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Abstract
We introduce a framework to perform unsupervised anomalous sound detection by leveraging
embeddings learned in hyperbolic space. Previously, hyperbolic spaces have demonstrated
the abil- ity to encode hierarchical relationships much more effectively than Euclidean space
when using those embeddings for classification. A corollary of that property is that the dis-
tance of a given embedding from the hyperbolic space origin encodes a notion of classification
certainty, naturally mapping inlier class samples to the space edges and outliers near the
origin. As such, we expect the hyperbolic em- beddings generated by a deep neural network
pre-trained to classify short-time Fourier transform frames of normal machine sounds to be
more distinctive than Euclidean embeddings when attempting to identify unseen anomalous
data. In particular, we show here how to perform unsupervised anomaly detection using em-
beddings from a trained modified MobileFaceNet architecture with a hyperbolic em- bedding
layer, using the embeddings generated from a test sample to generate an anomaly score. Our
results show that the proposed approach outperforms similar methods in Euclidean space on
the DCASE 2022 Unsupervised Anomalous Sound Detection dataset.
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ABSTRACT

We introduce a framework to perform unsupervised anomalous
sound detection by leveraging embeddings learned in hyperbolic
space. Previously, hyperbolic spaces have demonstrated the abil-
ity to encode hierarchical relationships much more effectively than
Euclidean space when using those embeddings for classification. A
corollary of that property is that the distance of a given embedding
from the hyperbolic space origin encodes a notion of classification
certainty, naturally mapping inlier class samples to the space edges
and outliers near the origin. As such, we expect the hyperbolic em-
beddings generated by a deep neural network pre-trained to classify
short-time Fourier transform frames of normal machine sounds to
be more distinctive than Euclidean embeddings when attempting to
identify unseen anomalous data. In particular, we show here how to
perform unsupervised anomaly detection using embeddings from a
trained modified MobileFaceNet architecture with a hyperbolic em-
bedding layer, using the embeddings generated from a test sample
to generate an anomaly score. Our results show that the proposed
approach outperforms similar methods in Euclidean space on the
DCASE 2022 Unsupervised Anomalous Sound Detection dataset.

Index Terms— anomalous sound detection, hyperbolic space,
machine sound, surrogate task

1. INTRODUCTION

Automatically detecting faulty equipment, i.e., anomaly detection
[1], is an essential task in the modern industrial society. Perform-
ing such detection from sound, i.e., anomalous sound detection, is
especially appealing due to factors such as sensor cost and abil-
ity to measure signals without line of sight. Audio or not, practical
anomaly detection design is hampered by the difficulty of collecting
anomalous samples, which, beyond the cost of labeling, is further
affected by issues such as the rare occurrence of anomalies or the
cost associated with deliberately provoking them. As such, unsuper-
vised approaches are of particular interest in the field. Anomalous
sound detection branched out of general sound event detection be-
fore growing into its own field [2–4]. Since 2020, unsupervised de-
tection has even become a staple of the yearly Detection and Classi-
fication of Acoustic Scenes and Events (DCASE) Challenge [5–8].

One popular category of approaches is surrogate-task (ST)
methods [9], which have been fairly successful in the DCASE chal-
lenges, including as 2022 challenge baseline [7, 9–12]. It involves
the basic approach of identifying a surrogate classification task for
the normal data, followed by the training of a classifier on that data.
We then consider the distribution of learned embeddings (i.e., the
last hidden vector before the output logits in the classifier network)
as a representation of normal data. An anomaly detector is then built
on top of that learned distribution, using the relative position of an
unseen sample’s embedding with respect to the distribution to deter-
mine the likely condition, normal or anomalous. For example, the
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Figure 1: 2-D Poincaré ball. A hyperbolic hyperplaneHpk,ak is de-
fined by a point pk and a vector ak [13]. For a given point z, the dis-
tance to Hpk,ak corresponds to geodesic distance dD(z,Hpk,ak ).
Embeddings near the origin have low certainty, and embeddings
near the edges have high certainty [14].

distance of the embedding to its K-nearest neighbors in the trained
embedding distribution can be used as criterion, setting a distance
threshold above which a sample is deemed anomalous [9].

We propose to train and analyse embeddings as vectors in hy-
perbolic space [13] rather than the typical vectors in Euclidean
space. So-called hyperbolic neural networks have attracted interest
in multiple fields, e.g., natural language [13, 15], image [14, 16], or
graph modeling [17, 18]. The approach is practically appealing due
to the fact that its geometric properties make it suitable to naturally
encode the hierarchical aspects we expect to find in many audio
tasks and datasets. Much recent research has attempted to surface
and leverage such aspects [19–21], including through the use of hy-
perbolic neural networks [22–24]. A particularly appealing aspect
in the context of ST anomaly detection methods is the corollary be-
havior of embeddings in hyperbolic space shown in [14] such that,
as information gets organized hierarchically in space, the distance
of an embedding to the origin expresses something akin to a notion
of certainty regarding the characteristics of the input.

We then explore the benefits swapping in a hyperbolic space
for learning embeddings in an ST-based method inspired by [9],
showing it to be a simple and effective detection method.

2. HYPERBOLIC NEURAL NETWORKS

2.1. Hyperbolic spaces

Riemannian geometry generalizes Euclidean geometry, by which an
n-D Riemannian manifold is any pair of an n-D differentiable man-
ifold and a so-called metric tensor field. Following that theory, a Eu-
clidean manifold is simply a differentiable manifold whose metric
tensor field is the identity everywhere. On the other hand, a hyper-
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Table 1: MobileFaceNet architecture adapted from [9,26]. All con-
volutions are 2-D. dw-Conv refers to depth-wise convolution. For
each layer, we show the expansion factor t, number of channels c,
number of repeats n, and stride s. All convolutions excluding the
final linear layers use PReLU as the non-linearity.

Input Operator t c n s

1×32×1025 Conv 3×3 - 64 1 2
64×16×513 dw-Conv 3×3 - 64 1 1
64×16×513 Bottleneck 2 64 5 2
64×8×257 Bottleneck 4 128 1 2
128×4×129 Bottleneck 2 128 6 2
128×2×65 Bottleneck 4 128 1 2
128×1×33 Bottleneck 2 128 2 1
128×1×33 Conv 1×1 - 512 1 1
512×1×33 Linear GDC 1×33 - 512 1 1
512×1×1 Linear Conv 1×1 - L 1 1

bolic manifold is any Riemannian manifold with negative constant
sectional curvature. Interestingly, even though hyperbolic spaces
are not vector spaces in the traditional sense, recent literature has
shown the ability to find equivalents in hyperbolic space to many
typical vector operations found in deep learning [13, 14, 25].

Due to the impossibility of embedding isometrically a hyper-
bolic space into Euclidean space, we must in practice use models
of hyperbolic geometry in which a subset of Euclidean space is en-
dowed with a hyperbolic metric. One popular practical model is the
n-D Poincaré ball with negative unit curvature, defined as the mani-
fold inside the n-D unit ball Dn={x∈Rn, ∥x∥<1} endowed with
the metric tensor field 2

1−∥x∥2 I
n with In the identity. Fig. 1 shows

the 2-D Poincaré ball. In this model, we know that the geodesic
(i.e., shortest-path) distance between 2 points x and y is [13]

dD(x,y) = cosh−1

(
1 + 2

∥x− y∥2

(1− ∥x∥2)(1− ∥y∥2)

)
. (1)

One can then define a mapping, the “exponential map,” from Eu-
clidean space Rn to Poincaré ball space Dn by associating a vector
u∈Rn to vector v∈Dn reached from 0∈Dn in unit time following
the geodesic with initial tangent vector u. The inverse mapping is
the “logarithmic map.” These mappings can be written [13]

expD(u)=tanh∥u∥· u

∥u∥ and logD(v)=tanh−1∥v∥· v

∥v∥ . (2)

2.2. Hyperbolic embeddings

A typical practice in deep learning is to designate the hidden vectors
generated by some intermediate hidden layer, often the deepest, as
embeddings. Embeddings obtained from trained classification neu-
ral networks have often been found to be useful representations of
the input data, with the hope that their distribution will encode high-
level characteristics of the data as the classification accuracy im-
proves. Then, they have often been leveraged for downstream tasks
different from the original classification task. In that spirit, various
losses can be found in the literature to promote particular geometric
characteristics in the distribution of those embeddings in Euclidean
space (e.g., CosFace [27], SphereFace [28], ArcFace [29]).

Hyperbolic spaces possess geometric properties that make them
specifically appealing in that context. For example, their volume
grows exponentially as we get further from the origin, unlike in
Euclidean space where volume grows polynomially. It is then pos-
sible to embed tree structures in a hyperbolic space with arbitrary

ST
FT

fr
am

es

C
la

ss
ifi

er
D

N
N

E
m

be
dd

in
gs

(E
uc

lid
ea

n)

M
ap

pi
ng

M
ap

pe
d

em
be

dd
in

gs

L
og

it
la

ye
r

L
og

its L

G
T

cl
as

s

Anomaly
score

FC classifier block

Figure 2: System diagram

low distortion [25]. Shallower tree nodes are then positioned closer
to the origin, and deeper nodes farther. Equivalently, the geodesic
distance between two points behaves similarly as the path length be-
tween two nodes in a tree. As such, hierarchical characteristics can
be expected to be effectively encoded in that space. Concurrently,
we generally expect high-level aspects of many typical datasets to
exhibit natural hierarchies. Hence, prior research has found bene-
fit in many applications in mapping the embeddings generated by
a deep neural network to a hyperbolic space before performing the
geometric equivalent of a multinomial regression in that space [25]
using hyperplanes like the one in Fig. 1. Prior research [14] has also
shown empirical evidence that using hyperbolic embeddings in a
classifier results (after training) in a geometrical distribution of em-
beddings where the geodesic distance to the origin correlates well
with a straightforward definition of certainty as a function of the
predicted class probabilities. Note that since all vectors in the net-
work except for these mapped embeddings are in Euclidean space,
this type of approach is typically labelled as hybrid [15].

3. ANOMALY DETECTION

3.1. Data

We use the DCASE 2022 Task 2 challenge dataset [7]. We empha-
size that our focus here is not on competing with the top ranked
systems in the challenge, but rather on evaluating hyperbolic em-
beddings in a controlled setting. The data consists of normal and
anomalous sounds recorded from 7 machine types with mixed en-
vironmental noise background. All recordings are single-channel,
10 s-long, and sampled at 16 kHz. For each machine type, we
get 6 distinct “sections” corresponding to different machines of
that type. Within each section, we are further given 2 distinct do-
mains, “source” and “target,” representing domain shifts such as
differences in machine conditions. For training, we get the train-
ing data of the development subset and the additional training sub-
set, i.e., normal-only data from all 6 sections, with 990 (resp. 10)
normal samples from the source (resp. target) domain per section.
For validation, we get the test data of the development subset, i.e.,
50 samples of each 4 condition pairs in {normal, anomalous} ×
{source, target} per section for 3 of the sections. For evaluation, we
are provided with the evaluation subset, i.e., 200 samples with the
same condition proportions per section for the 3 remaining sections.

We process each file using an STFT with a 2048-sample Hann
window and a 256-sample hop size, resulting in 313 frames from
which we take the magnitude. For each epoch, we train the net-
work with one block of 32 consecutive STFT frames from each file,
i.e., 6000 blocks of size 32×1025, selected randomly for each file.
We further group those blocks in batches of size 32. At testing, we
break the magnitude STFT of a given file in overlapping blocks of
32 frames with a hop size of 1 frame. We then gather the embed-
dings and logits for all these blocks and compute the chosen scoring
function to obtain the anomaly score for that file (see Sec. 3.4).
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Table 2: Results on the DCASE 2022 Task 2 validation dataset. Each machine type columns shows the corresponding Sm for all 7 machine
types. Hyperbolic systems are underlined. For each value of L, bold means best and italic means 2nd best system. w comes from Eq. (6).

L System Score ToyCar ToyTrain Bearing Fan Gearbox Slider Valve AUC (S) AUC (T) pAUC Overall

2

Hyperbolic A 60.1 57.0 61.9 71.2 70.2 81.6 80.2 68.9 71.1 63.6 67.7
Hyperbolic* A∗ 48.2 55.1 57.7 66.3 61.4 79.3 83.4 62.7 63.8 60.7 62.4
Ensemble Aens 60.1 57.0 61.9 71.4 70.4 83.0 83.5 69.0 71.9 64.3 68.2

(weights w) — (0.0) (0.0) (0.0) (0.4) (0.4) (0.1) (0.9) — — — —
Euclidean A 59.2 50.6 64.4 65.8 72.6 77.4 75.7 66.0 69.2 61.1 65.2
ArcFace A 58.9 57.9 61.4 60.6 62.9 78.0 78.7 68.9 63.0 62.1 64.5

128
Hyperbolic A 60.8 54.6 68.8 67.3 75.2 82.1 83.4 72.2 69.7 65.1 68.9
Euclidean A 58.6 54.4 73.0 63.2 71.8 83.3 80.1 70.4 69.4 63.7 67.7
ArcFace A 56.2 56.3 73.5 69.8 69.6 82.6 84.2 70.9 71.1 64.6 68.7

Table 3: Results on the DCASE 2022 Task 2 evaluation dataset. We
are unable to give full results for the DCASE baseline in [7], as the
necessary AUC(T )

s,m, AUC(S)
s,m, and pAUCs,m are not available.

L System AUC (S) AUC (T) pAUC Overall

1280 DCASE ST [8] 59.1 47.5 53.6 53.0
— DCASE AE [8] 64.5 45.2 52.9 53.1

2

Hyperbolic 66.8 58.8 58.0 60.9
Hyperbolic* 61.3 56.0 58.6 58.6
Ensemble 66.3 61.5 58.7 62.0
Euclidean 62.9 59.9 57.6 60.0
ArcFace 59.7 52.5 55.3 55.7

128
Hyperbolic 66.0 54.1 57.9 58.9
Euclidean 65.6 60.2 59.8 61.7
ArcFace 65.6 58.1 59.3 60.8

3.2. Models

Inspired by [9], the classifier backbone is an adapted version of the
MobileFaceNet architecture1 [26] described in Tab. 1. The main
needed modification is in the global depthwise convolution (Linear
GDC) layer where we use 1× 33 kernels instead of 7× 7 ones.
MobileFaceNet is a lightweight version of MobileNetV2 [30], the
architecture used in the ST-based DCASE 2022 baseline [7]. The
salient feature of these networks are their bottleneck operators.

As seen in Fig. 2, the classifier backbone outputs embeddings
readily interpretable as vectors in L-D Euclidean space. These are
then passed to a fully-connected (FC) classifier block that outputs
class logits. It is inside that block that we leverage hyperbolic space,
mapping first the embeddings onto the Poincaré ball with expD and
then using a hyperbolic multinomial regression layer2 [14].

As baselines, we train a system matching a regular multinomial
regression classifier (“Euclidean”). It uses an identity mapping and
its logit layer is a fully-connected layer with 6 output channels for
the 6 sections per machine type. We also train a system using the
popular ArcFace classifier block [29] (“ArcFace”) for completeness.
It also uses an identity mapping and its logit layer differs between
training and testing in order to incentivize the emergence of preset
margins in the (Euclidean) embedding space at training. For all
systems, we train a version for L=2 and L=128.

3.3. Training

For both the proposed system and baselines, we train one classifier
per machine type, each learning to recognize the section to which a

1github.com/Xiaoccer/MobileFaceNet Pytorch
2github.com/leymir/hyperbolic-image-embeddings

given block of magnitude STFT frames belongs. We apply a cross-
entropy loss to the output logits. Formally, for the ith input magni-
tude STFT block X(i)∈R32×1025

+ generating an output logit vector
y(i)∈R6 whose ground truth class/section is ki, the loss is

L(y(i)) = log
exp y

(i)
ki∑6

k=1 exp y
(i)
k

. (3)

For our hyperbolic model, we use the Riemannian Adam op-
timizer3 [31]. For the baselines, we use the PyTorch 1.10 Adam
optimizer. The learning rate is 10−4, other parameters are set to de-
fault. We train for 1000 epochs with checkpoints every 25 epochs.

3.4. Score and metrics

At test time, we use the trained network to output an anomaly score
for an unseen audio file x. We test the score from the ST-based
baseline from the DCASE 2022 Task 2 challenge [7]. In that for-
mulation, the score of a given file is based on the negative logit
corresponding to the ground-truth section of that file. In the case
where a given file is split in multiple segments, the score of the file
becomes the segment-average of the score. In other words, if we
denote ψs(xk) the predicted probability that the kth segment of file
x, of ground-truth section t, belongs to section s, the score A is
written as

A(x) =
1

K

K∑
k=1

log

(
1− ψt(xk)

ψt(xk)

)
. (4)

For hyperbolic embeddings, we also experiment with using the
negative segment-average geodesic distance to the origin in the
Poincaré ball as anomaly score, inspired by the results in [14] on
correlating that distance with an idea of classifier uncertainty. In
other words, the score A∗ is written as:

A∗(x) = − 1

K

K∑
k=1

dD(0,xk). (5)

Finally, we test ensembling the 2 scores. Since the range of
A is (−∞,∞) and that of A∗ is (−∞, 0], we map to [0, 1] using
sigmoid and 1 + tanh, respectively. Then, using a weight w tuned
at validation, the score Aens is written as:

Aens(x) = (1−w)×sigmoid(A(x))+w×(1+tanh(A∗(x))). (6)

For each model, we measure for each section s of each ma-
chine type m the three area-under-the-ROC-curve (AUC) metrics

3github.com/geoopt/geoopt
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Figure 3: Distribution of the block-level embeddings of the fan val-
idation set files in the 2-D Poincaré ball D2 for the best 2-D hyper-
bolic model. Each section corresponds to a different color.

prescribed for the DCASE 2022 Task 2 challenge [7]: (a) the AUC
metric AUC(S)

s,m for the source-domain data, (b) the AUC met-
ric AUC(T )

s,m for the target-domain data, and (c) the pAUC metric
pAUCs,m, i.e., the AUC calculated over a low false-positive-rate
range of [0, 0.1] for the whole data, which is meant to measure the
ability of the system to limit false alarms and be more trustworthy.
From those, we compile aggregate metrics Sm for each machine
type m, aggregates S(S)

AUC and S(T )
AUC for (resp.) source and target

files (also referred to as “AUC (S)” and “AUC (T)”), an aggregate
SpAUC (also referred to as “pAUC”), and an aggregate overall metric
Sovl (also referred to as “Overall”), defined as

Sm = Hs

{
AUC(S)

s,m,AUC(T )
s,m, pAUCs,m, ∀s of m only

}
(7)

S(S)
AUC = Hs,m

{
AUC(S)

s,m, ∀s of all m
}

(8)

S(T )
AUC = Hs,m

{
AUC(T )

s,m, ∀s of all m
}

(9)

SpAUC = Hs,m

{
pAUCs,m, ∀s of all m

}
(10)

Sovl = Hs,m

{
AUC(S)

s,m,AUC(T )
s,m, pAUCs,m, ∀s of all m

}
(11)

where H is the harmonic mean over the listed indices. Note that the
DCASE 2022 official ranking corresponds to Sovl

4 [7].

4. RESULTS

Tabs 2–3 report the various metrics for our approach and the base-
lines. For each machine typem and each row, we report the metrics
for the checkpoint (and the weight w for Aens) which performs the
highest in terms of Sm metric on the validation set. For weight w,
we try values among {0.0, 0.1, . . . , 0.9, 1.0}. We also report pub-
lished evaluation results for the DCASE 2022 ST and DCASE 2022
AE baselines [8]. We note that DCASE 2022 ST system is similar
to “Euclidean,” except that it uses a MobileNetV2 [30] backbone
and 64×128 blocks of mel-spectrogram frames as input. We do not

4github.com/Kota-Dohi/dcase2022 evaluator
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Figure 4: Distribution of the block-level embeddings of the slider
validation set files.

report results for L= 128 using A∗ and Aens. Indeed, we find the
former to be systematically much worse than using A, so that the
latter performs at best identically to using A alone.

In Tab. 2, the hyperbolic-based systems are the best in aggre-
gate for the 2-D systems (Aens is best, A is 2nd best). Both estab-
lish competitive per-machine validation metrics. This supports the
idea that hyperbolic representations are beneficial, both in terms of
class organization (using A) and uncertainty encoding (using Aens),
though uncertainty alone is insufficient (using A∗). These relative
strengths appear to carry over well to evaluation based on Tab. 3.
Using Aens in 2-D results ultimately results in the best evaluation
Sovl across all conditions. For 128-D systems, the hyperbolic-based
system also performs well at validation. The margin is however
smaller compared to Euclidean-based systems and it generalizes
less well at evaluation. Additionally, we see that the hyperbolic-
based systems generalizes better at evaluation on the source domain
(S(S)

AUC) but experiences a larger drop on the target domain (S(T )
AUC).

We leave further studying of domain generalization to future work.
Further intuition can be gained from observing the distributions

of block-level embeddings in Figs. 3–4 for the best 2-D hyperbolic-
based system using Aens (see Tab. 2). We see how normal source-
domain (and, to a lesser extent, target-domain) embeddings cluster
much more around the edges of D2. Meanwhile, anomalous embed-
dings show a broader footprint, with many more located near the
origin. This seems consistent with the aforementioned relationship
of distance from the origin as an indicator of classification certainty.

5. CONCLUSION

We explored the use of hyperbolic embeddings for unsupervised
anomalous sound detection, which performed favorably compared
to Euclidean and ArcFace embeddings. The improvements were
most pronounced for small embedding dimensions, which is par-
ticularly important for industrial applications when computing re-
sources are limited. In the future, we plan to further explore meth-
ods leveraging hyperbolic embeddings. In particular, we plan to
investigate how to effectively integrate hyperbolic embeddings into
autoencoder-based anomalous sound detection systems.
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