compare our results to previous methods in Table 1. As shown,
we signficantly outperform model-based methods such as Au-
toSparsePPG [10] by reducing the MAE error from 4.55 to 1.11,
and the RMSE from 14.42 to 2.97. We also increase the PTE6 from



(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Fig. 3: Three iterations of the unrolling algorithm. The signals in orange are the ground-truth, with a peak frequency at 69.42 bpm, while
the signals in blue are the (intermediate) outputs of our algorithm for one face region. For each interation t, the top row shows the estimate
before R(·), X̃t, and the bottom row shows the estimate after R(·), Xt. Each iteration shows the time-domain signals on the left and power
spectrum on the right. The power spectrum plot titles show the peak frequency of each estimated signal. Viewing left to right, the blue signal
progressively denoises from an incorrect estimation (113.94 bpm) to a reasonable estimation (68.82 bpm) for the ground-truth signal with
peak frequency 69.42 bpm.

Fig. 4: A window-by-window heart-rate estimate (shown on 10-
second windows for clarity). Our results show that we can accurately
predict the heart rate from facial videos.

Table 1: Heart rate estimation results on the MMSE-HR dataset

Method MAE (bpm) ↓ RMSE (bpm) ↓ PTE6 (%) ↑
ICA [29] 5.44 12.00 -

CHROM [5] 3.74 8.11 -
POS [24] 3.90 9.61 -
CAN [13] 4.06 9.51 -

InverseCAN [15] 2.27 4.90 -
AutoSparsePPG [10] 4.55 14.42 88.10

Unrolled iPPG (Ours) 1.11 ± 0.01 2.97 ± 0.17 93.53 ± 0.73

88.10 to 93.53. Given that we incorporate learned components,
we compare our results to the data-driven methods CAN [13] and
InverseCAN [15], outperforming both. Compared to InverseCAN,
our Unrolled iPPG method reduces the MAE from 2.27 to 1.11 and
the RMSE from 4.90 to 2.97. In Fig. 3, we show an example of how
our algorithm iteratively estimates the underlying pulse signal and
spectrum for one test video. An example of our performance on con-
secutive 10-second time windows is shown in Fig. 4, where we see
that our Unrolled iPPG algorithm correctly predicts the ground-truth
heart rate over a wide range of heart rates and across the duration of
an entire video.

We also study the effect of not explicitly modeling the noise

Table 2: Heart rate estimation with and without modeling the noise
component E. Using Q to denoise Ẽ improves performance.

Method MAE (bpm) ↓ RMSE (bpm) ↓ PTE6 (%) ↑
Without Q (Eq. (8)) 1.44 3.87 92.25

With Q (Eq. (4)) 1.11 2.82 93.02

Table 3: Heart rate estimation performance based on the number T
of unrolling iterations

Number of iter. MAE (bpm) ↓ RMSE (bpm) ↓ PTE6 (%) ↑
1 1.33 3.12 92.25
3 1.11 3.22 93.02
5 2.14 6.72 90.7

10 2.59 8.89 90.7

component E and not using Q, i.e., solving the optimization problem

min
X

1

2

∥∥Z− F−1X
∥∥2

F
+ λ · ρ̃(X). (8)

As shown in Table 2, modeling the noise explicitly using Q (instead
of modeling the Fourier coefficients and noise simultaneously in R)
significantly improves the results. The network Q learns the struc-
ture of the noise, which can be subtracted from the signal Z in Eq. (1)
to obtain the underlying pulse signal.

Finally, in Table 3 we analyze the effect of the number of itera-
tions T over which we unroll, corresponding to the number of suc-
cessive gradient and projection steps. The results show that T = 3
unrolled iterations provide the best performance.

5. CONCLUSION

In this work, we describe Unrolled iPPG, which unrolls a model-
based sparse recovery algorithm for heart rate estimation from
videos and achieves state-of-the-art results on the MMSE-HR
dataset. We explicitly model the signal extracted from the face
video as the sum of an underlying pulse signal and noise. Instead
of handcrafted sparsity priors used in earlier algorithms, we define
deep neural networks that learn implicit priors based on training
data. Our models significantly reduce heart rate estimation errors
compared with the previous state of the art.
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