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Abstract
This article reviews some kernel-based approaches for system identification and learning-based
control. In the first part, the presentation moves from classic linear system identification, to
nonlinear system identification in Reproducing Kernel Hilbert Spaces. The kernel-based regu-
larization methods are illustrated in a tutorial manner. Moreover, the probabilistic (Bayesian)
interpretation of kernels is also introduced, with focus on the Gaussian Processes (GPs) frame-
work, a special case of great practical interest. The second part touches upon the problem of
quantifying the uncertainty of the estimated dynamic systems from different points of views
(deterministic, probabilistic, probabilistic and robust). The final part of the article surveys
the applications of GPs in robust control, adaptive control, model predictive control, feedback
linearization and reinforcement learning.
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Summary

This article reviews some kernel-based approaches for
system identification and learning-based control. In the

first part, the presentation moves from classic linear system
identification, to nonlinear system identification in Repro-
ducing Kernel Hilbert Spaces. The kernel-based regulariza-
tion methods are illustrated in a tutorial manner. Moreover,
the probabilistic (Bayesian) interpretation of kernels is also
introduced, with focus on the Gaussian Processes (GPs)
framework, a special case of great practical interest. The
second part touches upon the problem of quantifying the
uncertainty of the estimated dynamic systems from different
points of views (deterministic, probabilistic, probabilistic and
robust). The final part of the article surveys the applications
of GPs in robust control, adaptive control, model predictive
control, feedback linearization and reinforcement learning.
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Three GP-based algorithms (PILCO, Black-Drops, and MC-
PILCO) are tested on the swing-up task for a simulated cart-
pole and experiments on a real Furuta pendulum conclude
the article.

T
he commonly adopted route to control a dynamic
system, and make it follow the desired behaviour,
consists of two steps. First, a model of the system
is learnt from input-output data, a task known
as system identification in the engineering

literature. Here, an important point is not only to derive
a nominal model of the plant but also confidence bounds
around it. The information coming from the first step is
then exploited to design a controller that should guarantee
a certain performance also under the uncertainty affecting
the model. This classical way to control dynamic systems
has been recently subject of new intense research thanks
to an interesting cross-fertilization with the field of
machine learning. New system identification and control
techniques have been developed with links to function
estimation and mathematical foundations in Reproducing
Kernel Hilbert Spaces and Gaussian processes. This has
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become known as the Gaussian regression (kernel-based)
approach to system identification and control. It is the purpose
of this article to give an overview of this development.

The goal of System Identification is to build
mathematical models of dynamic systems from input-
output measurements. This term was introduced in 1953
by Lotfi Zadeh and, starting from the seminal paper
[1], such discipline has become a fundamental subfield
of Automatic Control with many years of theoretical
achievements and a remarkable impact on engineering
applications. There are many textbooks available on the
subject like [2], [3]. They describe identification techniques
based on paradigms from mathematical statistics. In
particular, the classical approach relies on prediction
error methods (PEM) [4] and the concept of discrete
model order. Different architectures are postulated, each
of them parametrized by an unknown finite-dimensional
parameter vector θ. If the true system has the postulated
model structure, and the noise is Gaussian, this procedure
is asymptotically optimal: it cannot be outperformed
by any other unbiased estimator as the number of
measurements grows to infinity [5]. However, a crucial
point here is the selection of the most adequate model
structure. In this classical framework, complexity of
the different structures is typically connected with the
number of their unknown parameters. Determining the
dimension of θ then involves a trade-off between bias and
variance: the model should be flexible enough to describe
the experimental data but not too complex to be fooled
by noise. This can be carried out by using complexity
measures, such as Akaike’s information criterion (AIC) [6],
the Bayesian formulation (BIC) [7], minimum description
lenght (MDL) [8], [9] or cross validation (CV) [10], [11].
A graphical illustration is in the left part of Fig. 1. In the
linear and time-invariant setting, the model structures
M there depicted could e.g. represent Finite-dimensional
Impulse Response (FIR) models. Each FIR of length d is
associated to a d-dimensional parameter vector θ whose
components are the impulse response coefficients. Other
fundamental structures are the rational transfer functions
where the Laplace transform of the impulse response is
modeled as the ratio of two polynomials with unknown
coefficients contained in θ. In both of these examples, as
the dimension of θ goes to infinity, the model becomes
so complex that it can approximate any kind of impulse
response [12].

The alternative route to system identification
overviewed in this paper is illustrated in the right
part of Fig. 1. Instead of postulating finite-dimensional
models of increasing complexity, the system is directly
searched for in a high-dimensional space. In the linear
setting, the space H can e.g. contain all the FIR models

of fixed and large dimension d. One could also set
d = ∞ to obtain the space with all the possible impulse
responses. In this way, system identification becomes
an ill-posed inverse problem in the sense of Hadamard
[13]: an infinite-dimensional object has to be inferred
from a finite set of input-output measurements. The
challenge is now to control model complexity without
necessarily reducing the model dimension. A powerful
way to restore well-posedness is to regularize the problem
by introducing a suitable ranking of possible solutions
over H. Among many different systems able to describe
the experimental data in a similar way, the one that most
reflects our expectations is selected. For instance, in the
estimation of linear and Bounded Input Bounded Output
(BIBO) systems, impulse responses that smoothly decay to
zero should be privileged. In the nonlinear setting, where
stability is a more delicate concept with several facets [14],
[15], [16], one could promote input-output relationships
that are smooth (similar inputs provide similar outputs)
and embed fading memory concepts (as the lag increases,
past inputs are expected to be less influent on the output).
Regularization techniques can be used to introduce the
desired ordering of solutions for inverse problems. In
particular, the scope of the regularizers is to include
in the estimation process useful information on the
function/dynamic system to be reconstructed. In this
survey, we focus on Kernel-based methods, and their
Bayesian interpretation leading to Gaussian processes
[17]. A fundamental feature of this approach is that the
space H and the ranking over it (assigned by means of
function norms), can be defined just specifying a positive-
semidefinite kernel. This is a map that enjoys the same
properties of the covariance function in probability theory
[18]. It induces a particular space, called reproducing
kernel Hilbert space (RKHS) [19], containing functions
whose properties are strictly related to those of the kernel.
For instance, absolutely integrable kernels are especially
useful for linear and BIBO dynamic systems since they
induce RKHSs that are stable, i.e. that contain only
absolutely integrable impulse responses [20].
Once the kernel is assigned, the system estimate
can be obtained as the solution of an optimization
problem containing two competing terms: adherence to
experimental data and a penalty term accounting for the
ranking induced by the kernel. These two components
have to be balanced by the so called hyperparameters
which need to be tuned using data. An important example
is the regularization parameter (a positive scalar denoted
by γ in the optimization problem reported in the right
part of Fig. 1) which can be tuned in a continuous manner.
Hence, it defines (in some sense) a continuous-model
order, enriching the system identification problem with
a whole new dimension. The automatic selection of
such hyperparameters has proved to be a powerful and
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versatile approach compared to the classical rules of
choosing model discrete orders [21], [20]. As already
mentioned, kernel-based approaches also enjoy an
important stochastic interpretation where the ranking is
seen as the manifestation of a Bayesian prior placed over
a space of systems [22], [23], [24]. If the system is modeled
a priori as a (often zero-mean) Gaussian random field
with covariance equal to the kernel, when data become
available the kernel-based estimator provides its minimum
variance estimate. We will see that this has important
consequences for kernel selection, hyperparameters
estimation and computation of the uncertainty affecting
the system estimate.
The key reason of the renewed interest of control
community towards regularization has been the
introduction of new kernels/covariances that account
for dynamic systems features. A large variety is now
available in the linear setting [25], [26], [27], [28], [29].
They are derived in deterministic settings, working also
over the frequency domain [30], [31], or in a stochastic
framework, e.g. exploiting maximum entropy concepts
[32], [33], [34]. Furthermore, the theory of RKHSs of stable
impulse responses has been recently developed [35],
[36], [37]. Many open issues still remain in the nonlinear
case but powerful kernels are available even in this
context, e.g. the Gaussian and Matern kernel, common in
machine learning literature [22], and the polynomial one,
related to classical (truncated) Volterra models [38], [39]
which describe systems through a large set of monomials
[40], [41], [42], [43], [44]. Their applications regarding
e.g. mechanical systems can be found in [45], [46], [47],
[48], [49], [50]. Kernels allow here to encode many basis
functions in an implicit way, maintaining the problem
computationally tractable.

Like all the estimators, kernel-based estimators must
be accompanied by a rigorous evaluation of their error.
In general, error bounds can be obtained in deterministic,
[51], or probabilistic set-ups, [2], [3]. Probabilistic set-ups
are particularly suitable to strike a satisfactory balance be-
tween the conservatism of a bound and the risk of it being
wrong. Moreover, thanks to the already mentioned link
between kernels and Bayesian priors, it is possible to study
the error bounds in a fully Bayesian framework, where the
uncertain model is itself treated as a stochastic quantity,
[52]. For Gaussian probabilities, such a Bayesian approach
is not only theoretically sound but also computationally
tractable, with a large impact on applications, [22]. It
should however be noticed that the ensuing error bounds
are sensitive to the choice of the probabilistic description
of the uncertainty, a choice that is largely left to the user’s
discretion (not to say whim). Hence, a present challenge is
developing probabilistic approaches that are robust, in the
sense that they remain valid for large classes of probability
distributions (e.g., all the distribution indexed by some

hyperparameters, [53], [54]), and yet are informative in
spite of the large dimension of H. As we shall see, both
classic and recent system identification literature can be a
source of inspiration in the pursuit of this goal.

The building of mathematical models and uncertainty
bounds around them described above is an important
step to control dynamic systems. Overall, this leads to the
so called model-based control methods (they are opposed
to direct data driven techniques that allow to tune a
controller, belonging to a given class, without the need
of an identified model of the system). In particular, in
the last decade a great effort has been devoted to the
design of learning-based control combining kernel-based
methods/Gaussian processes (GPs) with robust control for
linear systems [55], [56], [57], adaptive control [58], [59],
feedback linearization [60], [61], and Model Predictive
Control (MPC) [62], [63], [64]. The prediction models that
are inferred using machine learning techniques include
also other approaches different from GPs, like deep neural
networks (DNNs). The advantage of using deep learning
such as feedforward neural networks, convolutional
neural networks, and long short-term memory networks
lies on the ability of abstracting large volumes of data
and enabling real-time execution in a control loop. On
the other hand, Gaussian regression requires higher
computational burden for larger sets of data but provide
uncertainty bounds around the model that can be naturally
incorporated into traditional control frameworks. GPs are
in fact used either to identify the overall dynamics, or
to assess a residual model uncertainty to be added to a
known nominal model. More recently, GPs framework has
been adopted also in model-based reinforcement learning
(RL) algorithms for control purposes. It is known that
RL is often not so data efficient, i.e., it requires many
trials to learn a particular task. This makes RL methods
often largely inapplicable to mechanical systems that
quickly wear out. Typically, model-based methods, i.e.,
methods that learn a dynamics model of the environment,
are more apt to extract valuable information from
experimental data than model-free methods. Hence, they
are more promising to increase data efficiency. In [65],
the authors have introduced a model-based policy search
method, called PILCO (probabilistic inference for learning
control) where a GP framework has been employed to
learn a probabilistic dynamical model and to explicitly
incorporate the model uncertainty into the long-term
planning. The predicted distributions are approximated
as Gaussians by using exact moment matching, thus
allowing policy evaluation in closed form and analytic
calculations of gradient for policy improvements. PILCO
has been shown to be able to cope efficiently with little
data and to improve learning from scratch in only a few
trials. Extensions of PILCO along different directions have
been provided in [66], [67], [68], [69], [70].
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(yk � ŷ✓(tk))
2 + �P(✓)

M(✓̂) = arg min
✓2H

P
k (yk � ŷ✓(tk))
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Figure 1 Classical approach to system identification (left) Different
finite-dimensional model structures Mi are postulated, each of
them inducing a different output predictor ŷ parameterized by θ.
Complexity is regulated by a term J that may depend on the data
set size n and by the discrete model-order, typically established
by the dimension of the vector θ. Commonly used criteria are
AIC or BIC. Kernel-based approach to system identification (right)
The unknown system is searched for in a high-dimensional space
space, e.g. a reproducing kernel Hilbert space, whose dimension
can be also infinite. Complexity is tuned in a continuous way
by means of hyperparameters like the regularization parameter
γ which has to balance adherence to experimental data and a
penalty P assigned to θ. The penalty can e.g. include information
on smoothness of the input-output map and on system stability.

In light of this Introduction, this Survey will be
naturally divided in three main parts. First, we will
describe how modern regularization theory may return
accurate models of linear and nonlinear dynamic systems.
Then, we will discuss how to complement them with
informative (non-asymptotic) uncertainty bounds. Then,
we will see that GPs (kernel technology) can be fruitfully
exploited for robust control purposes. Examples involving
simulated and real data will be included to describe the
practical implications of the methodology here described.

KERNELS AND GAUSSIAN REGRESSION: AN
INTRODUCTION TO SOME KEY CONCEPTS
Consider the problem of estimating an unknown function
f from direct and noisy samples. The measurements model
is

yi = f (xi) + ei, i = 1, . . . , n. (1)

where the xi are often called input locations while ei
are stochastic additive noises. One classical approach to
estimate the function is to assume that f is the linear com-
bination of known basis functions ϕi through unknown
coefficients αi. The model of dimension d is so given by

f (x) =
d

∑
i=1

αiϕi(x),

where also d has typically to be learnt from data. This is
a crucial aspect of the regression problem: good estimates
of f require a trade-off between adherence to experimen-
tal data and model complexity. Note that any subspace
spanned by {ϕi}d

i=1 may represent the model structure Md

depicted in Fig. 1 (left panel).
For illustrative purposes a numerical experiment is now
introduced. The unknown function is defined over the unit
interval [0, 1] and reported in Fig. 2 (top left) together with
100 measurements corrupted by white Gaussian noise. We
adopt the following sinusoidal basis functions

ϕi(x) =
√

2 sin(x(iπ − π/2)). (2)

For any d, the archetypical approach to determine {αi}d
i=1

is least squares, i.e. the one that minimizes the squared error
between the observed outputs and those predicted by the
model:

arg min
{αi}

n

∑
j=1

(
yj −

d

∑
i=1

αiϕi(xj)
)2.

To determine d, in this experiment we will use an oracle
which knows the true function. Among the different least
squares estimates obtained (one for any different choice of
d), it selects that estimate which maximizes the fit

100
(

1 − ∥f̂ − f ∥
∥f ∥

)
, ∥ · ∥ = Euclidean norm. (3)

For this data set, the oracle selects d = 9 basis functions
leading to a fit around 80%. The estimate is reported in Fig.
2 (top right) and appears quite close to truth. However,
we will try to improve such result through the different
approach illustrated in Fig. 1 (right panel) which suggests
to directly start from a high-dimensional space. For this
purpose, we fix d = 100, a dimension which equals the
number of available measurements. The challenge now is
to control complexity without using d and making use
of regularization. This means that, among solutions that
describe the data in a similar way, the regularizer should
favour those that mostly agree with our expectations on f .
One of the first regularized approaches proposed in liter-
ature is ridge regression [71], [72]. In our context, it de-
termines the unknown function obtaining the expansions
coefficients as

arg min
{αi}

n

∑
j=1

(
yj −

d

∑
i=1

αiϕi(xj)
)2

+ γ
d

∑
i=1

α2
i (4)

with n = d = 100. In (4), the additional term ∑i α2
i which

complements least squares is the regularizer while the
positive scalar γ is the so called regularization parameter.
It has to trade-off the data fit and the penalty term and
can be seen as the (continuous) counterpart of (the discrete
order) d in the regularized setting. In our experiment, we
tune γ still using the oracle: the fit (3) is now function of
γ and the oracle maximizes it. The oracle-based estimate
is reported in Fig. 2 (bottom left) and appears worse than
that returned by the classical approach. Indeed, the fit is
only 57%. It would seem that the idea to start from a high-
dimensional space has no advantages. But the crucial point
is that we need to improve the regularizer. To this regard
note from (2) that, as i increases, the power of the basis
functions ϕi is concentrated at higher frequencies. Many
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functions (systems) encountered in nature have however
some regularity properties: one expects that their energy
decays at higher frequencies. This information can be
encoded by introducing in the regularizer some weights ζi
that decay to zero. Specifically, generalized ridge regression
determines the expansion coefficients as

α̂ = arg min
{αi}

n

∑
j=1

(
yj −

d

∑
i=1

αiϕi(xj)
)2

+ γ
d

∑
i=1

α2
i

ζi
. (5)

The meaning of the new regularizer ∑i α2
i /ζi is that not all

the basis functions should be treated in the same way: as i
increases more penalty has to be assigned to αi and, hence,
to ϕi. For our specific example, we still set n = d = 100
and use

ζi = (iπ − π/2)−2 (6)

(the rationale underlying this choice will be clear a few
lines below). In addition, we now estimate γ using only
the data yi (no oracle is used) with an approach which
will be revealed at the end of this section. The estimate is
reported in Fig. 2 (bottom right) and appears close to truth,
leading to a fit around 94%: the new estimator (without the
use of the oracle) outperforms the (oracle-based) classical
approach.

Generalized ridge regression as kernel-based regularization
The key to interpret (5) as a regularized kernel-based
estimator is to build a (positive definite) kernel: it embeds
basis functions ϕi and weights ζi as follows

K(x, x′) =
d

∑
i=1

ζiϕi(x)ϕi(x′). (7)

Fixing x and seeing the kernel as function of x′, the kernel
section centred on x is obtained. As explained in this
survey, the theory based on reproducing kernel Hilbert
spaces [19], coupled with the famous representer theorem
[73], then ensures that the estimate (5) can be equivalently
written in terms of n kernel sections, where n is the data
set size. In other words, if α̂i come from (5), one has

f̂ (x) =
d

∑
i=1

α̂iϕi(x)

=
n

∑
i=1

ĉiK(x, xi)

where the coefficients ĉi solve a linear system. This leads
to some fundamental facts:

» instead of formulating basis functions and weights,
it can be convenient to formulate directly a kernel
which implicitly encodes them;

» the modeling process thus finds a new dimension
since kernel properties encode our expectations on f .
For instance, smooth kernels promote smooth func-
tion estimates, integrable kernels ensure integrable
function estimates.

To further appreciate these points, it is now useful to reveal
the rationale underlying the choice of the basis function

and weights adopted to solve our regression problem.
Using (2) and (6), then letting the dimension d go to
infinity, the associated kernel becomes [74]

K(x, y) =
+∞

∑
i=1

2 sin(x(iπ − π/2)) sin(y(iπ − π/2))
(iπ − π/2)2

= min(x, y). (8)

This is the famous spline kernel [73] and permits to refor-
mulate the estimator (5) as optimization over a function
(Sobolev) space, obtaining the smoothing spline estimator:

f̂ (x) = arg min
f

n

∑
i=1

(
yi − f (xi)

)2
+ γ

∫ 1

0
ḟ 2(x)dx. (9)

We can now give the estimate reported in Fig. 2 (bottom
right) a different and important interpretation: it describes
the experimental evidence trying also to minimize the
energy of the first-order derivative of f . One can now
wonder which model could be used if the unknown func-
tion is expected to be more regular. Instead of introducing
new complicated/mysterious basis functions and weights,
one can just increase kernel regularity. For example, the
second-order spline kernel is smoother than (8) and pe-
nalizes the energy of the second-order derivative [73]. The
Gaussian kernel (introduced later on) is the most used in
machine learning: it is very smooth and returns estimates
differentiable for all degrees [75].

Kernel-based regularization as Gaussian regression
The estimate obtained by ridge regression and reported in
Fig. 2 (bottom left) appears unsatisfactory since it contains
oscillations perceived as unrealistic. Before seeing the data,
more regularity is expected. Under the deterministic set-
ting so far adopted, where f is an unknown deterministic
function, the spline kernel K(x, y) = min(x, y) improves
the result since it induces the penalty term

∫
ḟ 2(x)dx, hence

favouring smoother profiles. This same penalty can be also
given a stochastic interpretation. In fact, it is interesting
now to note that the spline kernel (8) corresponds exactly
to the covariance of an important stochastic process known
as Brownian motion (integrated white Gaussian noise) [18].
To establish a connection with the kernel-based estimator
(9), it is needed now to think of f as a zero-mean Gaussian
process over the unit interval of covariance min(x, y). This
means that, for any integer m, the function f evaluated
over any set [x1 x2 . . . xm] is a zero-mean Gaussian vector
with E(f (xi)f (xj)) = min(xi, xj) (E indicates mathematical
expectation). This stochastic description of the unknown
f includes smoothness information: the Brownian motion
is continuous with probability one. Such information is
encoded in the probability density function p of any
random variable f (x). It is called prior since it describes
the uncertainty affecting the function before seeing any
measurement. After seeing the output data contained in
the vector Y, such probability density can be updated ac-
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cording to the Bayes’ rule, becoming the posterior density

p(f (x)|Y) ∝ p(Y|f (x))p(f (x))

where p(Y|f (x)) is the likelihood function. This permits
also to define the posterior mean E(f (x)|Y) which corre-
sponds to the minimum variance estimate of f (x) given Y
[76]. The link with the kernel-based estimator f̂ in (9) now
arises. If the data Y are corrupted by white Gaussian noise,
for a suitable choice of γ, one has E

[
f (x)|Y

]
= f̂ (x) ∀x. As

we will see, this fact is not related to the particular (spline)
kernel illustrated in this introductory example. It holds for
any kernel, over any possible domain, once K is seen as
the covariance of a zero-mean Gaussian random field f . Two
important advantages arise:

» the regularization parameter, as well as variables
like noise variances and kernel parameters, are often
unknown. The stochastic interpretation of kernel-
based regularization permits to use statistical criteria
to tune them. We can now reveal that the estimate in
Fig. 2 (bottom right) was obtained by estimating γ

via maximization of the so called marginal likelihood
given by p(Y|γ) and widely described later on;

» after setting the regularization parameters to their
estimates, Gaussian uncertainty bounds around the
estimates can be easily computed being available in
closed-form. This point will be especially important
for robust control purposes.

The unknown functions encountered in this survey
Unknown functions appear in several problems related
to identification of dynamical systems. In particular, in
nonlinear system identification f can represent the unknown
input-output map with the input locations xi that contain
past input (and possibly also output) data. The dimension
of xi is related to the system memory. A special case
arises in the linear setting where each f is linear in x,
so that we can write f (x) = θTx. Here, θ is a vector
which contains unknown impulse response coefficients.
Regularizers introduced in this setting rely on linear ker-
nels K(x, y) = xTPy where P is a symmetric semidefinite
positive matrix. Assuming P invertible, such kernels lead
to penalty terms of the form θTP−1θ.
Other unknown functions encountered in the survey arise
in state-space models and are related to state transitions and
output measurements equations. Just focusing e.g. on state
transitions, in discrete-time one has

xt+1 = f(xt) + noise (10)

where t now denotes time. So, each component of f is
an unknown scalar function f evaluated at input locations
xt defined sequentially by the evolution of the states.
We start describing the linear and time-invariant case in
the following section.

FROM CLASSICAL TO KERNEL-BASED LINEAR
SYSTEM IDENTIFICATION
We consider a single-input single-output (SISO) linear
and time-invariant discrete-time dynamic system. Its un-
known impulse response is denoted by g with components
{gk}+∞

k=1. The noisy outputs are

yi =
+∞

∑
k=1

ui−kgk + ei, i = 1, . . . , n (11)

where u is the known input and ei are the measurement
noises. The latter are assumed independent, zero-mean
with variance σ2. Our goal is to estimate g from knowledge
of u and the n measurements yi.
It is apparent that linear system identification corresponds
to inverting a convolution operator. This problem is also
known as deconvolution and is ubiquitous in biology,
physics and engineering [77], [78]. It is difficult since
convolution in discrete- and also continuous-time is a well-
behaved operator but its inverse may not exist or may
be unbounded [79]. Indeed, impulse response estimation
is an intrinsically ill-posed problem because (11) requires
to reconstruct an infinite number of coefficients gk from a
finite number of observations.
In this section, we will briefly overview some impulse
response estimators that restore well-posedness within the
setting of classical and kernel-based system identification.
In general, it will be useful to measure the estimation
performance in terms of mean squared error (MSE) and
impulse response fit. In this regard, let ∥ · ∥ be the Eu-
clidean or ℓ2 norm, e.g.

∥g∥2 =
+∞

∑
k=1

g2
k .

An estimator ĝ of g is a random object since it depends on
the input-output measurements (the outputs yi are random
variables since they are affected by stochastic noise). One
has

MSEĝ = E∥ĝ − g∥2

=
+∞

∑
k=1

E(ĝk − E ĝk)
2

︸ ︷︷ ︸
Variance

+
+∞

∑
k=1

(gk − E ĝk)
2

︸ ︷︷ ︸
Bias2

, (12)

where the error has been decomposed in the last passage
into two components. The first one is the variance while
the difference between the mean and the true impulse re-
sponse defines the bias. Often, complex models of dynamic
systems lead to estimators with low bias but large variance.
If the mean coincides with g, the estimator is said to be
unbiased.
When data become available, the realization of ĝ becomes
our impulse response estimate. We will then define the fit
as

FITĝ = 100
(

1 − ∥ĝ − g∥
∥g∥

)
. (13)

6 IEEE CONTROL SYSTEMS » JUNE 2020



Numerical example
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Figure 2 Function regression problem True function and noisy samples (top left), estimate from least squares with sinuosidal basis
functions and an oracle to select their number (top right), from ridge regression with oracle to select the regularization parameter (bottom
left) and from kernel-based spline regression with regularization parameter estimated via marginal likelihood (bottom right)

Hence, values close to 100 indicate that the ĝ is a very
accurate reconstruction of the linear system.

Classical approach
As already anticipated, the classical approach relies on the
introduction of a family of model structures of different
complexity, see the left part of Fig. 1. In this linear setting,
each structure is a collection of impulse responses that we
indicate with gθ . They are parametrized by a deterministic
vector θ and may contain a different number dim(θ) of
parameters. The simplest example is given by the FIR
models where well-posedness is restored by assuming that
the impulse response contains only a finite number of
nonzero coefficients. For different dimensions d, each FIR
is characterized by the d-dimensional vector θ containing
the unknown impulse response coefficients, i.e.

gθ = θ1, dim(θ) = 1 (19a)

gθ =
(

θ1 θ2

)T
, dim(θ) = 2 (19b)

... (19c)

Hence, (11) can be rewritten in matrix form in terms of the
following linear regression problem

Y = Φθ + E (20)

where Y and E are n-dimensional (column) vectors whose
i-th components are, respectively, yi and ei. Furthermore,
Φ is the n × d regression matrix whose i-th row is

(
ui−1 ui−2 . . . ui−d

)
.

The least squares estimate of θ is

θ∗ = arg min
θ

∥Y − Φθ∥2 = (ΦTΦ)−1ΦTY (21)

where, for simplicity, Φ is assumed of full column rank.
However, this usually leads to an ill-conditioned problem:
even small errors in the measurements can lead to a large
estimation error. Ill-conditioning may be severe also when
d is just set to that value able to well capture system
dynamics. As an example, if the system is stable and d is
sufficiently large, in practice (20) holds exactly if θ contains
the first d components of the true f . Hence, the least
squares estimator is virtually unbiased and the MSE in (12)
reduces to the trace of the matrix σ2(ΦTΦ)−1. In presence
of ill-conditioning, the matrix ΦTΦ is close to singularity
so that the trace of the inverse can be very large. This
shows that FIR models are easy to fit to data but they can
suffer of large variance. In addition, the variance worsens
when the system input is a low-pass signal. This is a
situation often encountered in real applications that, when
data are realizations from stationary stochastic processes,
admits a spectral characterization via the Szegő theorem
(which studies the asymptotic behaviour of large Toeplitz
matrices) [80], [81].
Structures gθ can be defined by using other building
blocks, e.g. the Laguerre basis functions [82] defined in
the z-transfer domain by

Hi(z) =
(1 − αz)i−1

(z − α)i , −1 < α < 1, i = 1, 2, . . . (22)
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Linear and time-invariant dynamic systems
Any discrete-time dynamic system can be seen as a map-

ping from an input sequence to an output sequence. The system
is Linear and Time-Invariant if the such mapping is linear and
does not depend on actual time. A sequence of zeros with only
one element different from zero is an Impulse and defines an
output called the Impulse Response (IR). IR determines the
output for any input since any sequence decomposes as a linear
combination of impulses happening at different time instants.
A linear and time-invariant dynamic system is Bounded Input
Bounded Output (BIBO) stable if any bounded input produces a
bounded output. This property is equivalent to requiring that the
IR be absolutely summable. In discrete-time this means that the
IR should decay to zero sufficiently fast.
For a Single-Input Single-Output (SISO) time-invariant linear
systems, a general model structure depending on an unknown
parameter vector θ is defined by the transfer functions F map-
ping inputs contained in u to outputs and the transfer function
G mapping a white noise e to an output additive disturbance.
Let us consider one time unit as sampling interval and use q
to indicate the shift operator qu(t ) = u(t + 1) (one could also
use the complex variable z in place of q to formulate the next
equations using the z -transform). Then, it holds that

y (t ) = F (q , θ)u(t ) + G(q , θ)e(t ) (S14a)

Ee2(t ) = σ2; Ee(t )e(k ) = 0 if k ̸= t (S14b)

where E indicates mathematical expectation. The IRs of the

system are then given by the expansion of F (q , θ) and G(q , θ)

in the inverse (backwards) shift operator:

F (q , θ) =
∞

∑
j=1

f (j , θ)q−j (S15)

G(q , θ) = 1 +
∞

∑
j=1

g(j , θ)q−j . (S16)

If G = 1, an output error (OE) model is obtained as in (11).
Popular black-box linear models (no physical insight) use
parametrizations with F and G rational in the shift operator:

F (q , θ) =
B(q , θ)

H(q , θ)
; G(q , θ) =

C(q , θ)

D(q , θ)
(S17)

where B , H , C , D are all polynomials of q−1 with the (unknown)
polynomial coefficients contained in the parameter vector θ.
Typically, the dimension of θ, i.e. the polynomials order, need
to be estimated from data.
Letting H = D the important ARMAX models are obtained [2].
Another fundamental case is H = D and C = 1 which gives the
ARX model :

y (t ) = B(q)uk + (1 − D(q))y + e(t ) (S18)

Finally, C = D leads to G = 1, i.e. the (already mentioned) OE
model, now with rational deterministic transfer function F (as in
(23) in terms of z -transform). Furthermore, if H = 1, F reduces
to a single polynomial in q−1: the impulse response has a finite
number of nonzero coefficients and one obtains the FIR models
(19).

where α regulates the decay rate of the impulse response.
Note that the case α = 0 makes us come back to FIR mod-
els. Other important descriptions used to better balance
the variance and bias components illustrated in (12) are
the rational transfer functions where the z-transform of the
impulse response is the ratio of two polynomials:

ad1
zd1 + ad1−1zd1−1 + . . . + a0

zd2 + bd2
zd2−1 + . . . + b0

, d1 ≤ d2. (23)

In any case, assigned the dimension d, we can first intro-
duce the loss function

V(θ) =
n

∑
i=1

(
yi −

+∞

∑
k=1

ui−kgθ,k

)2

(24)

and then we can obtain θ through PEM, i.e. solving the
following nonlinear least squares problem

θ∗ = arg min
θ

V(θ) (25)

that generalizes (21). Problem (25) coincides with the max-
imum likelihood procedure if the noises are Gaussian,
independent and with the same variance. In many real
world problems, the dimension d of θ is however unknown
and must be determined from data. This problem is key
since the choice of model complexity will have a major

effect on the quality of the final model.
Cross validation (CV) is widely used for model order
selection [10]. Once impulse responses estimates of dif-
ferent dimension are obtained by (25), CV tries to select
the one with the largest prediction capability on future
data. Holdout validation is the simplest version of CV: the
available measurements are split into two sets. The first
one is the training set and is used to train the model. The
other one is the validation set and is exploited to evaluate
the prediction capability. Thanks to its nature, CV may be
applied to the most varied situations.
The so called Akaike-like criteria are also popular to
determine model complexity and do not require to divide
the data in different partitions. To illustrate them, for the
sake of simplicity, let the measurement noise be white and
Gaussian of variance σ2. Then, for known σ2, the “optimal”
model minimizes[

V(θ∗)
σ2 + J(dim(θ), n)

]
known σ2 (26)

while, if σ2 is unknown and included in θ, the objective
becomes

[n log(V(θ∗)) + J(dim(θ), n)] unknown σ2 (27)
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The penalty

J(dim(θ), n) = 2dim(θ) AIC (28)

leads to the well known Akaike’s criterion (AIC) [6] which,
for large samples, gives an approximately unbiased esti-
mator of the Kullback-Leibler divergence (the distance of
a model from the true data generator). A larger penalty on
model flexibility, derived following Bayesian arguments, is
instead defined by

J(dim(θ), n) = log(n)dim(θ) BIC (29)

and is called Akaike’s criterion-type B, BIC, or Rissanen’s
Minimum Description Length (MDL) criterion [8], [7], [2].
One limitation of AIC and BIC is that all of these criteria
are based on an approximation of the likelihood that is
only asymptotically exact. This undermines the applica-
bility of the theory when the ratio n/dim(θ) is not large
enough, see [20] for illustrations of these phenomena in
linear system identification.

Numerical experiment using the classical
approach with an oracle
Let us consider the following system identification prob-
lem. The unknown transfer function is

z2 + 2z + 1
(z − 0.8)(z − 0.6)

+
z2 + 2z + 1

z2 − 0.7z + 0.7
. (30)

The system, initially at rest, is fed with a low-pass input
u given by the realization of white Gaussian noise of
unit variance filtered by 1/(z − 0.9). Note that the pole
0.9 is quite close to the unit circle, hence decreasing the
power of the signal at high-frequencies and increasing the
ill-conditioning affecting the identification problem. The
impulse response has to be estimated from 1000 output
measurements corrupted by white Gaussian noise. The
signal-to-noise ratio (SNR), i.e., the ratio between the vari-
ances of the noiseless output and the noise, is 20 and the
input-output data are plotted in Fig. 3. We assume that the
system identification procedure is equipped with an oracle
which is an estimator with access to the test data. This
means that structures of different dimensions are fitted to
test data using e.g. PEM and then the oracle selects the one
maximizing the fit (13) which is computed using the first 50
impulse response coefficients. This procedure is ideal, not
implementable in practice, but it is useful since it provides
an upper bound on the performance.
First, FIR models are used. The choice of the FIR length
is a trade-off between bias (a large d can be needed to
represent slowly decaying impulse responses without large
error) and variance (large d leads to estimation of many pa-
rameters, hence increasing the variance). To balance these
two components, (21) is computed for different dimensions
of θ and then the oracle selects d = 17 to optimize the fit
which turns out 81.2%. The true impulse response and the
FIR estimate are visible in Fig. 4 (left panel). The size of
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Figure 3 Input-output data generated using system (30).

the training data is quite large and the SNR is not small
but the FIR estimate is not satisfactory. This is due to the
low-pass input that gives poor excitation and makes the
problem ill-conditioned.
To improve the results we can now resort to rational trans-
fer functions (23). Eq. (25) is now computed for different
orders and the oracle determines 4 as the optimal order
of the rational transfer function. The fit increases to 87.3%
and the impulse response estimate is displayed in Fig. 4
(right panel).

Regularized least squares
The result reported in Fig. 4 (left panel) would seem to
suggest that, at least in presence of ill-conditioning, FIR
models are not useful even when an oracle is used to
select their dimension. But now let us consider a different
approach where, inspired by the right part of Fig. 1, the es-
timate is directly searched for in a high-dimensional space,
e.g. given by high-order FIR models in the linear setting.
For large d, we have seen that system identification turns
often out an ill-conditioned (and possibly ill-posed) prob-
lem. So, how can we control the variance without discrete
tuning of d? For this purpose, one important approach is
to add a regularization term to the least squares criterion.
As already recalled in the previous introductory section on
kernel methods to illustrate (4), the first method proposed
in the literature to deal with numerical stability problems
in the inversion of some operators is ridge regression [71],
[72]. The estimate is given by

θ̂ = arg min
θ

∥Y − Φθ∥2 + γ∥θ∥2 (31)

and thus optimizes an objective which is sum of two terms.
The first one is a quadratic loss function that measures
adherence to experimental data. Without any other term
the objective would correspond to (21). The second term is
a penalty given by the squared Euclidean norm whose aim
is to reduce the oscillations that can affect the least squares
estimate. There is also a third very important ingredient
which is a positive scalar γ, the so called regularization
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Figure 4 Classical approach to linear system identification True impulse response (thick red line) and estimates using FIR models (left)
and rational transfer function (right) with model order selected by an oracle

parameter already encountered in (5). It has to trade off ex-
perimental evidence and the regularizer, hence balancing
bias and variance. It can be seen as the counterpart of the
dimension d of theta. We can now reconsider the previous
numerical experiment using d = 50 and adopting (31) with
an oracle to optimize γ. The best possible ridge estimate
is reported in Fig. 5 (top left panel) and the fit is 65.5%.
The reconstructed impulse response is not so satisfactory
due to the presence of some unrealistic oscillations which
suggest data overfitting. This drives us to generalize (31)
by introducing the more sophisticated penalty θTP−1θ

that depends on a design regularization (symmetric and
positive definitive) matrix P. The following regularized least
squares (ReLS) problem is obtained:

θ̂ = arg min
θ

∥Y − Φθ∥2 + γθTP−1θ (32a)

= PΦT(ΦPΦT + γIn)
−1Y; or (32b)

= (PΦTΦ + γId)
−1PΦTY. (32c)

ReLS can be also implemented using non invertible P. In
(32a), one has to replace P−1 with the pseudo-inverse and
add the constraint that the solution be orthogonal to the
null space of P. In any case, the solution coincides with
that reported in (32b) or (32c).
Beyond γ, the performance of ReLS crucially depends on
the choice of the regularizer induced by P as already seen
in the introductory example of Fig. 2. When a signal is
known just to be smooth, beyond the spline kernels, one of
the most used regularizers P used in the machine learning
is related to the so-called Gaussian kernel. The (ij)-entry
of P becomes

Pij = exp
(−(i − j)2

ω

)
(33)

where ω is the kernel width. One can think of γ and ω

as knobs that may control the regularity of the impulse
response. We can ask the oracle to tune them and the
best possible estimate based on the Gaussian kernel is
in Fig. 5 (second panel) with the fit being 83.8%. The
profile is now smoother and we have improved over ridge

regression. However, the peak of our impulse response
is underestimated and some oscillations still affect the
reconstructed profile. The Gaussian kernel does not seem
the breakthrough we were hoping for. To understand the
reasons, it is now useful to reconsider the MSE introduced
in (12).
Assume that data are generated according to the linear
regression (20) for a certain dimension d, with the true
value of θ denoted by θ0. Then, after some calculations,
one obtains the following expression for the MSE of ReLS

E [(θ̂ − θ0)(θ̂ − θ0)
T ] =

σ2
(

PΦTΦ
γ

+ Im

)−1(PΦTΦP
γ2 +

θ0θT
0

σ2

)(
ΦTΦP

γ
+ Im

)−1

.

(34)
Now, we can find values of P and γ that minimize (34) in
matrix sense. One obtains γ = σ2 (the noise variance) with
the optimal regularization matrix being [83]

P = θ0θT
0 . (35)

As expected, the answer depends on the unknown θ0.
Hence, (35) cannot be used in practice but can however
give some important insights on the problem. In fact, it
shows that the regularization matrix P should synthesize
our expectations on the impulse response. When the sys-
tem is exponentially stable, the components of θ0 will
exponentially decay to zero so that also the components
of P (both along and outside the diagonal) should mimic
such behaviour. The first regularization matrix satisfying
such requirements derives from the so called stable spline
kernel [84], [21], also called TC kernel in [83]. It is defined
by

Pij = αmax(i,j), 0 ≤ α < 1, (36)

where α is a stability parameter that regulates how fast the
impulse response is expected to decay to zero. Generaliza-
tions are also given by the second-order stable spline ker-
nel [21], which increases the level of expected smoothness,
and the DC kernel [83], where an additional hyperparame-
ter is introduced to regulate the level of correlation among
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the samples. Many other kernels then appeared in the
literature to describe linear systems, and have been men-
tioned in Introduction. An in-depth comparison between
the classical and the kernel-based approach was proposed
in [85]. The authors compared the two approaches both in
terms of point estimators and of confidence intervals also
obtaining that the kernel-based approach may outperform
the classical approach.
We now come back to our illustrative example and ask the
oracle to tune γ and α to solve our system identification
problem. The resulting stable spline estimate is reported
in Fig. 5 (third panel) with the fit being 93.4%. The re-
sult is now really satisfactory and outperforms also the
oracle-based classical approach exploiting rational transfer
functions as structures.

Linear state-space models
Several control strategies are based on state-space repre-
sentations of the system evolution. In control applications,
the case of linear and time invariant systems with discrete-
time evolution is particularly common. In this setup, the
system output at time t, hereafter denoted yt ∈ Rp,
is a linear combination of the input ut ∈ Rm and the
system state xt ∈ Rn. In turn, a system of n first-order
linear difference equations describes the evolution of xt as
follows:

xt+1 = Fxt + Gut + wt (37)

yt = Hxt + Dut + vt,

where F ∈ Rn×n, G ∈ Rn×m, H ∈ Rp×n, D ∈ Rp×m are con-
stant matrices; wt ∈ Rn and vt ∈ Rp are zero-mean Gaus-
sian variables with covariance matrices Rw and Rv, which
account for the process and measurement noise, respec-
tively. Model (37) proved particularly useful for advanced
control applications. For instance, remarkable results have
been achieved in the case that the control objective consists
in minimizing a cost function ct(xt, ut) quadratic w.r.t. xt
and ut, the so called Linear Quadratic Regulator (LQR),
[86], [87], also known as Linear Quadratic Gaussian (LQG)
control problem in the stochastic setup [88], [89].

As regards the identification of state-space models of
the kind in (37), it is appropriate to distinguish between
the case that the state xt is measurable or not. If the system
state is directly observed, F and G can be estimated by
solving a linear LS problem of the kind in (31) starting from
N + 1 system observations collected at time t = 0 . . . N.
Specifically, with reference to (31), θ ∈ Rn(n+m) collects
the F and G elements, Y ∈ RnN concatenates the observed
states at time t = 1 . . . N, while the entries of the regression
matrix Φ are states and inputs at time t = 0 . . . N − 1,
disposed in accordance with θ and Y. The covariance of
the process and measurement noise, i.e., Rw and Rv, can
be estimated from the LS residuals. If some insights on F
and G are available, they can be included in the estimation

process through proper parametrization or regularizers.
For instance, by using the the L1 norm as regularization
in (31) instead of the L2 norm, sparsity of F and G is
promoted.

LS identification of the state-space model cannot be
performed if the states are not observable and only input-
output data are available. In this case, an alternative route
consists of estimating an input-output transfer function,
then obtaining a state-space realization. ARX models are
particularly suitable for this task. Compared to the FIR
models introduced before, they include also an autoregres-
sive part with past outputs seen as additional inputs. For
the sake of simplicity, we consider the SISO case, described
by the following equation:

yi =− a1yi−1 − . . . − ana yi−na + b1ui−1 + . . .

+ bnb ui−nb + ei = φT
y (i)θa + φT

u (i)θb + ei, (38)

with θa =
[
a1 · · · ana

]T
, θb =

[
b1 · · · bnb

]T
while the

column vectors φy(i) and φu(i) are built using y and u in
an obvious way. As the orders na and nb grow to infinity,
ARX models can approximate any linear system [2].
Also (38) is a linear regression model, involving two
regression matrices Φa, Φb whose i-th row is given by φT

y (i)
and φT

u (i), respectively. In matrix form, we can thus write

Y = Φaθa + Φbθb + E := Φθ + E (39)

where θ = [θT
a θT

b ]
T . The same regularization ideas il-

lustrated above can be now applied just partitioning the
regularization matrix P as follows

P(η) =

[
Pa(η1) 0

0 Pb(η2).

]
(40)

where Pa and Pb are e.g. the stable spline/TC kernels (36).
After estimating the ARX model in (39), one can ob-

tain a state-space realization. For instance, considering the
controllable canonical form and na = nb = n in (39), the
deterministic part of the system is described by

F =




0 1
1

. . .
1

−an −an−1 −an−2 . . . −a1




G =
[
0 . . . 0 1

]T

H =
[
bn . . . b2 b1

]T

D = 0.

If the model dimension is too large, hence complicating the
control design, n can be reduced using standard reduction
techniques, e.g. the algorithms in [90], [91] implemented
by the MATLAB function balred.
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Figure 5 Regularized linear system identification True impulse response (thick red line) and estimates using Ridge regression with oracle
(top left), Gaussian kernel with oracle (top right), stable spline with oracle (bottom left) and with hyperparameters estimated via marginal
likelihood (bottom right).

Bayesian interpretation: Gaussian regression
The Bayesian interpretation of ReLS is now introduced.
To simplify exposition, the FIR case is treated but the
same results here exposed hold also for the ARX models
introduced in the previous section e.g. see [92]. The fact
that an estimate like the one reported in the top left panel
of Fig. 5 is perceived as unsatisfactory suggests that there is
some form of prior knowledge on the level of acceptability
of candidate solutions. We have seen that this knowledge,
e.g. given by system stability, guides the choice of the
regularizer added to the usual sum of squared residuals.
Such a design process has been described by assuming that
the unknown impulse response is a deterministic vector.
All the randomness of our estimators then come from
the random nature of the noise. We will now see that an
alternative formalization of prior information can be given
by adopting a subjective/Bayesian estimation paradigm.
In particular, kernel-based regularization enjoys also a
stochastic interpretation where a Gaussian distribution
is assigned to the impulse response. The regularization
quadratic term then becomes a consequence of this prior.
Let us assume that data come from the linear regression
model (20) for a certain dimension d but with θ now
given by a zero-mean Gaussian random vector. Its definite
positive covariance is proportional to the matrix P, i.e.

θ ∼ N (0, λP) (41)

where λ is a positive scale factor. Let θ be independent
of the measurement noise which is white and Gaussian of

variance σ2. Now, we can compute the minimum variance
estimate of the impulse response, i.e. the mean of the
posterior of θ conditional of Y. Recall that, in view of (20),
Y and θ are jointly Gaussian variables and θ conditional
of Y is Gaussian too, e.g. see [76]. Hence, the mean of the
a posteriori density function coincides with the maximum
a posterior estimate (the maximizer of the posterior), and
a simple application of Bayes’ rule allows us to obtain

E(θ|Y) = arg min
θ

∥Y − Φθ∥2 +
σ2

λ
θTP−1θ. (42)

This is exactly the kernel-based estimate θ̂ in (32a) once
the regularization parameter γ is set to σ2/λ. This also
indicates that only the ratio between the scaling factors
is relevant to the computation of a point estimate. Such
a Bayesian view is important under several aspects. First,
many times the stochastic interpretation may provide use-
ful insights on merit and weakness of a certain model.
For instance, just plotting some realizations from the prior
provides an idea on the expected features incorporated in
our system model. E.g., Fig. 6 plots realizations from zero-
mean Gaussian vectors using covariances associated to
ridge regression (white noise assumptions on the impulse
response coefficients), Gaussian and stable spline kernel.
Only the stable spline candidates include smooth expo-
nential decay information. The other realizations hardly
represent impulse responses of stable dynamic systems.

At higher level, the Bayesian view may inspire the
construction of new priors e.g. by means of Maximum
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Figure 6 Bayesian interpretation of regularization in the linear setting Impulse responses realizations from zero-mean Gaussian vectors
using covariances associated to ridge regression (left), corresponding to white noise assumptions on the coefficients, Gaussian (middle)
and stable spline (right) kernel.

Entropy concepts [32]. Within this paradigm, one can de-
rive a complete a priori density function from incomplete
information, e.g. some values regarding expectations and
variances. The distribution has to satisfy some constraints
and maximize the entropy, hence returning, in some sense,
the simplest (least committing) prior compatible with the
available information. Interestingly, when this latter is just
smooth exponential decay, the maximum entropy prior for
θ is a zero-mean Gaussian distribution with covariance
proportional to the stable spline matrix (36), see [33] for
details. Other advantages of the stochastic framework are
the possibility of complementing the estimates with Bayes
regions (as described later on) and the derivation of statis-
tical guidelines for hyperparameters tuning (as discussed
in the next section).

Hyperparameters tuning
In real applications, the hyperparameters entering the
ReLS estimator reported in (32) cannot be tuned by the
oracle but have instead to be learnt from data. They include
e.g. the regularization parameter γ and also some variables
that define the structure of P, e.g. the kernel width ω

present in (33) or the parameter α of the stable spline
kernel in (36). In the following, the vector containing all
the unknown hyperparameters will be denoted by η.
Many options are available to tune η. For instance, the
same cross validation strategies described in the classical
framework can be adopted, with the CV score now op-
timized w.r.t. the continuous vector η. Other important
criteria do not require to split the data into a training
and a validation set. A first well known class derived in a
deterministic setting includes generalized cross validation
and Stein’s unbiased risk estimation, see [93], [11]. Another
class uses the Bayesian interpretation of regularization:
since the parameter γ can be seen as a noise-to-signal
ratio, its estimation can be reformulated as a statistical
estimation problem as described below.
In the stochastic setting our tuning problem is due to the
fact that the prior on θ (and possibly on the measurement

noise) is known only if we condition on η. In a fully
Bayesian setting, we could also think of η as random
and assign to it a prior p(η). In such a case, the prior
p(θ) can be computed by marginalization as

∫
p(θ, η)dη.

However, in general this computation is analytically in-
tractable. One solution is to resort to stochastic simulation
to solve numerically the integral, e.g. by Markov chain
Monte Carlo techniques [94]. This leads to full Bayesian
methods. A simpler computational scheme exploits the so
called marginal likelihood p(Y|η) which derives from the
marginalization of the joint density p(Y, θ|η) with respect
to θ, i.e. p(Y|η) =

∫
p(Y, θ|η)dθ. The marginal likelihood

estimate of the hyperparameters is

ηML = arg max
η

p(Y|η). (43)

When data are sufficiently informative, one can expect
p(Y|η) to be quite concentrated around ηML. So, assuming
the prior on η rather uninformative, the posterior can be
approximated using the prior p∗(θ) = p(θ|ηML). In this
way, the full Bayes approach is replaced by the so called
Empirical Bayes (EB) method [95], [96], [97].
We can now specialize the EB method (43) to our high-
order FIR (20). The key point is that the marginal likelihood
p(Y|η) is available in closed form for any η. In fact,
in view of the Gaussianity and independence of θ and
E, the vector Y is zero-mean Gaussian too. One easily
obtains Y ∼ N (0, Z(η)) with Z(η) = λΦPΦT + σ2In. Using
the minus-log of p(Y|η), problem (43) in the context of
regularized FIR becomes

η̂ = arg min
η

YT(Z(η))−1Y + log det(Z(η)). (44)

Interestingly, the marginal likelihood may prevent overfit-
ting. In fact, the likelihood p(Y|η) can be approximated
as the product of the full likelihood and an Occam factor
that penalizes unnecessarily complex systems [54], [98]. In
(44) the Occam factor is represented by log det(Z(η)). Hy-
perparameters on-line tuning techniques, with new data
arriving in real-time, are described in [99], [100].
To test EB we reconsider for the last time our illustrative
example. Fig. 5 (bottom right panel) reports the impulse

JUNE 2020 « IEEE CONTROL SYSTEMS 13



response estimate with complexity now tuned by (44). The
fit turns out 91.2%, close to that of the oracle. EB, imple-
mentable in practice, outperforms the classical approach
equipped with rational transfer functions and the oracle,
further outlining the potentiality of regularization. Other
experiments along this line can be found e.g. in [21], [83],
[20].

RKHSS FOR SYSTEM IDENTIFICATION AND
FUNCTION ESTIMATION
It can be tempting to set the FIR dimension to d = ∞,
shifting the task to estimate an IIR model. But the matrix
P becomes infinite so that its inverse is undefined. This
makes obscure both the meaning of the regularizer θTP−1θ

and the nature of the space where the optimizer searches
for the unknown impulse response. It is then needed to
generalize problem (32) by considering θ no more as a
vector but as a real-valued function f defined over a
generic domain X . This operation is important since it
permits to solve (in an unified framework) also other
relevant problems including continuous-time linear system
identification and nonlinear system identification.
To extend (32), it is key to move from positive definite
matrices P to positive definite kernels K, just called kernels
in what follows, which were first encountered in the intro-
ductory section on Kernels and Gaussian regression. Given
any non-empty set X , kernels are symmetric functions
over X × X such that, for any finite natural number p,
one has

p

∑
i=1

p

∑
j=1

aiajK(xi, xj) ≥ 0

for any choice of real numbers ak and xk ∈ X . E.g., in
the d-dimensional FIR case, X = {1, . . . , d} and the kernel
associated with (32) is K(i, j) = Pij for i, j = 1, . . . , d.
The Moore-Aronszajn theorem provides a one-to-one cor-
respondence between K and particular Hilbert spaces of
functions H known as RKHSs [19]. It contains all the
finite linear combination of kernel sections, i.e. f (x) =

∑
p
i=1 aiKxi (x) with Kxi (x) := K(xi, x), and some infinite

combinations, i.e. the limits of Cauchy sequences w.r.t. the
norm ∥f ∥2

H = ∑
p
i=1 ∑

p
j=1 aiajK(xi, xj). A consequence of this

construction is that functions in H inherit properties of
the kernel. Continuous kernels (also called Mercer ker-
nels) induce spaces containing only continuous functions.
Kernels that are absolutely integrable belong to the class
of stable kernels which induce the so called stable RKHSs
that contain only absolutely summable impulse responses.
Their complete characterization can be found in [36], [37].
For instance, the stable spline kernel (36), extended to the
entire set of natural numbers, is

K(i, j) = αmax(i,j), i, j = 1, . . . , ∞. (45)

This kernel can be proved to be positive definite and one
also has the property ∑ij |K(i, j)| = ∑ij αmax(i,j) < ∞. The

associated RKHS thus contains (possibly infinite) com-
binations of exponentially decaying functions and all of
them are impulse responses of BIBO stable systems. These
examples, like the estimation results reported in Fig. 2,
convey an important message for modeling. In place of
introducing a set of basis functions to describe f , like
those of Laguerre (22), in the RKHS setting one has just
to choose a kernel that encodes the desired properties of
the function to be estimated. Another key RKHS feature
that was already described in (7) is that a continuous
kernel over X × X admits over any compact domain the
following Mercer expansion

K(x, z) =
d

∑
i=1

ζiρi(x)ρj(z), x, z ∈ X (46)

(if d = ∞, and the ρi are mutually independent, the space
is infinite-dimensional). Then, it can be proved that the
basis functions ρi span all the RKHS and that

f (x) =
d

∑
i=1

aiρi(x) =⇒ ∥f ∥2
H =

d

∑
i=1

a2
i

ζi
.

Many times, the expansion (46) is not even available in
closed form: kernels thus allow to use in an implicit way
a possibly infinite number of basis functions.
This simple introduction to RKHSs already allows us to
generalize (32). Any measurement yi entering (32) is a
noisy version of the linear transformation of the vector
θ given by Φ(i, :)θ where Φ(i, :) is the i-th row of the
regression matrix. In the RKHS setting, θ is replaced by
the function f over X and its transformation is denoted
by Li[f ] with Li representing a linear and continuous
functional. For instance, if f denotes a continuous-time
impulse response, Li[f ] can now represent the convolution
between the input and f evaluated at time instant ti.
Let also K be the kernel on X × X that encodes the
expected features of f . Then, we search for the estimate
of f in the associated RKHS H using the squared norm as
regularizer, hence generalizing the penalty θTP−1θ in (32).
The resulting estimator is called kernel ridge regression,
or also regularization network [119], and turns out to be

f̂ = arg min
f∈H

n

∑
i=1

(yi − Li[f ])2 + γ∥f ∥2
H. (47)

This would seem an intricate variational problem possibly
defined over an infinite-dimensional space H. Instead, the
representer theorem says that the solution to (47) is unique
and it is computed as the sum of n basis functions. These
basis functions are defined by the kernel and the operator
Li and they are scaled with coefficients obtained solving a
simple set of linear equations [73], [75], [120]. More details
on this will be given during the discussion on nonlinear
system identification in the following sections.
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RKHSs and Gaussian regression: some historical notes
Theory of RKHSs can be found in the fundamental works

[19], [101]. In their simplest formulation they are formulated as
Hilbert spaces where any pointwise evaluation of a function is
a linear and bounded functional. These spaces are in one-to-
one correspondence with positive definite kernels which are
called reproducing since, for any function f and any input
location, the inner product between K (x , ·) and f returns f (x ),
i.e. ⟨K (x , ·), f ⟩H = f (x ).
Regularization theory traces back to Tikhonov [102], [103]. First
applications of RKHSs can be found in the eighties regard-
ing statistics, approximation theory and computer vision [104],
[105], [73], They were then introduced in machine learning
by Girosi in [106]. Combination of RKHSs and regularization
theory enabled the introduction of algorithms like regularization
networks/kernel-ridge regression and support vector machines
[107], [17], [108]. In system identification, the concept of stable
RKHSs for impulse response and predictor estimation was intro-
duced in [21]. For further developments, see e.g. also [92], [83],
[35], [20], [37]. As also described in the book [29], the estimators
there introduced have also connections with previous works

on regularization in system identification including distributed
lag estimators, smoothness regularizers for transfer functions,
stochastic embedding [109], [110], [111], [112], [113].
The link between regularization in RKHSs and Bayesian estima-
tion of Gaussian processes was first described in the context
of smoothing splines in [24] where one can find the link be-
tween Sobolev spaces and integrated white Gaussian noises.
An important incentive to the use of Gaussian regression was
due to [114] where Neal considered a neural network with
weights modeled as i.i.d. random parameters. Using the central
limit theorem, he showed that the input-output map becomes
a Gaussian process as the network’s width grows to infinity.
Thus, the function estimate becomes available in closed-form
and simplifies to manipulation of covariances. See also [115]
and [22]. Recent works generalize [114] by induction and builds
new (compositional) kernels as limits of deep neural networks
with increasing layer width [116]. These constructions regard
also convolutional neural networks [117] and recurrent neural
networks [118].

FROM CLASSICAL TO KERNEL-BASED
NONLINEAR SYSTEM IDENTIFICATION
The literature on nonlinear system identification is vast
and the reasons are manifold. Nonlinearities arise in sev-
eral engineering problems, e.g. mechanical engineering,
robotics, telecommunications, biology and epidemiology
[121], [122], [123]. As a consequence, many parameter-
izations of the unknown system have been introduced
along with different estimation methods. Different param-
eterizations permit to introduce different forms of prior
knowledge about the system, leading to grey box models
with different shades of grey, e.g. see the section The Palette
of Nonlinear Models in [123]. Our aim here is to give an
overview of some aspects of this problem assuming that
no prior physical knowledge on the system is available.
Hence, the building of a black-box model is needed. State-
space models estimation will be also discussed.

Classical nonlinear system identification
In the nonlinear context, the ARX model reported in (39)
can be generalized as follows. First, we can introduce a
vector that contains past input-output data that is

xi = [yi−1, ui−1, . . . , yi−m, ui−m], (48)

where m is the system memory. Then, our model for the
noisy output data becomes

yi = f (xi; θ) + ei, i = 1, . . . , n (49)

where the unknown (nonlinear) function f depends on the
vector θ. This defines a nonlinear ARX (NARX) model

of memory m. A nonlinear FIR (NFIR) is obtained if xi
contains only past inputs, i.e.

xi = [ui−1 ui−2 . . . ui−m]. (50)

Parametric models linear in θ are widely used. First, d basis
functions (the regressors), denoted by ρk , are introduced.
Then, (49) is rewritten as

yi =
d

∑
k=1

θkρk(xi) + ei, i = 1, . . . , n. (51)

Poor knowledge on system dynamics often requires to
introduce a large number of basis functions to account for
different inputs-outputs lags and interactions. Hence, in
such classical framework, nonlinear system identification
is interpreted as an extended parametric regression. To
control complexity, it is essential to choose the relevant
model components, a problem known as regressor selec-
tion. This step is key due also to the so called curse-of-
dimensionality affecting nonlinear system identification. It
can be described via the following simple example. An
important model for f that can approximate arbitrarily
well any “reasonable” system is the (already mentioned)
Volterra series [124], [39]. It corresponds to Taylor ex-
pansions of the input-output map in discrete-time. In
particular, an NFIR model of order m obtained by an r-
truncated Volterra model introduces all the monomials up
to degree r. If r = 2, the basis functions ρk in (51) become

{1, uti−1, . . . , uti−m, u2
ti−1, . . . , u2

ti−m, uti−1uti−2, uti−1uti−3, . . .},
(52)

JUNE 2020 « IEEE CONTROL SYSTEMS 15



Kernel-based ranking of impulse responses: not all the regularizers are the same
We have explained that the use of a kernel (matrix) P can

be seen as a way to introduce a ranking of possible solutions:
among impulse responses that fit the data in a similar way, the
simplest one (according to the penalty induced by P ) has to be
chosen. This will be illustrated through an example which will
also show how different kernels can be more or less useful for
linear system identification.
Let us assume that the impulse response has to be chosen
among a finite number of candidates θ, each representing a FIR
of length 100. The truth is one of the candidates, visible in the
left panel of Fig. 7 (red line, obtained by random generation of a
rational transfer function of order 10). The middle panel displays
the known input given by filtered white Gaussian noise. The
other 99 candidates were fabricated for illustrative purposes as
follows. The parameter vector θ of each candidate was obtained
by computing (21) with output data defined as the true system
output perturbed with a very small noise. The 100 candidates
are shown in the left panel: they appear quite different from each
other but their convolutions with the input (right panel) reveal
that there is no real difference in terms of output fit. This also
points out the severe ill-conditioning affecting the problem.
To select the impulse response, some prior information is
needed. To this purpose we introduce a kernel-based ranking
of impulse responses by measuring FIR complexity through P .
Specifically, the impulse response θi precedes θj if it is assigned
a smaller penalty by the kernel, i.e.

θi ≺ θj ⇐⇒ (θi )T P−1θi ≺ (θj )T P−1θj .

Hence, P can be seen as a referee that ranks the candidates.
First, let us consider the ridge penalty which corresponds to
using the identity matrix P = I100. The top and middle left panels
of Fig. 8 report the two highest-rank impulse responses (black
line). One can see that ridge tends to select impulse responses
quite far from truth and containing many oscillations. According

to the Bayesian interpretation of regularization described be-
fore, these are the two candidates that (in some sense) are most
similar to white noise realizations. One can then assess that the
truth is only in 87th position.
As a second example, let us use the Gaussian kernel, one of the
most used models in machine learning to include information on
function smoothness. The (i , j )-entry of the kernel is

Pij = e− (i−j )2
ω , ω > 0.

To remove the dependence on the kernel width ω, the penalty
assigned to a generic θ is defined by

min
ω

θT P−1θ.

The first and second selected candidates, reported in the first
two middle panels, are more regular than those chosen by ridge.
In fact, the Bayesian interpretation of regularization reveals that
the Gaussian kernel selects vectors most similar to realizations
from a stationary process with correlated samples. However, the
situation does not improve so much. The true impulse response
is in 26th position.
As third example, consider the TC (first-order stable spline)
kernel, obtained by setting

Pij = αmax (i ,j ), 0 ≤ α < 1.

Similarly to what done in the Gaussian kernel case, the depen-
dence on the hyperparameter is removed by optimizing w.r.t. α,
i.e. for any candidate θ we compute

min
α

θT P−1θ.

The right panels of Fig. 8 show that the true impulse response is
now given the first place. The second impulse response is also
close to truth. The selected candidates are smooth and decay
exponentially to zero, pointing out the importance of the choice
of the regularizer for impulse response estimation.
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Figure 7 Kernel-based ranking. Left System impulse response candidates, including also the truth (red line). Middle System input given by
a low-pass filtered white Gaussian noise. Right Outputs generated by the candidates, i.e. convolution of the impulse responses reported
in the top panel with the input in the bottom panel.
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Figure 8 Kernel-based ranking Ranking of impulse response candidates using three different kernels: identity (left), associated to ridge
regression, Gaussian (middle) and TC/first-order stable spline (right).

and it is easy to see that the model order d, i.e. the
overall number of monomials, is given by the binomial
coefficient (m+r

r ). In Fig. 9, model order is plotted as a
function of m with a small degree r equal to 3. The
number of required basis functions scales exponentially
with the system memory, outlining how control of model
complexity is really an issue.
The previous example thus shows that regressor selection
has a combinatorial nature. For this reason, suboptimal so-
lutions are often searched e.g. through greedy approaches
like forward orthogonal least squares [125], [126]. and
its many variants decribed e.g. in [127][Section 3]. An-
other approach uses variance analysis (ANOVA) [128]
and divide-and-conquer methods [129]. Other strategies
include projection pursuit [130] and manifold learning for
dimensionality reduction [131], [132], [133].

Use of regularization
An alternative approach is to use regularization adopting
sparse promoting penalties. This allows to jointly perform
estimation and variable selection, trying to automatically
set to zero groups of variables in the regression vector.
The use of the ℓ1-norm as regularizer on θ leads to
the famous LASSO [134] and LARS [135]. More recent
variants include [136], [137], [138]. However, in [25] it has
been shown that the ℓ1-norm can lead to unsatisfactory
results in system identification, even in the linear scenario.
LASSO is not so effective to balance bias and variance in
dynamic systems, being also much sensitive to the initial
choice d of the model dimension. This also holds for other
recent regularized approaches for system identification
based on atomic and Hankel nuclear norms [139], [140],
[141], [142].

Main difficulty: curse of dimensionality

5 10 15 20
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Figure 9 Curse of dimensionality in nonlinear system identification
Number of basis functions, i.e. monomials, contained in a truncated
Volterra (polynomial) model of degree 3. The result is function
of the system memory m assuming that the unknown system to
reconstruct is f (xi) where any input location contains m past inputs,
i.e. xi = [ui−1 . . . ui−m].

Kernel-based nonlinear system identification
Let us assume that the nonlinear system f belongs to a
RKHS H. The identification data are the n couples {xi, yi},
with the input location e.g. given by (48) in the NARX case.
According to (49), direct noisy output data of the input-
output map are available so that in (47) the term Li[f ]
corresponds to f (xi). Our regularized NARX (or NFIR)
estimator is thus given by

f̂ = arg min
f∈H

n

∑
i=1

(yi − f (xi))
2 + γ∥f ∥2

H. (53)

The application of the representer theorem cited at the end
of the previous section, permits to obtain f̂ in closed form.
Let Y = [y1, . . . , yn]T while K is the so called kernel matrix
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whose dimension is n × n with (i, j)-entry Kij = K(xi, xj).
The estimate of the nonlinear system has the structure of
a particular neural network with only one layer where the
weights ĉi solve a linear system of equations. Specifically,
one has

f̂ (x) =
n

∑
i=1

ĉiKxi (x) ∀x (54)

with the weights vector given by

ĉ = (K + γIn)
−1 Y, (55)

with In the n × n identity matrix.
From a computational viewpoint, the main drawback to
compute f̂ is the inversion of the matrix K + γIn whose
computational cost is O(n3). This problem has been also
connecting machine learning and convex optimization
[143], [144], [145]. Numerical techniques include approx-
imate representations of the kernel function [146], [147]
based on the Nyström method or greedy strategies [148],
[149], [150]. Low-order kernel approximations are also
employed by truncating the expansion (46), see [151],
[152], [153], [154], [155]. Other randomized approaches are
described in [156], [157], [45], [47]. See also [158] for a
recent survey.

Bayesian interpretation: Gaussian regression of
random fields
In the linear setting we have seen that the kernel-based
impulse response estimator can be seen as a minimum
variance estimator if θ is a zero-mean normal vector of
covariance proportional to the kernel, see (41). A similar
relationship holds also in the nonlinear setting with the
impulse response replaced by the input-output relation-
ship f seen as a nonlinear random surface, see e.g., [22].
Specifically, we model f as a zero-mean Gaussian random
field, i.e. given any finite collection of input locations
{x∗i }

p
i=1, the sampled function [f (x∗1) . . . f (x∗p)] forms a

Gaussian vector. Let the covariance of such vector be λK,
where λ is a positive scale factor and K is the kernel matrix
with (i, j)-entry Kij = K(x∗i , x∗j ). Our system outputs are

yi = f (xi) + ei, i = 1, . . . , n

where, as usual, the noise is white and Gaussian, of
variance σ2 and independent of f . Now, using basic results
on estimation of jointly Gaussian vectors [76], one can
still assess that the posterior mean E(f (x)|Y) coincides
with (54) and, in turn, with (53) just setting γ = σ2

λ . This
interpretation is also useful for hyperparameters tuning.
Letting Z(η) = λK(η) + σ2In, the marginal likelihood
estimate of η has the same expression obtained in the linear
setting in (44), i.e.

η̂ = arg min
η

YT(Z(η))−1Y + log det(Z(η)). (56)

Kernels for nonlinear system identification
In the nonlinear setting, the kernel has to describe the
nonlinear input-output relationship. The associated RKHS
contains functions over X with dimension related to the
system memory m.
Kernels can face the curse of dimensionality by the im-
plicit encoding of functions described by (46). A relevant
example is the polynomial kernel

K(x, z) = (⟨x, z⟩2 + 1)r , r ∈ N, (57)

where ⟨·, ·⟩2 indicates the classical Euclidean inner prod-
uct. In the NFIR case, it relates to the truncated Volterra
series since (57) embeds all the monomials up to the r-
th degree. Hence, one has d = (m+r

r ). From (54) and (55),
one can see that monomials’ encoding has important com-
putational advantages since estimation complexity, even if
cubic in the number n of output data, is linear in the system
memory m and independent of the degree r of nonlinearity.
Even if the polynomial kernel may induce a very rich class
of functions depending on the degree r, the expansion
(46) contains a finite number d of monomials. Hence, the
RKHS induced by (57) is always finite-dimensional. It is
also possible to use universal kernels that can approximate
any continuous function [159]. The most notable example
is the Gaussian kernel. It was previously defined over the
set of natural numbers in (33) as a possible description of
an impulse response. In the nonlinear setting, it is defined
over a multi-dimensional domain as follows

K(x, a) = e
−∥x−a∥2

ω (58)

where ω is still the kernel width and ∥ · ∥ is the classical
Euclidean norm. The Gaussian kernel is widely used to de-
scribe input-output relationships just known to be smooth.
According to the Bayesian interpretation, where the kernel
is proportional to the covariance, it is associated with a
stationary random field. Fig. 10 (left) plots a realization
that gives an idea of the model underlying the Gaussian
kernel in the NFIR case, with system memory m = 2.
Enriching the Gaussian kernel with a non stationary com-
ponent can be useful in many circumstances, e.g. to model
linear components present in the dynamic system. This
point is related to the literature on partial linear models
[160], [161], [162]. One simple approach is to add to the
Gaussian kernel a linear kernel, hence obtaining

R(xi, xj) = λLxT
i Pxj + λNLK(xi, xj) (59)

with the matrix P defined e.g. by the stable spline kernel
(36). The two scale factors λL and λNL balance the relative
power of the linear and nonlinear system part and can be
tuned by marginal likelihood optimization. A realization
from the Gaussian random field which includes the linear
part is in the right panel of Fig. 10.
The use of kernels like (59) may require the tuning of
the system memory forcing to use grids. This problem
can be circumvented by following stable spline-like ideas,
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incorporating fading memory concepts in the classical
Gaussian kernel. One can include the information that
ui−k is expected to have less influence on yi as the lag
k increases. Considering just for simplicity the NFIR case,
this can be obtained by redefining K in (59) as follows

K(xi, xj) = exp
(
−

m

∑
k=1

αk−1
NL

(ui−k − uj−k)
2

ω

)
, 0 < αNL ≤ 1.

(60)
This model is known as nonlinear stable spline kernel in
the literature [163]. The hyperparameter αNL is to model
the exponential decay of the influence of past inputs’ on
the output. Hence, one can set m to a large value. Then,
the decay hyperparameters α and αNL present in P and K,
respectively, will decide the effective memory of the linear
and nonlinear system’s part.

Kernel-based estimation of state-space models
In many cases, physical phenomena can be more easily
modeled by state-space descriptions e.g. given by

xi+1 = f(xi) + ei, i = 1, . . . , n (61)

where xi is the d-dimensional state at instant i while ei
contains the d random noises. The function f is vector-
valued and encapsulates d transition functions which we
denote with fk for k = 1, . . . , d. If the system states are
all observable, each transition function can be estimated
by (53) just noting that the states xi define both input
locations and measurements. Specifically, if yik indicates
the k-th component of xi+1, our kernel-based estimators of
the fk are

f̂k = arg min
f∈H

n

∑
i=1

(yik − fk(xi))
2 +γ∥f ∥2

H, k = 1, . . . , d. (62)

A closed form expression for f̂k can be obtained using
formulas (54) and (55).

This stochastic view can be exploited also to identify
more complex state space models, in particular when some
of the states are not measurable. In this context, equation
(61) is coupled with the output equation

yi = g(xi) + vi

where also the function g needs to be estimated.
In [164], the state transition function f is modeled as

a GP while g as a parametric likelihood of the form
p(yi|xi, θy), that is, the observation model g is assumed
to be parameterized by the finite dimensional parameter
θy. Through sophisticated estimation tools, the authors de-
veloped strategies to estimate the posterior p(x[0,T]|y[0,T]),
where y[0,T], x[0,T] denote, respectively, the time-series of
measurements and states from time 0 up to T. Inferring
the distribution over the state trajectory p(x[0,T]|y[0,T]) is
an important problem in itself known as smoothing. In
particular in [164] a tailored particle Markov Chain Monte
Carlo (PMCMC) algorithm is used to efficiently sample

from the smoothing distribution whilst marginalizing over
the state transition function. Once an approximation of
the smoothing distribution is obtained, with the dynamics
of the model marginalized out, learning the function f is
straightforward since its posterior is available in closed
form given the state trajectory.

BOUNDS FOR SYSTEM IDENTIFICATION -
PART A: THE BAYESIAN & GAUSSIAN SET-UP
This section and the next one address the problem of
quantifying the uncertainty about an identified system.
“Part A” complements the exposition so far with useful
error bounds that are derived based on the Bayesian inter-
pretation of kernels, for fixed values of the hyperparame-
ters. These bounds are meaningful in a Gaussian-Bayesian
framework, where the user attaches a (Gaussian) probabil-
ity not only to the noise (which is the typical starting point
in statistical system identification) but also to the possible
candidate system models. This framework is elegant and
effective: a simple inference rule (the Bayes’ rule) leads
to rigorous conclusions, by means of computations that
are eased by the Gaussian assumption. Nonetheless, the
sensitivity of the bounds to the working assumptions and,
specifically, to the postulated probability distributions,
may be a legitimate source of concern, encouraging both
the scientist and the user to step back, at least for a
moment, from the Bayesian-Gaussian framework, and to
look for alternative and complementary points of view. In
“Part B”, the interested reader can find a brief overview of
alternative approaches to the computation of error bounds,
including some that are rooted in the tradition of system
identification and some that are the subject of active, and
challenging, research efforts; “Part B” can be skipped at
first reading without loss of continuity.

Bounds for linear systems
Systems in linear regression form:
The linear regression problem (20) has been formulated
as a Gaussian regression problem in “Bayesian interpreta-
tion: Gaussian regression”, where Φ is treated as a fixed
quantity, while the noise and θ are independent Gaussian;
consequently, the joint probability distribution of θ and Y
is Gaussian, namely:
[

θ

Y

]
∼ N

([
E(θ)
E(Y)

]
,

[
Var(θ) Cov(θ, Y)

Cov(Y, θ) Var(Y)

])
, (63)

with E(θ) = 0, E(Y) = 0, Var(θ) = E(θθT) = λP,
Var(Y) = (λΦPΦT + σ2In), Cov(θ, Y) = λPΦT . The
posterior distribution, which is denoted by p(θ|Y), is the
conditional distribution of θ given Y and is a complete
descriptor of the remaining user’s uncertainty about the
latent θ after that θ has (partially) revealed itself through
the observed data Y. The posterior distribution is obtained
from (63) by the Bayes’ rule, and turns out to be Gaussian
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Figure 10 Bayesian interpretation of regularization in the nonlinear setting Realization from a zero-mean random Gaussian field with
covariance equal to the Gaussian kernel (left) and to the sum of a Gaussian kernel and a linear kernel (right). In this latter case a linear
trend is generated to describe the linear part of the system.

as well:
p(θ|Y) = N (E(θ|Y), Var(θ|Y)),

where E(θ|Y) is the conditional expectation and Var(θ|Y)

the conditional variance; E(θ|Y) and Var(θ|Y), which to-
gether specify completely the posterior, can be explicitly
computed by using well-known identities for Gaussian
distributions, i.e.,

E(θ|Y) = Cov(θ, Y)(Var(Y))−1Y,

Var(θ|Y) = Var(θ)− Cov(θ, Y)(Var(Y))−1Cov(Y, θ),

which, by simple substitutions, lead to expressing E(θ|Y)

as in (32) with γ = σ2

λ (thus, as already noticed, E(θ|Y)

coincides with the kernel estimate θ̂ when γ = σ2

λ ), and to

Var(θ|Y) =λP − λPΦT(λΦPΦT + σ2In)
−1ΦλP; or

=

(
1

σ2 ΦTΦ +
1
λ

P−1
)−1

. (64)

The distribution p(θ|Y) can then be used at will to evaluate
the uncertainty about θ after observing Y. It is rather
natural to summarize the uncertainty by means of re-
gions around the kernel estimate θ̂. For example, the
uncertainty on the component θi is fully described by the
marginal Gaussian distribution with mean θ̂i = [E(θ|Y)]i
(i-th component of E(θ|Y)) and standard deviation equal
to σi =

√
[Var(θ|Y)]i,i (square root of the i-th diagonal

element of the matrix Var(θ|Y)), and a 95% probability
interval for θi can then be computed as

[θ̂i − 1.96σi, θ̂i + 1.96σi].

Such an interval is said to be a credible interval at level 1− ϵ,
with ϵ = 5%. Similarly, a credible region ΘBayes at level
1− ϵ for the whole θ can be constructed by considering the
smallest volume d-dimensional region that has probability
1− ϵ according to p(θ|Y). Such a minumum volume region
is an ellipsoid, centred at θ̂ = E(θ|Y), that can be written
as ΘBayes =
{

θ : (θ − θ̂)T
(

1
σ2 ΦTΦ +

1
λ

P−1
)
(θ − θ̂) ≤ Fχ2

d
(1 − ϵ)

}
,

where Fχ2
d
(·) is the cumulative distribution function of

the chi-squared distribution with d = dim(θ) degrees of
freedom.
Systems in linear regression form with autoregressive part:
In the set-up of (39)&(40), the formulas (32)&(64) turn out
to be still valid, see e.g. [92] for a complete study. This fact
can be illustrated on the simple autoregressive system

yi = θyi−1 + ei, (65)

where θ and the noise are independent Gaussian, and
the initial condition y0 is given. First, let us assume that
only y1 has been observed. With Φ = y0 and Y = [y1],
θ and Y are jointly Gaussian for any fixed value of Φ,
so the reasoning leading to (63) applies verbatim. Let us
assume, instead, that the observations are y1, y2; then, the
components of the regressor Φ = [y0, y1, y2] and of the
observation vector Y = [y1, y2] overlap, which calls for
extra care. Nonetheless, the sought distribution p(θ|Y) is
as in the non-autoregressive case: in fact, p(θ|y2, y1, y0) can
be factored as p(θ|y2, y1, y0) ∝ p(y2|y1, θ)p(y1|y0, θ)p(θ) (we
used that y0 is independent of θ).
Linear systems in state-space form:
The uncertainty on the identified system matrices can be
fully described by means of the posterior p(θ|Y) of the
identified parameters, regardless of whether the matrices
are obtained directly by least squares or by computing a
state-state space realization of the identified input-output
transfer function, as discussed in “Linear state-space mod-
els”. Computing uncertainty regions for the unknown ma-
trix elements is just one of the many possible usages of the
posterior p(θ|Y), which is useful to target a multitude of
problems. When these problems require complex transfor-
mation of the identified parameters, a precious ally for the
actual computation of the results is Monte Carlo sampling.
Two examples follow: (example 1) in order to evaluate
the probability that an unknown system is unstable, it is
sufficient to sample many independent instances of the
identified parameter vector according to p(θ|Y), use these
samples to build many instances of the unknown system
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matrix F, say F̂(1), F̂(2), . . . , F̂(m), and count how many of
these matrices have unstable eigenvalues; (example 2) a
control policy can be chosen as the one that performs better
on a sample of systems obtained according to p(θ|Y) (see
e.g. [165], [57], [166]).

Bounds for nonlinear system identification
The formulas for linear systems can be generalized to the
nonlinear case. First, let us consider the set-up already
discussed in “Bayesian interpretation: Gaussian regression
of random fields”

yi = f (xi) + ei, (66)

where the input values xi are fixed, f is modeled as a
Gaussian random field, and ei is an independent Gaus-
sian noise. Here, the conditional probability of the ran-
dom field f given the data Y = [y1, . . . , yn]T is still
Gaussian and the uncertainty about f can be evaluated
at any sequence of user-chosen inputs x∗1 , x∗2 , . . . , x∗m by
computing the distribution of the random vector fx∗ :=
[f (x∗1), f (x∗2), . . . , f (x∗m)]T , which is (see e.g. [22], Chapter
2)

p(fx∗ |Y) = N (E(fx∗ |Y), Var(fx∗ |Y)),

with

E(fx∗ |Y) =λKx∗ ,x(λKx,x + σ2In)
−1Y, (67)

where Kx∗ ,x is the m × n matrix with (i, j)-entry K(x∗i , xj)

and Kx,x the n × n matrix with (i, j)-entry K(xi, xj), and
with

Var(fx∗ |Y) =λKx∗ ,x∗ − λKT
x∗ ,x(λKx,x + σ2In)

−1λKx∗ ,x.
(68)

As usual, the formula of the conditional expectation
E(fx∗ |Y) coincides with that of the kernel estimate f̂ eval-
uated at the input points x∗ = [x∗1 , x∗2 , . . . , x∗m]T (pro-
vided that γ = σ2

λ ). Notably, (67) and (68) generalize
the equations (32) and (64), which are recovered when
f (z) = zTθ and K(z, z′) = zT(λP)z′. Then, the uncertainty
of f at a given input point x∗i , i.e., of fx∗i = f (x∗i ), can be
described by the Gaussian posterior with mean f̂ (x∗i ) =

λKx∗i ,x(λKx,x + σ2In)−1Y and conditional standard devi-

ation σx∗i =
√

λK(x∗i , x∗i )− λKT
x∗i ,x(λKx,x + σ2In)−1λKx∗i ,x.

The corresponding credible interval at level 95% for f (x∗i )
is

[f̂ (x∗i )− 1.96σx∗i , f̂ (x∗i ) + 1.96σx∗i ].

Analogously, the minimum-volume credible region of
probability 1 − ϵ for fx∗ is the ellipsoid

{
fx∗ : (fx∗ − f̂x∗ )TC−1

x∗ (fx∗ − f̂x∗ ) ≤ Fχ2
m
(1 − ϵ)

}
,

where f̂x∗ = E(fx∗ |Y) and Cx∗ is short for Var(fx∗ |Y).
In nonlinear system identification, xi can be defined as a

vector of system inputs, as in (50). Importantly, like in the
linear case, the same formulas (67)&(68) apply to systems
with an autoregressive part, that is, to situations where xi

includes both system input and output values, as in (48) or
in state-space system identification. In this latter case, valid
bounds are obtained by establishing a mapping between
the terms in (66) and the relevant state-space variables
according to the discussion in “Kernel-based estimation of
state-space models”, i.e., as follows

» the input xi is the system state at time i,
» the unknown function f is the k-th component of the

system transition function,
» the observation yi is the k-th component of the sys-

tem state at time i + 1.
This forms the basis of the estimation part of the algo-
rithm PILCO [65], which will be discussed in more detail
in the section “Model-Based Reinforcement Learning”. A
generalization to multi-step prediction is available in [167],
while the case of states that are not directly observable is
studied in [164].

BOUNDS FOR SYSTEM IDENTIFICATION -
PART B: BEYOND THE BAYESIAN & GAUSSIAN
SET-UP
In this part, approaches outside the Bayesian & Gaussian
set-up are considered. For the sake of space constraints,
the discussion will be focused on estimating the impulse
response vector g in (11), and limited to a subset of
techniques (e.g., system identification in the frequency
domain, [168], will not be discussed). Nonetheless, many
of the concepts here revisited are general enough to be
applicable to more complex linear or nonlinear systems
such as (39) and (49) (in fact, more general systems than
(11) are typically addressed in the literature that will be
referenced throughout this section). To begin with, it is
assumed that d, the length of g, be known and sufficiently
small. At least three approaches for the construction of
bounds on the estimation error can then be distinguished
based on the mathematical description of the uncertainty.

I) Uncertainty as a set of possibilities
If the noise sequence (e1, e2, . . . , en) is known to belong
to a set of possible sequences Eposs, then the observed
input-output sequence {(ui, yi)} can be used, together
with a candidate impulse response {g̃k}d

k=1, to compute
the residuals ẽi = yi − ∑d

k=1 ui−k g̃k , i = 1, . . . , n, which
coincide with the actual noise variables e1, e2, . . . , en when
g = g̃. Thus, given certain input-output measurements,
we say that g̃ belongs to the set of compatible impulse
responses, which we denote by Θposs, if and only if
(ẽ1, ẽ2, . . . , ẽn) ∈ Eposs. This idea is at the core of the vast
literature on set membership system identification, see e.g.
[169], [170], [171], [172], [173], [174], [51], [175], [176], [177].
If Eposs is correctly specified, the true g certainly belongs
to the uncertainty set Θposs. However, the definition of
Eposs is critical: if all the imaginable noise realizations are
included in Eposs, the set Θposs ends up being conservative
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and uninformative for practical purposes. On the other
hand, removing some noise realizations from the set Eposs
typically invalidates the claim that Θposs certainly includes
g. In engineering, taking risks is often acceptable, provided
that they are quantified and suitably weighed. This leads
to the probabilistic approach.

II) Uncertainty as probability
A natural way to account for the risk due to neglecting
a subset of Eposs is introducing a probability measure P

over Eposs. In fact, introducing P makes it possible to quantify
how likely and important are in our eyes and for our purposes
certain subsets of realizations. Along with the probabilistic
approach, a subset Eneglected of Eposs with small probability
ϵ (i.e., such that P(Eneglected) = ϵ, where ϵ is, for example,
0.01) can be isolated. Then, given a set of input-output data,
a set of candidate impulse responses Θprob is obtained
according to the following definition.

DEFINITION: Θprob is the set of the im-
pulse responses {g̃}d

k=1 for which the residuals
ẽ1, ẽ2, . . . , ẽn (with ẽi = yi − ∑d

k=1 ui−k g̃k) belong to
the set Eposs \ Eneglected (of probability 1 − ϵ).

(69)

It is possible that the set Θprob constructed based on the
observed data does not include the true g. Nonetheless,
by the very definition of Θprob, the user can make the
following claim: “g ∈ Θprob unless an unlikely event of
probability ϵ has happened”. In a common terminology,
1− ϵ is a confidence value, and Θprob is said to be a confidence
region at level 1− ϵ for g (as is clear from the definition, the
terms confidence regions and credible regions denote different
concepts; for more details see also the sidebar “A Bayesian-
frequentist interpretation of the bounds”). Many elabora-
tions are possible; for example, Eneglected can be defined in
such a way that Θprob is maximally informative, according
to some optimality criteria, see e.g. [178].

In the probabilistic approach, the criticality of defining
Eposs gives way to the criticality of defining P, which can
be an even more difficult task. This difficulty explains
why classic system identification methods do not usually
postulate that a complete probabilistic description P of
the noise process is available (an exception being the
archetypical Gaussian noise set-up), but only that suitable
technical conditions for the applicability of the central limit
theorem are satisfied. While the reader is referred to classic
textbooks such as [2] and [3] for details, the basic idea
in the least squares set-up is that, as the number of data
n tends to infinity, the re-scaled estimation error vector√

n(g − ĝ) tends to have a Gaussian distribution with zero
mean and finite, known covariance, no matter what the
specific distribution P is. Thus, a classical way to describe
the uncertainty of the least squares estimate θ∗ of g (21),
uses this asymptotic Gaussian distribution to shape an

uncertainty ellipsoid ΘGauss around θ∗:

ΘGauss =

{
θ : (θ − θ∗)TΨ(θ − θ∗) ≤ 1

n
σ2Fχ2

d
(1 − ϵ)

}
,

(70)
where Ψ = limn→∞

1
n ΦTΦ, and σ2 is the variance of the

stationary, zero-mean noise process {ek}+∞
k=1. It is common

practice to replace, Ψ and σ2 with their finite-sample esti-
mates Ψ̂n = 1

n ΦTΦ and σ̂2
n = 1

n−d∥Y − θ∗Φ∥2: interestingly,
since σ̂2

n tends to σ2 as n → ∞, the user does not really
need to know σ2, which can rather be considered as an
estimable parameter of the unknown distribution P.

This classic way of proceeding is attractive because it
is simple and bears a promise of wide applicability and
objectivity, in the following precise sense: two users, Alice
and Bob, who observe the same input-output data but
postulate two different probability distributions for the
stationary noise (say PAlice and PBob), not only get the
same uncertainty ellipsoid, but also agree that, asymptot-
ically, ΘGauss becomes a valid confidence region at level
1 − ϵ. However, the word “asymptotically” cannot be
safely omitted in the previous sentence, and relying on
asymptotic results can be deceiving in real life, where only
a finite sample of data is available (see e.g. [180], [181]).

In concluding, classic results have two attractive fea-
tures: they are (i) probabilistic and (ii) robust with respect
to a large variety of probabilistic formulations that may be
adopted to describe the uncertainty. Unfortunately, they
are not valid for finite samples of data.

III) Probabilistic and robust approach
Remarkably, it is possible to construct finite-sample valid
confidence regions by exploiting only some rather general
statistical features of the noise process, a notable example
of these features being stochastic symmetry (which we call
just symmetry).

For example, two independent zero-mean Gaussian
noise variables e1, e2 are symmetric because, conditioning
on their absolute values |e1|, |e2|, the 4 possible sequences
(+|e1|,+|e2|), (+|e1|,−|e2|), (−|e1|,+|e2|), (−|e1|,−|e2|)
are equally probable. Besides Gaussian, infinitely many
other distributions are symmetric. Moreover, for the sym-
metry property to hold, a noise sequence e1, e2, . . . , en need
not be identically distributed, and one can easily see
that even independence is not necessary. In this sense,
symmetry is a mild assumption. Nonetheless, under the
symmetry assumption, it is possible to define (i) valid and
(ii) informative confidence regions Θprob:
(i) The possibility to define valid regions is implied by the
existence of statistical tests for symmetry that are valid at
a user-chosen level 1 − ϵ. A simple example of such a test
is the following one: a sequence ẽ1, ẽ2, . . . , ẽ10 passes the
test if and only if ∑10

i=1 sign(ẽi) < 10. Then, a symmetric
sequence fails the test whenever it is all made of positive
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A Bayesian-frequentist interpretation of the bounds
To further remark the difference between a credible region

ΘBayes and a confidence region Θprob , confidence regions like
Θprob are sometimes called frequentist confidence regions. This
terminology can be motivated as follows. Let us fix g in system
(11) and then consider M repeated thought experiments: in each
experiment, data are generated by independently resampling
the noise; for each experiment, let us construct the confidence
region at level 1 − ϵ, denoted by Θ(i )

prob , computed using the i -
th experiment data; let us compute the frequency freqM with
which the so-obtained M regions include the fixed g , i.e.,
freqM = 1

M ∑M
i=1 1{g ∈ Θ(i )

prob} (1{g ∈ Θ(i )
prob} = 1, if g ∈ Θ(i )

prob ;

1{g ∈ Θ(i )
prob} = 0, otherwise); it can be seen that freqM tends

to 1 − ϵ as M → ∞. In general, credible regions are not valid
frequentist confidence regions: in fact, in an analogue series
of mental experiments, the credible regions at level 1 − ϵ will
include the fixed g with a frequency that departs from 1 − ϵ

and depends on the specific value of g . The reverse implication
is also false: in general, confidence regions at level 1 − ϵ are
not credible regions at level 1 − ϵ. However, a common ground
for (Bayesian) credible regions and (frequentist) confidence
regions can be found: let us consider again M independent
experiments but assume that, in each experiment, an instance
of the noise sequence and an instance g (i ) of g are drawn
together according to the Bayesian distribution Pg ,noise that
models the uncertainty with respect to both the noise and the
model g . Then, the frequencies 1

M ∑M
i=1 1{g (i ) ∈ Θ(i )

prob} and
1
M ∑M

i=1 1{g (i ) ∈ Θ(i )
Bayes} both converge to 1 − ϵ. Any region

(whether it be a credible region, a confidence region, or none of
the above) that includes g with a 1 − ϵ rate when samples are
repeatedly drawn from the Bayesian prior Pg ,noise is said to be
a valid Bayesian-frequentist region, [179].

values, which happens with probability (1/2)10 = 1
1024

only. Thus, by calling Eneglected the subset of Eposs where
the test fails, a region Θprob constructed according to the
usual definition (69) is necessarily a confidence region at
level 1 − 1

1024 .
(ii) The possibility to construct regions that are really
informative for the purpose of system identification is much
less obvious. Informally, the more a candidate g̃ differs
from the true g, the higher the probability must be that
the corresponding residuals ẽ1, . . . , ẽn belong to Eneglected.
The Sign-Perturbed-Sums (SPS) algorithm, [182], enforces
this property by building a statistical test upon the normal
equations encountered in least squares estimation. In this
way, testing for symmetry is connected to the system
identification goal and the gap between asymptotic op-
timality and finite-sample validity is filled ([183] contains
the proof that, as n tends to infinity, the uncertainty region
constructed by SPS becomes more and more similar to the
classic region (70)).

For more results about SPS and other methods based on
the principles here briefly outlined, the interested reader is
referred to the overview [184] and the related works [185],
[186], [187], [182], [188], [189], [190], [191], [192], [193],
[194], [195]. See also the sidebar “The limits of learning”.

The Bayesian approach revisited
As it was amply discussed, the estimation problem be-
comes quickly ill-posed when d is taken as a large value.
While regularization fixes ill-posedness at a technical level
(variants of SPS that incorporates a regularization term
were proposed in [211], [212], [213], [214]), there are
intrinsic limits on the information that a small amount
of data can carry about a large amount of parameters.

Thus, limitations on the possible model structures are often
introduced, [215], while leaving open the possibility to
detect undesired undermodelling (see e.g. [216], [217]). A
more radical approach prescribes to attach a probability
to the set of the infinite many possible candidate system
models, similarly to what is normally done with the set of
the possible noise realizations in the standard probabilistic
approach. This idea is at the core of Stochastic Embedding,
[218], [219], [220], and has been revitalized by the Bayesian
interpretation of kernel methods (see also [221] for the
relationship between Stochastic Embedding and kernel
methods). In this framework, a probability Pg,noise weights
the realizations of both the noise and the unknown g. In
the Gaussian set-up, this leads to the bounds in “Part A”,
while, in the more difficult non-Gaussian set-up, numerical
and randomized methods, such as Markov chain Monte
Carlo techniques, are particularly helpful to compute the
bounds, see e.g. [94], [222].

However, it must always be reminded that two users,
Alice and Bob, that use different distributions Pg,noise
will end up computing different posterior distributions
and, therefore, construct different credible regions ΘBayes.
In particular, they will draw different conclusions about
whether their regions are valid credible regions at level
1 − ϵ or not.

Beyond Bayesian
A first approach, already employed in this paper, to ro-
bustify the Bayesian prior Pg,noise is introducing hyperpa-
rameters in the definition of Pg,noise: if the different beliefs
of Alice and Bob can be reduced to a different choice of a
parameter, which we denote by η, then Alice and Bob can
step back from their beliefs about η and try to estimate η
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The limits of learning
The analysis of finite-sample algorithms offers a constructive

way to show that certain systems can be “learnt” from data.
In fact, finite-sample algorithms like the Sign-Perturbed-Sums
(SPS) algorithm, [182], provide a direct, data-oriented approach
to the construction of bounds, which are constructed based on
complex manipulations of the available data, so that informative
data lead to smaller uncertainty regions while noninformative
data lead to larger regions. In particular, in SPS, the shape
of the region depends on the outcome of suitable symmetry
tests, and some theoretical investigations have been carried
out to study under which conditions the ensuing regions are
well-shaped, [182], bounded, [196], shrink and at which rate,
[183], etc. A complementary approach to the learning problem
is offered by the literature that investigates the limits of learn-

ing by connecting learning rates to certain characteristics of
the system (e.g., its stability radius, the variance or the sub-
Gaussian norm of the noise, etc.), see e.g. [197], [198], [199],
[200], [201], [202], [203], [204], [205], [206], [207], [87], [208],
[209], [210]. Typically, from these studies, finite-sample bounds
around ĝ can be obtained that depend on certain features of
the data generating systems. These bounds have a theoretical
value and play a role as a sanity-check for uncertainty regions,
like those provided by SPS, which exploit in more complex ways
the observed data. Differently from SPS bounds, these bounds
are not engineered to produce tight confidence regions at level
1 − ϵ. Nonetheless, the gap with respect to tight approaches
like SPS can be reduced to some extent by estimating some
relevant features of the system from data.

from the available data, e.g., by considering the most likely
value of η given the observations. This idea is employed
in Empirical Bayes methods, [53], [54], [52], and generalizes
the classic trick of replacing σ with the data-based estimate
σ̂n in (70). However, finite-sample error bounds that are
valid for both Alice and Bob are hardly obtained in the
presence of tunable hyperparameters, unless η is, in turn,
treated as a random variable, and Alice and Bob agree
on its distribution (in this case, in fact, the inferences of
both Alice and Bob can be carried out in a fully Bayesian
framework).

Overall, balancing between the size and the robustness
of error bounds is an intriguing research challenge. In
response to this challenge, the Bayesian-Frequentist-Bound
(BFB) framework of [179] offers the possibility to modulate
the commitment to prior information, so as to modulate
the size of the class of distributions Pg,noise for which
the computed bounds are valid at least in a Bayesian-
frequentist sense, see the sidebar “A Bayesian-frequentist
interpretation of the bounds” for a definition of this con-
cept. In this framework, hyperparameters tuning can also
be accommodated to some extent.

KERNEL METHODS AND GAUSSIAN
PROCESSES FOR CONTROL
In this section we provide a bird’s eye view of the most
recent work in learning-based control incorporating the
use of kernel-based methods/Gaussian Processes (GPs)
within traditional control techniques.

The section is articulated in six paragraphs. In the first
paragraph, a Bayesian kernel-based approach (see Section
"Regularized least squares") is exploited to identify the
system response of a discrete-time and Bounded-Input-
Bounded-Output (BIBO) stable linear system. The model
obtained is endowed with a detailed description of the

uncertainty around it (see Section "Bounds for linear sys-
tems") that allows to develop stochastic robust control
strategies.

In the subsequent four paragraphs, Gaussian Regres-
sion is used to derive state-space models (see box "Gaus-
sian processes and regression: main concepts and formu-
las" ans sections "Kernel-based estimation of state-space
models" and "Bounds for nonlinear system identification").
Within this context, GPs are exploited to provide proba-
bilistic models predicting either the overall dynamics, or a
residual uncertainty quantifying the model mismatch with
respect to a known nominal description of the system. The
confidence of these probabilistic models is an important
information that can be used in several ways to properly
modify the design of classic model-based control schemes.
Specifically, in these four paragraphs,we review the combi-
nation of GPs with robust control for linear systems, adap-
tive control, feedback linearization and model predictive
control.

Finally, in the last paragraph we shortly mention the
adoption of GPs in model-based reinforcement learning
algorithms for control purposes which will be the topic
extensively treated in the next section.

Kernel-based stochastic robust control of a SISO
linear system
We describe with some details the stochastic robust con-
troller proposed in [56]. The problem regards a discrete-
time stable and linear SISO system. Its unknown impulse
response is denoted by g with the related transfer function
(the z-transform of g) given by G(z). The plant is fed with a
known input and has to be estimated from the output data
collected in the vector Y. These same data have also to be
used to design a controller C(z) such that the closed-loop
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Gaussian processes and regression: main concepts and formulas
We have seen the equivalence between kernel-based iden-

tification and Gaussian regression (kernels become covari-
ances), see Sections "Kernels and Gaussian regression: an in-
troduction to some key concepts" and "Bayesian interpretation:
Gaussian regression of random fields". It is useful to summarise
the main formulas starting directly in a stochastic framework
since this is the approach taken in several papers combining
control and state space models, see Section "Kernel methods
and Gaussian processes for control" .

Assume f : Rm → R is a Gaussian process of zero mean
and covariance λK, where λ is a positive scale factor and K is
a positive definite Kernel function. This means that, given any
finite collection of input locations {xi }n

i=1, the sampled function
[f (x1), . . . , f (xn)] forms a Gaussian vector of covariance λK,
where K is the kernel matrix with (i , j )-entry Kij = K(xi , xj ).
Using a standard notation we denote the Gaussian process as

f ∼ N (0, λK).

Assume we have a set of n measurements, over the n inputs
{xi }n

i=1, of the form
yi = f (xi ) + ei ,

where ei ∼ N (0, σ2) is zero mean Gaussian noise with vari-
ance σ2.

As seen, the posterior distribution p(f |Y), is still Gaussian
and, using Bayes’ rule, one can compute its mean and covari-
ance which give all the information needed to implement an
estimator, a predictor and also a control rule. Specifically, the
best prediction in the mean squared sense at x ∗, given the
information Y = {y1, . . . , yn}, is

f̂ (x ∗) = E [f (x ∗)|Y ] =
n

∑
h=1

ch λK(xh , x ∗),

where the coefficients ch ’s are given by



c1
...

cn


=(λK+σ2I)−1




y1
...

yn


 , K=




K(x1,x1) . . . K(x1,xn)

...
...

K(xn,x1) . . . K(xn,xn)


 .

Moreover, the a posteriori variance of the estimate f (x ∗) is
given by

Var [f (x ∗)|Y ] = λK(x ∗, x ∗)−

λ
[
K(x1, x ∗) . . . K (xn , x ∗)

]
(λK + σ2In)−1 λ




K(x1, x ∗)
...

K (x n , x ∗)


 .

The above approach can be easily extended to the case where
the mean of the Gaussian Process is not zero but equal to a
mean function m(x ), that is, f ∼ N (m(x ), λK). This is useful,
since any a priori insight into the dynamics of the system can be
readily encoded in the mean function. Indeed it is often possible
to capture the main properties of the dynamics, e.g. by using a
simple parametric model or a model based on first principles.

Now, consider the dynamical system

xi+1 = f(xi ) + ei i = 1, . . . , n (S71)

where xi is the d -dimensional state at instant i , ei contains the
d random noises and the function f is vector-valued and encap-
sulates d transition functions denoted by fk for k = 1, . . . , d .

If the system states are all observable, each transition
function fk can be estimated by modeling it as a Gaussian
process and by exploiting the above formulas on the set of pairs
{xi , yik }n

i=1, where the measurement yik is the k -th component
of xi+1. It turns out that the overall state transition function f is
estimated employing d independent Gaussian processes. The
extension to systems of the form

xi+1 = f(xi , ui ) + ei i = 1, . . . , n,

where ui is an input applied to the systems, is easily obtained
rewriting the system as xi+1 = f(x̃i ), i = 1, . . . , n, where the
augmented states x̃i = (xi , ui ), i = 1, . . . , n, are now the input
locations to be considered. If a nominal model fnom of the sys-
tem is known a-priori, this knowledge can be incorporated into
the mean of the d Gaussian processes. Alternatively, rewriting
the system as

xi+1 = fnom(xi , ui ) + f̃(xi , ui ) + ei i = 1, . . . , n,

where f̃ represents the model mismatch between the true
model and the nominal model, the previous Gaussian process
framework can be applied to directly estimate f̃.

In recent years, Gaussian regression has been widely
adopted to derive state-space models for control purposes. In
light of this, in Section "Kernel methods and Gaussian pro-
cesses for control" we review the use of GPs with traditional
control methods, like Model Predictive Control, Robust Control,
Adaptive Control, Feedback linearization and Reinforcement
Learning.
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system
G(z)C(z)

1 + G(z)C(z)
be close to a target transfer function W(z). The distance
can be measured by the two-norm

∥∥W(z)− G(z)C(z)
1 + G(z)C(z)

∥∥
2. (72)

This defines also the fit performance of the controller C(z)
applied to the true plant G(z) as

100

(
1 −

∥∥∥∥∥W(z)− C(z)G(z)
1 + C(z)G(z)

∥∥∥∥∥

2

2

/∥W∥2
2

)
. (73)

Adopting a high-order FIR model with unknown co-
efficients in the vector θ, system identification can be
performed via ReLS (32a). We have also seen that, using
its Bayesian interpretation, the obtained model θ̂ can be
complemented with a description of the uncertainty given
by a Gaussian posterior distribution. In particular, after
seeing the data, the impulse response becomes the follow-
ing Gaussian random vector

θ|Y ∼ N (θ̂, Σ̂) (74)

with posterior covariance Σ̂ given by (64). In (72), we can
now replace G with the z-transform of θ|Y. This makes the
distance (72) a random variable since it incorporates the
stochastic uncertainty around the nominal plant. For any
choice of the controller C(z), its probability density can be
(in principle) computed using (74). This point is important
since it permits to design the controller via statistical
criteria. A significant example is given by minimization
of the expected value of (72). In general, this however
leads to a difficult and nonconvex optimization problem.
An interesting convexification is obtained as follows:

» the controller C(z) is linearly parametrized assuming
that it is the sum of p basis functions ϕi(z) with
unknown coefficients contained in the vector η, i.e.

Cη(z) =
p

∑
i=1

ηiϕi(z); (75)

» the performance index (72) is so reformulated: for
any plant g it is given by

Errη(g) :=
∥∥∥W(z)(1 + G(z)Cη(z))− G(z)Cη(z)

∥∥∥
2

2
.

(76)
Now, we replace g with the Gaussian vector θ|Y and take
the expectation so that the objective depends only on the
controller parameters η. Hence, our stochastic robust control
problem becomes

η̂ = arg min
η

E [Errη(θ|Y)]. (77)

Interestingly, as shown in [56], the optimization problem
(77) is quadratic in η and thus admits a closed form
solution. In fact, it is equivalent to solving

arg min
η

Errη(θ̂) + η⊤Aη (78)

where, recalling (74), θ̂ is the estimate of the plant (the
posterior mean of θ) while A is a suitable matrix which
depends on the posterior covariance Σ̂ and the basis
functions ϕi that generate the controllers’ space, see [56]
for details. One can thus see that the optimal coefficients
in η trade-off two different terms: the error relative to the
nominal plant plus another one that accounts for its uncer-
tainty (with A that can be interpreted as a regularization
matrix).

Instead of minimizing the expectation of the distance
(76) as in (77), other forms of robustness could be pur-
sued. Another example in [56] regards minimization of the
worst-case distance using a minmax formulation coupled
with the scenario approach [166].

A numerical experiment
For illustrative purposes, we consider a benchmark exam-
ple taken from [56]. A realistic posterior distribution (74)
of linear dynamic systems is built as follows. The mean θ̂

is given by the first 200 impulse response coefficients of
the following rational transfer function

Ḡ(z) =
0.28261z + 0.50666

z4 − 1.41833z3 + 1.58939z2 − 1.31608z + 0.88642
(79)

while the covariance Σ̂ is obtained by an identification
experiment. In particular, 500 output measurements
are obtained applying to Ḡ an input given by white
noise filtered by a randomly generated 2nd order stable
transfer function. The outputs are then corrupted by white
Gaussian with a signal-to-noise-ratio (SNR) equal to 100.
A FIR model of dimension 200 is obtained by ReLS (32a)
using the stable spline prior (36) with hyperparameters
estimated via marginal likelihood optimization. The
posterior covariance Σ̂ is then computed using (64).

Now, we consider a Monte Carlo study where at any
run a plant G(z) (represented by a FIR of dimension 200)
is drawn from our Gaussian posterior distribution of mean
θ̂ and covariance Σ̂. The controller C(z) is a FIR of order
5 combined with an integrator:

Cη(z) =
η1 + η2z + . . . + η6z5

z4(z − 1)
(80)

with η obtained using two different algorithms. The first
one, called Nominal, determines the parameter vector η as
the minimizer of Errη(θ̂) with the objective defined in (76).
So, no uncertainty is included in the controller synthesis,
just the posterior mean is used. The second one, called
Robust, achieves η by minimizing (78). Hence, it exploits
the uncertainty around θ̂ and minimizes the expected error.
Fig. 11 (left panel) shows the fits (73) achieved by the
two algorithms after 300 runs. The control performance is
largely improved by exploiting the Gaussian uncertainty
bounds around the nominal model. The right panel of the
same figure shows the results obtained by reducing uncer-
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Figure 11 Robust control of a SISO linear system. Fits of the closed-loop system. Different open-loop systems are drawn from a Gaussian
random vector with posterior covariance defined by the stable spline prior (36) conditional on the available output data. The controller is
then designed using only the mean of the random vector (Nominal) or taking into account the uncertainty by minimizing the average
distance (77) (Robust). Results in the right panel are obtained by reducing the uncertainty around the posterior mean (the posterior
covariance is divided by a factor 10).

tainty, repeating the Monte Carlo study with Σ̂ divided by
10.

GPs - based Model Predictive Control
The combination of MPC and learning techniques is a
research field that is attracting a great interest in the control
community, because of the opportunity of a data-driven
improvement of the closed-loop action, while maintaining
the established guarantees of optimal control [64].
The use of GPs as prediction models in the MPC frame-
work is dated back to 2005, when in [223] the authors have
described a general Nonlinear Model Predictive Control
(NMPC) algorithm based on a Gaussian Process model.
In [223], the proposed approach has been tested on a
benchmark pH process control. However the trend of most
recent research (see e.g. [62], [63]) is that of exploiting GPs
as an augmentation for a physics-based model in order to
estimate unexpected disturbances rather than learning the
overall plant dynamics, see for example [224].
In general, the optimization problem arising in GPs-based
MPC can be formulated as a Stochastic Optimal Control
Problem (SOCP), where the minimization function is an
expected value, the differential equation constraint (i.e. the
dynamics of the system) is subject to uncertainties and
the system constraints must be satisfied in probability. The
direct solution of SOCP is computationally hard, especially
when dealing with non-linear systems. In such case, the
main challenge is the uncertainty propagation over the pre-
diction horizon since Gaussian uncertainty (obtained from
the GP) is no longer Gaussian when propagated through
the nominal nonlinear dynamics. As a consequence ap-
proximation methods are needed, such as exact moment
matching [225], linearization [62], ellipsoidal uncertainty
set propagation [226] or sigma-point transform [227]. In
addition, further approximations are adopted (e.g., only

the mean of the process is propagated or the GP’s covari-
ances are kept constant over the prediction horizon [62])
to reduce the computational costs and to achieve real-time
implementation. A side effect of all these approximations
is that crucial information of the model is lost and the
probabilistic constraints might be violated.
Recently in [228], an open-source toolbox combining a
MATLAB-based Fast NMPC solver and a Python library
for Gaussian Process regression has been presented to
define an off-the-shelves framework for implementation
of GP-based Learning-based NMPC. Starting from a nom-
inal model and model mismatch data or input-output
measurements, the toolbox allows to train the GP either
as model mismatch estimator or black-box model and
get automatically the information needed for the NMPC
problem.

Feedback linearization using Gaussian
Processes
Feedback linearization is a general technique employed
to control nonlinear systems. It consists in transforming a
nonlinear control system into an equivalent linear control
system through a change of variables and a suitable control
input. Consider a system of the form

ẋ = f (x) + G(x)u, (81)

where x, u ∈ Rn, f : Rn → R and G ∈ Rn×n. For simplicity,
assume that G is invertible for any x. Then, by applying
u = G−1(x) (−f (x) + a) where a is an auxiliary input, the
resulting dynamics turns out to be ẋ = a. Now, depending
on the specific task to be accomplished, a can be effi-
ciently designed (in particular guaranteeing exponentially
fast convergence) resorting to classical feedback control
techniques used for linear systems. Typically, we refer to
the design of u and a as, respectively, the inner loop and the
outer loop of the overall control scheme. Notice that, the
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feedback linearization approach above reviewed, requires
the accurate knowledge of the model.

In [60] the authors have considered a system of the
type (81) written in the controllable canonical form (see
Eq. (1) in [60]) with the goal of stabilizing it. In [60],
both f and G are assumed to be unknown, and estimates
f̂ and Ĝ are obtained using Gaussian Processes. In the
identification procedure, the knowledge of the control
affine structure of the system is transferred into the kernel
function, allowing to identify system in closed-loop, while
an arbitrary controller is running the system. Based on f̂
and Ĝ the following controller is considered

u = Ĝ−1(x)
(
−f̂ (x) + a

)
(82)

where the auxiliary input a is designed in such a way to
drive x to 0 exponentially fast if f̂ and Ĝ coincide with f
and G, respectively. As main contribution, it is proved that
(82) is globally uniformly bounded and that the ultimate
bound is reduced as more knowledge (training data) is
available. Interestingly an upper bound on the size of
the set to which the system converges with a probability
greater than a given threshold is derived depending on the
maximum mutual information that can be extracted from
a training set composed by an assigned number of points,
and on the covariance of the estimate obtained on the
function f . In particular the smaller the mutual information
and the covariance, the smaller the upper bound. A similar
approach has been proposed also in [229] in the context of
control of mechanical systems.

A robust version of the learning-based feedback lin-
earization strategy previously described has been pro-
posed in [61] in the context of tracking control of La-
grangian systems. In [61], the authors have assumed to
have a nominal knowledge of the system and GPs are
used to approximate the error between the commanded
acceleration and the actual acceleration of the system.
The predicted mean and variance of the GP are used
to calculate an upper bound on the uncertainty of the
linearization, which, in turn, is used in the design of a
term to be added to the outer controller a to make robust
the overall feedback linearization scheme. It is proved
that the proposed strategy, guarantees that the tracking
error converges to a ball with a radius that can be made
arbitrarily small through appropriate control design.

Integrating Gaussian Processes and Adaptive
Control
Traditionally, adaptive control deals with systems with
parametric uncertainties. Of notable mention are dynamic
models that are affine in the input and in the uncertain
parameters, that is,

ẋ = fx(x) + fu(x)u + fθ(x)θ

where x is the state, fx, fu and fθ are nominal functions
assumed to be known, u is the input and θ is the vector

parameters uncertainties. The control input is u(t) =

π(x(t), θ̂(t)), where θ̂(t) is an estimate of θ. Adaptive
control aims at adjusting online the vector θ̂ (and, in turn,
the characteristics of the controller) based on the output
feedback of the system in a way that the tracking error
is reduced while stability is maintained. The vector θ̂ is
typically adapted by using either a Lyapunov function to
guarantee that the closed-loop system is stable or Model
Reference Adaptive Control (MRAC) to make the uncertain
controlled system tracking the behavior of a predefined
stable reference model [230].

One of the main challenges in adaptive control is
preventing the estimated model to overfit to the latest
observations, [230], [231]. GP-based probabilistic models
provide a useful tool in this regard and are exploited
by learning-based adaptive control approaches to achieve
cautious adaptation by weighting the contribution of the
learned model based on the model output uncertainty.

An interesting approach has been proposed in [58]
where the authors have considered the system ẋ =

f (x, u)+ f̃ (x, u) where f (x, u) = fx(x)+ fu(x)u is the known
nominal dynamics and where f̃ (x, u) is the unknown dy-
namics of the same form, that is, f̃ (x, u) = f̃x(x) + f̃u(x)u,
being f̃x(x) and f̃u(x) unknown nonparametric nonlinear
functions. In the context of MRAC, the adaptive law intro-
duced in [58] is given by the sum of two suitably weighted
terms. The first term, denoted as πnom(x(t)), is a control
policy derived from the application of a feedback lineariza-
tion approach to the nominal model. Due to the unknown
dynamics, πnom(x(t)) introduces feedback linearization
errors that are compensated by the second term, denoted
as πlearn,t(x(t)), which is the adaptive component designed
based on GP approach. To deal with the uncertainty of
the GP model learning, the two terms are combined as
πt(x(t)) = πnom(x(t)) − γ(x(t), u(t))πlearn,t(x(t)) where
γ(x(t), u(t)) ∈ [0, 1] is a weighting factor, with γ = 0
denoting low confidence in the GP. A stochastic stability
analysis has proved the stability of the overall system. The
effectiveness of the approach has been tested in quadrotor
experiments [58], [59].

Interestingly, in [232], the authors have proposed an
approach to the training of GP models for MRAC inspired
by generative neural networks models. The architecture in-
troduced in [232] is termed as Model Reference Generative
Network (MRGeN). Loosely speaking MRGeN is a neural
network model for the system uncertainties, which pre-
dicts the pair of state-uncertainties for GP inference. The
MRGeN weights are updated such that network weights
are moved in the direction of reducing the reference model
tracking error.

28 IEEE CONTROL SYSTEMS » JUNE 2020



Gaussian Processes models for Robust linear
control
Robust control is another control design technique that
deals with uncertainty. Robust control methods are de-
signed to function properly provided that uncertain pa-
rameters or disturbances are found within some, typically
compact, set [233]. Differently adaptive control, which
adapts to the parameters currently present, the goal of
robust control is to find a suitable controller for all pos-
sible disturbances and to keep the controller unchanged
after the initial design. Consider time-invariant systems
composed by the sum of a known linear nominal model
and an unknown nonlinear component, that is,

xk+1 = Axk + Buk + f̃ (xk , uk , wk) (83)

where wk is a process noise and where f̃ (xk , uk , wk) ∈ F,
with F being known and bounded. Quite often in literature
it is assumed that f̃ (xk , uk , wk) = Ãxk + B̃uk + wk where Ã,
B̃ are unknown matrices. Specific structures of Ã, B̃ allow
to model different types of uncertainties, e.g., additive,
multiplicative and feedback uncertainties. Design tech-
niques, such as H∞ and H2-control design, yield controllers
that are robustly stable for all f̃ ∈ F.

It is known that classical robust control approaches
might attain conservative performance in particular when
the uncertainty region is quite large. The goal of learning-
based robust control is to improve the performance by
reducing the model uncertainty in Eq. (83).

In [55], the unknown nonlinear dynamics f̂ are learnt
as a GP, which is then linearized about an operating
point. Specifically, the uncertain linear dynamics in (83) are
assumed to be modelled as (Ã0 + Ã1 ◦ ∆A)xk + (B̃0 + B̃1 ◦
∆B)uk , where Ã0 and B̃0 are obtained from the linearized
GP mean, Ã1 and B̃1 are obtained from the linearized GP
variance (often two standard deviations), and ∆A and ∆B
represent matrices with elements taking any value in the
range of [−1,+1]. The discrete-time controller is designed
by solving a suitable convex optimization problem in
terms of linear matrix inequalities where the objective is
to minimize an error signal caused by all the possible
uncertainties. The proposed approach has been tested on
a quadrotor.

Reinforcement Learning
Another field where GPs are used in control applications
is Reinforcement Learning (RL). RL is based on the the
idea of learning a control law to achieve a task by inter-
action with the surrounding world. RL algorithms can be
categorized in multiple sub classes accordingly to which
characteristics of the algorithms we want to focus on. For
example one of the most common distinctions is between
model-free and model-based algorithms. In the first class
of algorithms, GPs are commonly used to approximate
the value function: [234] introduced to use GP to learn

the temporal difference og the value function in GP-TD,
then refined in GP-SARSA [235], and then made more data
efficient using delayed GP updates in DGPQ [236] and by
combining demonstrations and exploration techniques in
GPPSTD [237]. In GPQ-MFRL [238] the authors propose
to use incrementally more difficult simulators to learn
the value function with GPs. Instead, in model-based
algorithms, GPs are used to build a model of the system
dynamics based on data collected interacting with the sys-
tem. This class of algorithms has been successfully applied
to solve control applications on mechanical system, and it
will be discussed in the next section. There are also hybrid
approaches that for example try to combine both model-
based and model-free algorithms like in [239] or where
model-based reinforcement algorithms are combined with
standard control techniques like in [50].

MODEL-BASED REINFORCEMENT LEARNING
Model Based Reinforcement Learning (MBRL) algorithms
collect data by interacting with the environment to learn a
dynamical model of the system. As in MPC, such model is
used to simulate the system and update the policy by op-
timizing the simulated dynamics. In this way, MBRL algo-
rithms aim at limiting interaction time with the real system
and improving data efficiency. However, differently from
MPC, which optimizes the future evolution of the system
online, MBRL algorithms perform simulation and control
optimization offline, getting over the computational time
constraints due to real-time control. This difference makes
the usage of more complex model possible and allows
considering stochastic behaviors in a comprehensive way.

MBRL algorithms can be divided into value-based and
policy-search-based algorithms. The first example of MBRL
algorithm can most likely be attributed to [240] under the
name of Dyna. The Dyna architecture proposes a general
scheme for value-based algorithms which use the accu-
mulated experience to simultaneously build a dynamical
model of the system, update the value function, and as
consequence, learn a policy. The Dyna algorithm proposes
to update the value function applying a Q-learning ap-
proach (or any other suitable approach) in the learned
dynamical model instead of the actual system. Some rel-
evant evolution of this approach are proposed in VAML
[241] and IterVAML [242] where notably the modeling and
planning part of the algorithm are not independent and the
value function is considered while learning the model.

The second category of MBRL, namely policy-search-
based algorithms, is the one we will focus on the most
because it has a successful history of real world applica-
tions to mechanical systems and it is explored both in the
RL and in the control community. A pioneer algorithm was
proposed in [65], [243], [244] under the name of Probabilis-
tic Inference for Learning Control (PILCO), which inspired
several MBRL algorithms e.g., [67], [245], [246], [68], [69],
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[247].
Given the system state xt ∈ Rd and the system input

ut ∈ Rm, these algorithms model the system dynamics as
a discrete-time system with an unknown one-step-ahead
stochastic transition function f (·). Let x̃t = [xt, ut] be the
augmented state concatenating xt and ut; then, we have

xt+1 = f (x̃t).

The applied inputs are selected according to a policy
function πθ(xt) that depends on the state xt and the policy
parameters θ. For instance, a widely used policy in MBRL
is the RBF-network policy, followed by a squashing func-
tion to limit system inputs if necessary. The parameters
of the RBF-network are centers, lengthscales and weights
of the Gaussian functions, denoted, respectively, by a, l,
and w, i.e., θ = {a, l, w}. The expression of a RBF-network
policy with ng basis is

πθ(xt) =
ng

∑
i=1

wi exp


−

d

∑
j=1

(
aj

i − xj
t

2lj

)2
. (84)

Other examples of policy functions can be the linear policy,
the PID controller, or general ANN.

In this class of algorithms a cost function c(xt) encodes
the task to be accomplished. For instance, a widely used
cost function adopted in MBRL is the saturated distances
from the target state x∗, expressed by the following equa-
tion,

c(xt) = 1 − e−(xt−x∗)
T L(xt−x∗), (85)

where L is a diagonal matrix. The diagonal elements of
L allow weighting distances w.r.t. the different state com-
ponents. c(xt) defines the instantaneous cost, the actual
objective function optimized by this class of algorithms is
the expectation of the cumulative cost, i.e., the sum of the
costs occurred in T steps, expressed as

J(θ) =
T

∑
t=0

E(c(xt)). (86)

The expectations in (86) are computed w.r.t. the state
distribution induced by the initial distribution p(x0), f (·),
and θ.

The general algorithmic structure followed by this class
of algorithms consists of a repetition of several attempts
to solve a desired task, called trials. For each trial the
following three steps are computed:

» Model Learning: the data collected from all the pre-
vious interactions are used to build/update f (x̃t),
the stochastic model of the one-step-ahead transition
function (at the first trial, data are collected applying
possibly random exploratory controls);

» Policy Update: the policy parameters θ are optimized
in order to minimize Ĵ(θ), that is an approximation
of J(θ).

» Policy Execution: the current optimized policy is ap-
plied to the system and the data are stored for model
improvement.

Figure 12 Illustration of the MBRL main three computational steps
at each trial.

Figure 12 represents one trial of a typical MBRL algorithm
where the 3 steps described above are repeated in cycle to
improve the model and the policy of the algorithm.

In the next sections, we enter more in details of some
of the main policy-search-based algorithms dividing them
accordingly to how the state distribution is propagated,
either with moment matching or with particles evolution.

PILCO and Approaches based on Moment
Matching
As mentioned above, the algorithm PILCO [65] is recog-
nized as one of the most fundamental and representative
algorithm of the policy-search class of MBRL algorithms.
For this reason, we describe the realization of the above
general three steps proposed by PILCO as baseline. This
description will be then helpful in the discussion on the
main MBRL algorithms developed in the wake of PILCO.

PILCO relies on GPR to learn the transition function
f (x̃t). Each of the d components of f (x̃t), hereafter denoted
by f i(x̃t), with i = 1 . . . d, is modeled with a distinct GP,
independent from the others given the GP input x̃t. The
algorithm assumes that the state is completely observable,
i.e., we measure all the components of xt, and derives the
input-ouput dataset used to train GPs starting from the
state-input dataset D = {(xt, ut), t = 1, . . . , Tn} collected
in previous n trials. The prior of each i-th GP is normally
distributed with mean xi

t, i.e., the i-th state component
at the current time t for better numerical properties and
covariance matrix defined by a kernel function ki(x̃j, x̃h)

given by the sum of two terms, namely,

ki(x̃p, x̃q) = ki
G(x̃p, x̃q) + δpqσ2, (87)

where ki
G is the Gaussian kernel defined in (58), while

δpqσ2, with δpq = 1 (resp. 0) if p = q (resp. p ̸= q) is the
regularization term needed to account for noise. Then the
posterior distribution of xt+1 given the dataset D and a
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general augmented GP input x̃t is Gaussian distributed,
namely,

p(xt+1|x̃t,D) ∼ N(mf (x̃t), Σf (x̃t)). (88)

In the previous equation mf (x̃t) and Σf (x̃t) denote, respec-
tively, the posterior mean and variance, and they are given
by the following expression,

mf (x̃t) = [m1
f (x̃t) . . . md

f (x̃t)]
T ,

Σf (x̃t) = Diag(σ1
f (x̃t) . . . σd

f (x̃t)),

where each mi
f (x̃t) and σi

f (x̃t) are computed according to
the formulas reported in the box "Gaussian processes and
regression: main concepts and formulas".

At each optimization step of the Policy Update the
algorithm has to compute J(θ). The expectations in (86)
require the state distributions p(x0), . . . p(xT) induced by
θ and the one-step-ahead model f (·). Specifically, starting
from the initial distribution p(x0), for each time step t, the
distribution of xt+1 is obtained by marginalization of (88),
namely,

p(xt+1) =
∫

p(xt+1|x̃t,D)p(xt, πθ(xt))dxt. (89)

Unfortunately, the exact computation of the previous inte-
gral is not tractable. PILCO assumes that all the distribu-
tions are Gaussians and obtains an analytical approxima-
tion of the integral in (89) relying on moment matching.
First, moment matching is applied to approximate the
state-control joint distribution p(xt, πθ(xt)). Then, the same
procedure is applied to (89). Finally, the algorithm ap-
proximates J(θ) computing the expectations in (86) using
the Gaussian approximation of p(x0), . . . p(xT). As showed
in [243], if the cost function has a structure of the kind
reported in (85) the integrals in (86) is analytically tractable,
and the approximation of J(θ) together with its gradient
w.r.t. θ are derived in closed form. Then, the control param-
eters θ are optimized with a gradient-based optimization.

The effectiveness of PILCO has been demonstrated in
several experiments, both in simulated and real setups,
ranging from low dimensional tasks, such as the pendulum
and cart-pole swing-up, and the throttle valve control, to
higher dimensional tasks, such as the unicycle stabiliza-
tion and robotics manipulation. However, the analytical
approximation of J(θ) introduces several limitations:

» The computation of the moments required to apply
moment matching is tractable only when considering
the Gaussian kernel as prior in (87), and cost func-
tions for which the integrals in (86) is analytically
tractable.

» Moment matching forces all the distributions to be
Gaussian, consequently, the state distributions are
unimodal, which might be too crude an assumption
on the long-term system dynamics for several sys-
tems.

The limitation on the kernel choice might be very stringent
in certain applications, as the Gaussian kernel assumes
that the underlying process is stationary and smooth. Such
properties are not always met in the actual system, for
instance in mechanical systems. This mismatch might lead
to overfitting, besides limiting generalization properties in
data that have not been seen during training [248], [249],
[45], [46].

A solution to the poor generalization properties of the
Gaussian kernel in unexplored data has been proposed in
[66], where the GP model is trained with data coming from
a simulator before starting the actual reinforcement learn-
ing procedure. The experience on the simulator improves
the performance of PILCO in areas of the state space with
no available data points. However, the effectiveness of this
method depends on the accuracy of the simulator, which
may not always be available.

Another alternative approach developed in the wake
of PILCO is Deep-PILCO [67]. To overcome assumptions
on stationary and smoothness imposed by the Gaussian
kernel, the algorithms relies on Bayesian Neural Networks
[250] to learn the system dynamics, so that the model can
capture also non-stationary and discontinuous dynamics.
Long term distributions are approximated with moment
matching, with the moments computed via Monte Carlo
simulation. Experiments shows that, compared to PILCO,
Deep-PILCO requires a larger number of interactions with
the system in order to learn the tasks, due to the high
dimensional model parametrization. Similar results have
been highlighted also by experiments carried out in [245],
here the authors introduced a more recent NN-based
MBRL algorithm named PETS. In low-dimensional tasks
GP-based algorithms outperform the ones based on NN.
Instead, when the state dimension and the number of
samples grow, the straightforward application of GP-based
approaches might be critical and less effective than NN-
based approaches.

Particles-based approaches
The algorithms mentioned above in Section approxi-
mate the long-term state distributions relying on moment
matching. As mentioned before, the moment matching
approximation proposed in PILCO imposes the use of
the Gaussian kernel and unimodal state distributions. The
unimodal approximation could be a too crude assumption
on the long-term system dynamics. Moreover, it introduces
relevant limitations in case that initial conditions or the
optimal solution are multimodal. For instance, in case that
the initial variance of the state distribution is high, the op-
timal solution might be multimodal, due to dependencies
on initial conditions.

An alternative route to moment matching to approxi-
mate the long-term state-input distributions relies on parti-
cles based approach. Given the policy parameters θ and the
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transition model f (·), the integral in (86) is approximated
simulating the evolution of a batch of m particles. The
process starts by sampling the batch of particles states
Z0 = {z1

0 . . . zm
0 } from the initial state distribution p(x0).

Then, at each simulation step t, the algorithm evaluates
the policy to compute the control input of each particle
and samples Zt+1 = {z1

t+1 . . . zm
t+1} from (88). Once that

the Z0 . . .ZT are given the expectations in (86) are approx-
imated by the algebraic mean, namely,

Ĵ(θ) =
T

∑
t=0

∑m
i=1 c(zi

t)

m
. (90)

A first attempt based on this approximation has been
proposed in [246]. The authors relied to a gradient-based
optimization strategy to approximate θ. The gradient is
computed using the strategy proposed in PEGASUS [251],
where by fixing the initial random seed, a probabilistic
Markov decision process (MDP) is transformed into an
equivalent partially observable MDP with deterministic
transitions. The authors highlighted several limitations
due to the inability of the gradient-based optimization to
escape from numerous local minima generated by the mul-
timodal distribution. Compared to PILCO, results obtained
were not satisfactory.

An alternative solution to compute the gradient from
particle-based approximation is the reparameterization trick,
successfully introduced in stochastic variational infer-
ence (SVI) [252], [253]. The computation of (90) involves
stochastic operations, consequently ∇θ Ĵ(θ), the gradient
of Ĵ(θ) w.r.t. θ, can not be computed straightforwardly
by back-propagation. The reparameterization trick re-defines
the stochastic operations so that sampling is differentiable
w.r.t. xt, ut, and also θ. Given the particle i = 1 . . . m at
simulation step t, instead of sampling zi

t+1 directly from
(88), the reparameterization trick first samples a point ϵ from
a zero-mean and unit-variance normal distribution. Then,
ϵ is mapped into the distribution defined by (88) applying
the following standard expression,

zi
t+1 = mf (x̃t+1) + Lt+1ϵ,

where Lt+1 is the Cholesky decomposition of Σf (x̃t+1),
namely, Σf (x̃t+1) = Lt+1LT

t+1. In this way, ∇θ Ĵ(θ) can be
computed directly by backpropagation applying the chain
rule.

The algorithm PIPPS [68] experimented with the repa-
rameterization trick to estimate the gradient, highlighting
several issues due to exploding magnitude and random di-
rection. To overcome such limitations PIPPS proposed the
total propagation algorithm, which regularized the gradient
obtained with the reparameterization trick using the likelihood
ratio gradient [254]. PIPPS performs similarly to PILCO
with some improvements both in the gradient computation
and in the overall performance when the level of noise
increases.

A recent work based on the reparameterization trick is
MC-PILCO [69], which follows a different approach to
avoid issues due to exploding magnitude and random
direction in the gradient computation. The authors show
that by introducing the dropout during policy optimiza-
tion and by shaping the cost function opportunely the
reparameterization trick can actually be used to compute
the gradient in particle-based GP MBRL algorithms and
Monte Carlo methods do not suffer of gradient estimation
problems. The use of dropout that was introduced in
the deep learning community [255] to avoid overfitting
during training Deep Neural Networks, is revisited in a
control framework in [69] to optimize the control policy.
This makes the policy stochastic during learning which
increases the entropy of the particles distributions and
helps the optimization algorithm to escape local minima
in the parameter space.

One of the advantages of particle-based approaches
in MBRL is that it is possible to remove all the kernel
assumptions that were required to compute closed form
expressions of the gradients when using moment match-
ing. Indeed, the advantages of using kernels with more
structured than the limited Gaussian kernel are demon-
strated both in simulation and on real systems in MC-
PILCO. Finally, MC-PILCO is extended to cope with sys-
tems with Partially Measurable States, MC-PILCO4PMS.
Considering for example a mechanical system, it is likely
that only positions are actually measurable in the real
system, while other components of the state like velocities
and accelerations are only numerically derived with filters
from the history of the positions. This fact leads to a
differentiation between the states available during policy
execution, which need to be computed with fast online
filters, and the states available during offline learning
where the states can be computed in a non-physical way
to improve the accuracy. MC-PILCO4PMS proposes both
to learn the GP models using accurate a-causal filter to im-
prove the long-term predictions and to simulate the online
observation system during particles propagation in policy
optimization. The latter effectively injects additional noise
to the model predictions to emulate the state which will be
seen during policy execution. Recently, the same authors
proposed a variation of the algorithm MC-PILCO4PMS,
specifically designed for mechanical systems when the
joint velocities are not available in [247].

Finally, Black-DROPS [70] is another particle-based ap-
proach, which mainly differs from the above methods
because it uses a gradient-free policy optimization to avoid
gradient estimation issues. The main advantages are that
there are no constraints in the type of cost function consid-
ered in algorithm, which can even be non-differentiable,
the policy optimization relies on robust black-box algo-
rithms such as CMA-ES [256] in order to escape from
local minima and the data efficiency of the algorithm
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is comparable to analytical approaches such as PILCO.
Furthermore, this approach carries the advantage that the
optimization can be parallelized in modern GPU clusters.
Black-DROPS achieves similar data efficiency to PILCO’s,
but significantly increases asymptotic performance, thanks
to the better accuracy of particle-based approximation, and
the ability of the gradient-free optimizer to escape from
local minima.

Experiments
In this section, we report a comparison between three
of the MBRL algorithms previously discussed, namely,
PILCO, Black-Drops, and MC-PILCO. We considered these
algorithms not only for their importance, but also because
they made the source code available for comparison. Be-
sides that, we present an application of MC-PILCO carried
out on a real setup, highlighting the benefits due to the
the possibility of including prior knowledge in the kernel
function.

We compared the three algorithms on the simulated
cart-pole swing-up task, which is a standard benchmark
both in the control and RL community. Indeed, despite the
system is low-dimensional, this benchmark is particularly
hard due to the under-actuation and the highly nonlinear
dynamics. The system consists of a cart and a pole. The
cart is constrained by a rail to move horizontally, while
a non-actuated revolute joint connects the cart and the
pole, so that the pole rotation plane is perpendicular to
the ground. The state of the system is given by p[m]

and θ[rad], i.e., the cart position and the pole angle,
together with their time derivatives. When the pole is
in the downward stable equilibrium θ = 0, while the
unstable equilibrium point is in θ = π. The control action
is the force that pushes the cart horizontally. The goal is
to swing-up the pendulum and keep it in the unstable
equilibrium point starting from the initial state distribution
N ([0, 0, 0, 0], diag([10−4, 10−4, 10−4, 10−4])). The geometri-
cal and dynamical properties of the system are the same
as the system used in PILCO [65]. The sampling time
and the control period are T = 0.05 seconds. The state
measurements are corrupted by an i.i.d Gaussian noise
with standard deviation 10−2.

We implemented a Monte-Carlo study to compare the
three algorithms. For each algorithm we run 100 experi-
ments on the simulated cart-pole task. Every experiment is
composed of 5 trials, each of length 3 seconds. The random
seed varies at each experiment, corresponding to different
exploration data and initialization of the policy, as well
as different measurement noise realizations. The policies
optimized by the algorithms are RBF-networks like the
one in (84). The three algorithms adopted cost functions
of the kind reported in (85) to encode the task, with some
minor differences to accommodate the different strategies
used for approximation and optimization. All the results

0 1 2 3 4 5
trials

20

30

40

50

60

optimal swing-up

sub-optimal swing-up

PILCO
Black-DROPS
MC-PILCO

Figure 13 Median and confidence intervals (25-75%) of the cu-
mulative cost as a function of trials obtained with PILCO, Black-
DROPS and MC-PILCO. Success rates are reported below.

Success Rates
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

PILCO 2% 4% 25% 34% 38%

Black-DROPS 0% 4% 33% 69% 84%

MC-PILCO 0% 14% 70% 98% 100%

are reported w.r.t. the PILCO cost function, that is

cpilco(xt) = 1 − exp

(
−1

2

(
dt

0.25

)2
)

, (91)

where d2
t is the squared euclidean distance between the

tip of the pole and its position at the unstable equilibrium
point with pt = 0 [m]. Finally, as regards model learning,
all the algorithms defines the GP prior as in (87).

Figure 13 reports the median of the cumulative costs
collected in the Monte Carlo experiment as a function
of the trials, namely, the experience accumulated on the
system. We also reported the first and third quartiles to
provide a measure of the dispersion around the median.
The table below Figure 13 reports the success rates col-
lected at each trial, namely the percentage of "success"
collected in the 100 experiments. We label a trial as "suc-
cess" if |pt| < 0.1 [m] and 170 [deg] < |θt| < 190 [deg]
∀t in the last second of the trial. In this task, MC-PILCO
achieved the best performance both in transitory and
at convergence, as demonstrated by the evolution of its
cumulative cost distribution, which is lower than the ones
of PILCO and Black-Drops. Similar considerations can be
draw by comparing the success rates: at trial 4 and 5 MC-
PILCO success rates are, respectively, 98% and 100%, while
the ones of PILCO and Black-DROPS are still far from
100%. PILCO showed poor convergence properties, since
at trial 5 the success rate is only 38%, and the cumulative
cost dispersion around the median is still considerable
compared to MC-PILCO and Black-DROPS. Black-DROPS
outperforms consistently PILCO at trial 3, 4 and 5, but
without reaching MC-PILCO performance.

We applied MC-PILCO in real setup to solve a swing-up
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task. Instead of using a cart-pole, we considered a Furuta
pendulum (FP) [257]. The FP is a popular benchmark in
nonlinear control and RL. The system is composed of three
links and two revolute joints. The first link, named base,
is fixed and perpendicular to the ground. The second link,
named arm, rotates on a plane parallel to the ground,
while the rotation axis of the last link, the pendulum, is
parallel to the principal axis of the second link. A picture
of the system is reported in Figure 14. Like the cart-
pole, the FP is an under-actuated system since only the
first joint is actuated through a DC motor. The control
input is the voltage of the DC motor. The angles of the
horizontal and vertical joints, hereafter denoted θh and
θv, are measured by optical encoders with 4096 [ppr] at
30 [Hz]. The task consists in learning a controller able to
swing-up the pendulum in the unstable equilibrium point
(θh = 0, θv = ±π) starting from the θh = 0 and θv = 0. The
cost function is given by the following expression,

c(xt) = 1 − exp


−

(
θh

t
2

)2

−
( |θv

t | − π

2

)2

+ cb(xt),

(92)
with

cb(xt) =
1

1 + exp
(
−10

(
− 3

4 π − θh
t

))

+
1

1 + exp
(
−10

(
θh

t − 3
4 π
)) .

The first part of the function in (92) promotes solutions
that reach the target state θh

t = 0 and θv
t = ±π, while

cb(xt) penalizes trajectories where θh
t ≤ − 3

4 π or θh
t ≥ 3

4 π

to limit the risk of damaging the system if the horizontal
joint rotates too much. As regards model learning, we
considered three different prior definitions to quantify the
advantages coming from exploitation of prior information.
The kernel considered are: (i) the Gaussian kernel (G),
which is the standard option when no prior knowledge is
available; (ii) the Gaussian kernel plus a polynomial kernel
of degree 2 (G+P(2)), which aims at exploiting eventual
polynomial behaviors affecting the system dynamics [248].
(iii) semi-parametrical kernel (SP) which combines prior
information from physical models and data driven kernels,
see [249], [46]:

kSP(x̃tj , x̃tk ) = kPI(x̃tj , x̃tk ) + kG(x̃tj , x̃tk ) (93)

= ϕT(x̃tj )ΣPIϕ(x̃tk ), + kG(x̃tj , x̃tk ).

where kPI is called a Physically Inspired kernel be-
cause it is a linear kernel defined on suitable ba-
sis functions ϕ(x̃), extracted by first-principles dynam-
ical models, see for instance [249], and ΣPI is a
positive-definite matrix. Specifically, SP basis functions
can be obtained by isolating, in each ODE defin-
ing FP laws of motion, all the linearly related state-
dependent components. In particular, we have ϕθ̇h (x, u) =

Arm

Pendulum

Base

Figure 14 Illustration of the real system Furuta Pendulum con-
trolled in the unstable equilibrium point.

[(θ̇v)2sin(θv), θ̇h θ̇vsin(2θv), θ̇h, u] for the arm velocity GP,
and ϕθ̇v (x, u) = [(θ̇h)2sin(2θv), θ̇v, sin(θv), u cos(θv)] for the
pendulum velocity GP.

Figure 15 shows the resulting trajectories for each trial.
The algorithm learned how to swing up the FP with all
the prior models considered. It succeeded at trial 6 with
the Gaussian kernel, at trial 4 with kernel G+P(2), and at
trial 3 with SP kernel. This result suggests that a great
advantage of particle-based approaches is the possibility
of using any kernel function, and in particular including
prior knowledge on the system dynamics to improve data
efficiency.

CONCLUSIONS
In this paper, we have provided an overview of recent
advances in kernel-based identification of dynamical sys-
tems and their application to control. In the first part of
the paper we have reviewed kernel-based methods for
linear and nonlinear systems, highlighting the different
perspectives and advantages with respect to the classic
parametric-based system identification. Looking at kernel-
based methods from a Bayesian point of view, we have
illustrated the existing bridge between such techniques
and Gaussian Process regression, which has been suc-
cessfully applied in the last decade in different fields,
ranging from computer science, data analysis, robotics, and
control. Indeed, as discussed in the second part of the
paper, GP models allow quantifying the uncertainty of the
estimates in a simple and effective way compared to their
deterministic counterparts. This makes GPs particularly
appealing for model-based control methods since a correct
understanding of the uncertainty allows the derivation of
more robust control algorithms. In the last part of the paper
we have reviewed the use of GPs in control algorithms,
such as MPC, feedback linearization, adaptive and robust
control, and RL. We have focused on GP-based MBRL
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Figure 15 Trajectories of the FP vertical and horizontal angles
obtained applying MC-PILCO with prior defined by: G, G + P(2),
or SP kernel.

algorithms, a class of algorithms whose aim is to simulate
the system evolution and optimize a control policy. We
have compared three GP-based MBRL algorithms (PILCO,
Black-Drops, and MC-PILCO) on the cart-pole swing-up
task, then applying MC-PILCO on a real Furuta pendulum
system.
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