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Abstract
This paper presents a model predictive control (MPC)-based algorithm for guiding/routing
pedestrians to bal- ance congestion levels in crowded places such as train stations. The
proposed algorithm uses arrow displays at junctions, whose guidance direction and display
intensity are computed using MPC by leveraging pedestrian flow predictions. The MPC uses
a congestion prediction model relating the display action to the percentage of pedestrians that
are expected to change their intended walking direction, i.e., the percentage of pedestrians
that are being re-routed. Simulation results show that the congestion imbalance can be
reduced significantly using the proposed algorithm.
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MPC-based Pedestrian Routing for Congestion Balancing

Marcel Menner, Stefano Di Cairano, Masaki Hamada, and Kota Gushima

Abstract— This paper presents a model predictive control
(MPC)-based algorithm for guiding/routing pedestrians to bal-
ance congestion levels in crowded places such as train stations.
The proposed algorithm uses arrow displays at junctions, whose
guidance direction and display intensity are computed using
MPC by leveraging pedestrian flow predictions. The MPC uses
a congestion prediction model relating the display action to
the percentage of pedestrians that are expected to change their
intended walking direction, i.e., the percentage of pedestrians
that are being re-routed. Simulation results show that the
congestion imbalance can be reduced significantly using the
proposed algorithm.

I. INTRODUCTION

Crowd management is an important aspect of ensuring
safety in large gatherings and crowded places such as train
stations. Further, balanced congestion levels across different
walkways can increase the average pedestrian walking speed
and keeps traffic flowing efficiently. Balancing congestion
levels in train stations is particularly important as an im-
balance in congestion levels at the platform can reduce
people throughput, because of varying boarding times at
different parts of the train and also translate in imbalance
in the train cars’ load. Conventionally, pedestrians traversing
a train station are not aware of congestion levels in different
areas of the train station or at the different segments of
a platform. Thus, guiding pedestrians toward less crowded
parts of the platform and/or less crowded walkways can
increase boarding efficiency and people throughput.

This paper presents a technology that uses an arrow
display at a junction to guide pedestrians toward less crowded
areas. The arrow display comprises of a guidance direction
and an intensity level of the signal, where the latter relates
to how prominent the arrow is displayed. We compute such
parameters of the display using model predictive control
(MPC). The MPC uses pedestrian flow predictions and to
balance congestion levels in public infrastructure such as
train stations. Fig. 1 illustrates a scenario at a train station,
whose platform can be reached through two escalators. Here,
we utilize the proposed algorithm to display an arrow in the
direction of either of the two escalators to balance congestion
at the platform. The MPC uses a congestion prediction
model, whose states relate to the number of pedestrians in
different segments around the junction and whose input is
the arrow display. The congestion prediction model relates
the arrow display to the percentage of pedestrians that are
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Fig. 1. Congestion balancing at train station. The predictive control
technology guides pedestrians by means of an arrow display.

expected to change their intended walking direction upon
seeing the arrow. Such parameters can be obtained by human
factors experiments. The MPC formulation yields a mixed-
integer quadratic program, which we solve with a com-
putationally efficient relaxation. Further, this paper uses a
quadratic convex optimization problem to estimate pedestrian
flows from current and predicted congestion levels, which the
MPC in turn uses for computing the arrow display. Finally,
simulation results show that the proposed algorithm can
significantly reduce congestion imbalance across different
walkways and across different parts of a platform.

Related work

Related research areas in the literature are crowd manage-
ment, mainly for safety and disaster prevention, see e.g., [1]–
[16], and for vehicle traffic control, see e.g., [17]–[22].

Pedestrian Flow: Crowd control methods vary by their
intended use and modeling techniques. In the following, we
review some commonly investigated use-cases and models.
In [1], a point-queue model within MPC is used for optimal
pedestrian evacuation. In this point-queue model, pedes-
trian either traverse with free-flow velocity or queue with
zero velocity. A comparative study of control strategies for
emergency situations analyzing evacuation time is presented
in [2]. In [3], the occupancies of the road network is
balanced to reduce the risk of spillover of crowds in the
roads. Further, [4] studies crowd control measures related to
stampedes during large gatherings, and [5] presents a model
for pedestrian flow using non-classical shocks. The works
in [6]–[8] model movements using statistical moments, e.g.,
using leader-follower dynamics [6]. Leader-follower dynam-
ics are also used within an MPC for crowd evacuation in [9].
The work in [10] studies self-ordered motion in systems of
autonomous agents without a central planner. In [13], an
evaluation index for safety of pedestrian is proposed, which
considers congestion levels, [14] proposes a congestion evac-
uation model that includes panic behavior in a multi-agent
framework, and [15] studies pedestrian evacuation guidance.



Vehicle Flow: Both traffic signals and connected vehicles
are used to regulate traffic flow, including mixed-traffic.
In [17], autonomous vehicles are utilized to stabilize human-
driven vehicles. Further, [18] studies smooth traffic flows
at signaled intersections by decision tree policies based on
imitating experts, and [19] uses reinforcement learning to
minimize fuel consumption at intersections. In [20], a cen-
tralized route manager for autonomous vehicles is proposed
for balancing traffic flows. In [21], a multi-agent control
framework is proposed that decomposes a centralized MPC
problem into a network of sub-problems, and [22] considers
the control of automated vehicles by a central coordinator in
mixed traffic with non-controlled vehicles.

II. CONGESTION AND PEDESTRIAN GUIDANCE MODEL

The following assumptions are made to derive a mathe-
matical model for predicting congestion levels. First, upon
seeing an arrow with maximum intensity, the percentage r
[%] of pedestrians change their intended walking direction
and choose the signaling segment. Next, upon seeing an
arrow with reduced intensity s ∈ [0, 100%], the reduced
percentage of pedestrians r ·ρ(s) [%] are re-routed. Here, ρ :
[0, 100%] → [0, 100%] with ρ(0)=0 and ρ(100%)=100%,
and ∂ρ(s)

∂s > 0∀s, i.e., monotonically increasing. Assuming ρ
to be monotonically increasing is sensible as it implies that
an arrow with higher intensity re-routes more pedestrians.

The following quantities are assumed to be available:
• The congestion levels at the current time, t,
• congestion predictions at a future time, t+N , with no

display action,
• the invertible mapping of re-routed pedestrians to arrow

intensity, r·ρ(s).
This paper uses r ·ρ(s) = r ·s, i.e., the number of pedestrians
being re-routed scales linearly with the intensity of the arrow.
However, as ρ is invertible (due to monotonicity), a nonlinear
ρ does not add complexity to the proposed algorithm. In
practice, the map r ·ρ(s) is not known exactly. Section V
shows that the algorithm is robust to such an uncertainty.

A. Uncontrolled Congestion Model (Without Arrow Display)

Let xpre
t ∈ Rnpre be the number of pedestrians/the

congestion level in the npre areas leading to the intersection
at time t. Let xpost

t ∈ Rnpost be the congestion level in
the npost areas after the intersection. Further, let xpre,i

t ∈ R
and xpost,i

t ∈ R be the pedestrians in the respective i-th
segment. We refer to the segments leading to the intersection
as pre-segments and the segments after the intersection as
post-segments. The time evolution of the congestion levels
without guiding arrows are due to the pedestrians flows into
and out of the segments,[

xpre
t+1

xpost
t+1

]
=

[
xpre
t

xpost
t

]
+

[
∆xpre

in,t

∆xpost
in,t

]
−
[
∆xpre

out,t

∆xpost
out,t

]
, (1)

where ∆xpre
in,t, ∆xpost

in,t , ∆xpre
out,t, and ∆xpost

out,t denote the
pedestrian flows at time t into the pre-segments, into the
post-segments, out of the pre-segments, and out of the post-
segments, respectively, see Fig. 2 for an illustration. The

Fig. 2. Intersection scenario with three guidance directions, npost = 3.
The figure illustrates congestion levels, xt, as well as pedestrian flows, ∆xt.

pedestrians entering the post-segments, ∆xpost
in,t , are the ones

that see the arrow display and that may be re-routed.

B. Controlled Congestion Model (With Arrow Display)

For controlling congestion levels, we model the arrow
display as input ut ∈ Rnpost , where ut can have only one
nonzero element, e.g., ut = [0, 0, 0.60]T for npost = 3
indicating an arrow of intensity 60% in the third segment.
Hence compared to the congestion model in (1), the changes
in the people flow controlled by means of an arrow are

∆xcl
in,t = r

[
0

B̄(∆xpost
in,t )

]
ut, (2)

where B̄(∆xpost
in,t ) ∈ Rnpost×npost is the re-routing matrix,

whose element in the jth row and kth column is[
B̄(∆xpost

in,t )
]
jk
=

{
−∆xpost,j

in,t +
∑npost

i=1 ∆xpost,i
in,t if j = k

−∆xpost,j
in,t else.

For instance, for npost=3, there are three signaling direction,

B̄(∆xpost
in,t ) =

∆x2 +∆x3 −∆x1 −∆x1

−∆x2 ∆x1 +∆x3 −∆x2

−∆x3 −∆x3 ∆x1 +∆x2


where ∆xi = ∆xpost,i

in,t , for shortness of the notation. The
columns of B(∆xpost

in,t ) sum up to zero, which is due to
pedestrian balance, e.g., when displaying an arrow in the
direction of Segment 1, the percentage of pedestrians re-
routed to Segment 1 is taken away from Segments 2 and 3.

Hence, the controlled congestion model is[
xpre
t+1

xpost
t+1

]
=

[
xpre
t

xpost
t

]
+

[
∆xpre

in,t

∆xpost
in,t

]
−
[
∆xpre

out,t

∆xpost
out,t

]
+ r

[
0
B̄t

]
ut

with B̄t := B̄(∆xpost
in,t ). To ease of notation, in the following

we summarize the controlled congestion model as

xt+1 = xt +∆xin,t −∆xout,t + rBtut. (3)



III. MPC FOR COMPUTING ARROW DISPLAY

A. Prediction model for MPC
The pedestrians that have been re-routed at time t will

eventually leave the post-segments, i.e., the pedestrians con-
tribute to the congestion levels only for a period of time.
Let τt be the time that pedestrians stay in the post-segments.
For a scenario in which the post-segments do not lead to
a train platform, this time relates to the traversal time of
the post-segment. In particular, the pedestrians entering post-
segment i with length l at time t leave post-segment i at
time t+τt with τt = l/vped, on average. Different lengths of
the post-segments, li, are straightforward to consider, which
we omit for ease of notation. For a scenario in which the
post-segments lead to a platform, τt relates to the time at
which a train departs and to the time it takes to reach the
platform. The difference between the two scenarios is that
for the latter, pedestrians can only leave the post-segments
whenever a train departs. In particular, the pedestrians en-
tering post-segment i with length l at time t leave post-
segment i at time t+τt, where τt is the time of boarding the
train. Note that τt ≥ l/vped, because the pedestrians need
to traverse the post-segment in order to reach the platform
before boarding a train. Using the average walking speed of
pedestrians is suitable here as the main scope of this paper
is balancing congestion at a macroscopic level. Hence, the
MPC’s congestion prediction model starting at time t=0 is

x1 = x0 +∆xin,0 −∆xout,0 + rB0u0 (4a)

x2 = x0 +

1∑
k=0

(∆xin,k −∆xout,k) +

1∑
k=0

rBkuk (4b)

...

xN+1 = x0 +

N∑
k=0

(∆xin,k −∆xout,k) +

N∑
k=t−τN

rBkuk (4c)

where τt is the time that the re-routed pedestrians stay in the
post-segments.

B. Mixed-Integer and Input Constraints
The formulation in (3) is purposefully chosen to yield

a linear and time-varying formulation, for a given control
input, ut. The displaying in one single direction imposes the
constraint that only one element of ut can be nonzero, which
can be formulated as complementarity constraint ui

tu
j
t = 0

for all i ̸= j or using auxiliary variables, δit, with

0 ≤ ui
t ≤ 0 + δit, δit ∈ {0, 1},

∑npost

i=1 δit = 1. (5)

Finally, for many applications, it makes sense to have the
algorithm not shift the arrow display too often. If the arrow
display is to be kept constant for a time Tshift, then

ut = ut+1 = . . . = ut+Tshift−1 (6a)
ut+Tshift

= ut+Tshift+1 = . . . = ut+2Tshift−1 (6b)
...

ut+nshiftTshift
= ut+nshiftTshift+1 = . . . = ut+N (6c)

with nshift being the last shift in the MPC horizon.

C. MPC Formulations
Using the pedestrian congestion model (4), the mixed-

integer constraint (5), the constraint for switching the display
at certain times (6), and congestion target values xi

ref , the
optimal control problem is

min
ut,δt

N∑
t=0

npost∑
i=1

(
xpost,i
t − xi

ref

)2

(7a)

s.t. (4), (6), x0 = x(t) (7b)
(5) ∀ t. (7c)

For applications with a long MPC prediction horizon, the
MPC in (7) may become too computationally demanding.
However, a useful alternative solution is to enforce the mixed
integer constraint (7c) only for the first time step and use
0 ≤

∑npost

i=1 ui
t ≤ 1. Hence, the relaxed MPC is

min
ut,δ0

N∑
t=0

npost∑
i=1

(
xpost,i
t − xi

ref

)2

(8a)

s.t. (4), (6), x0 = x(t) (8b)
(5) t = 0 (8c)
0 ≤

∑npost

i=1 ui
t ≤ 1 ∀ t. (8d)

The rationale for the relaxed problem (8) is exact for the
near future and approximates the constraint along the rest of
the prediction horizon. Eq. (8) can be optimized by solving
npost convex quadratic programs (one per post-segment) and
choosing the solution with the smallest cost.

IV. PREDICTING PEDESTRIAN FLOWS

This paper considers a scenario in which only the current
congestion at time t and the predicted congestion at t+N
are known. This section introduces a convex optimization
problem to estimate the pedestrian flows, ∆x, which the
MPC uses as congestion prediction model (4). We separate
the arrow display computation for given pedestrian flows
and the pedestrian flow estimation for given congestion
predictions, because it is computationally more efficient. This
way, the MPC uses a linear time-varying prediction model
and only a few integer variables, and the pedestrian flow
estimation introduced in the following is convex.

A. Constraints and Cost for Predicting Pedestrian Flows
1) Constraint for relating congestion levels with pedes-

trian flow for each individual segments: This relates the
changing congestion levels to the pedestrian inflow and
outflow as in (1).

2) Constraint for balancing pedestrian flow across in-
tersection: This accounts for the number of pedestrians
passing the intersection, regardless of their decision of which
segment to use,∑npre

i=1 ∆xpre,i
out,t =

∑npost

i=1 ∆xpost,i
in,t . (9)

3) Constraint for unidirectional flow: This enforces the
pedestrian flows to be positive, as illustrated in Fig. 2,

∆xpre,i
in ≥ 0, ∆xpre,i

out ≥ 0 ∀ i = 1, ..., npre (10a)

∆xpost,i
in ≥ 0, ∆xpost,i

out ≥ 0 ∀ i = 1, ..., npost (10b)



4) Constraint for train departure: For a scenario with
platform, the pedestrians can only leave the post-segments
at the times that a train departs,

∆xpost
out,t = 0 ∀t ̸∈ Tschedule, (11)

where Tschedule is a set that includes all train departure times
within the prediction horizon, N .

5) Cost for average pedestrian walking speed: This is
related to how quickly pedestrians leave a segment after
having entered the same segment, i.e., pedestrians entering
pre-segment i at time t, leave the segment at time t+τprei

and pedestrians entering post-segment i at time t, leave the
segment at time t+τposti ,

cprev =
∑npre

i=1

∑N
t=τpre

i

(
∆xpre,i

in,t−τpre
i

−∆xpre,i
out,t

)2
cpostv =

∑npost

i=1

∑N
t=τpost

i

(
∆xpost,i

in,t−τpost
i

−∆xpost,i
out,t

)2
,

where cpostv is only relevant for a scenario with continuous
pedestrian outflow of the post-segments.

6) Cost for pedestrian accumulation on segments: This
cost relates the pedestrian flows to the congestion levels, i.e.,
the congestion level of a segment is a result of pedestrian
inflows over a period of time related to the average walking
speed, the segment’s length, and the train schedule (if used
at train stations). For the pre-segments,

cprea =
∑npre

i=1

∑N
t=τpre

i

(
xpre,i
t −

∑t
k=t−τpre

i
∆xpre,i

in,k

)2

.

For a scenario with continuous outflow,

cposta =
∑npost

i=1

∑N
t=τpost

i

(
xpost,i
t −

∑t
k=t−τpost

i
∆xpost,i

in,k

)2
.

For a scenario leading to a platform in a train station,

cposttrain =
∑npost

i=1

∑N
t=1

(
xpost,i
t −

(
xpost,i
τt +

∑t
k=τt

∆xpost,i
in,k

))2
where τt ≥ 0 is the time of departure of the train prior to
time t. For example, let there be one train at t = 5. Then,
τ0=τ1= . . .=τ4=0 and τ5= . . . = τN =5.

B. Optimization for Estimating Pedestrian Flows

Here, we combine all elements introduced in Section IV-
A to state the convex optimization problems for the two
scenarios. For a scenario with continuous outflow,

min
∆x,x

cprev + cpostv + cprea + cposta (12a)

s.t. (1), (9), (10) (12b)
x0 = x(t) current congestion (12c)
xN = x(t+N) predicted congestion. (12d)

For the scenario at a train station,

min
∆x,x

cprev + cprea + cposttrain (13a)

s.t. (1), (9), (10) (13b)
(11) if train schedule available (13c)
x0 = x(t) current congestion (13d)
xN = x(t+N) predicted congestion. (13e)

V. SIMULATION RESULTS

A. Simulation Setup

We consider a scenario with one pre-segment, npre = 1,
and three post-segment, npost = 3, with lengths l = 200m.
We assume an average pedestrian walking speed of vped =
1m/s, i.e., pedestrians need l/vped=200s to traverse the post-
segments. We use a sampling time step of Ts=0.5min and an
MPC horizon of 10min, i.e., N=20. We enforce the arrow-
shifting constraint in (6) to allow changes every 2min. We
assume r=0.5, i.e., 50% of pedestrians change their walking
direction after seeing an arrow with maximum intensity. We
use the relaxed MPC in (8) due to its ease of implementation.
Using the non-relaxed MPC in (7) may increase accuracy
further. We compute the congestion imbalance at time t as
1
3 (|x

post,1
t −xpost,2

t |+ |xpost,1
t −xpost,3

t |+ |xpost,2
t −xpost,3

t |).
We present Monte Carlo simulation trials of a scenario

lasting 140min. For each trial, the pedestrian flows are
sampled from two sets of uniform distributions. First, we
sample values from the uniform distribution U(5, 20), where
each value correspond to a mean pedestrian flow in each
post-segment for a 30min window. Second, we sample
values from the uniform distribution U(−1, 1) at each time
representing noise. Hence, ∆xpost,i

in = x̃mean + x̃noise with
x̃mean ∼ U(5, 20) and x̃noise ∼ U(−1, 1) for all post-
segments i. The flows in the pre-segments and outflows out
of the post-segments are chosen to match the constraints
in Section IV. The constant mean pedestrian flow for a
30min period is not necessary, but chosen to facilitate easy
explanation and interpretation of the figures in this section.
We study three scenarios, which are laid out in the following.

1) No train platform: In the first scenario, the post-
segments do not lead up to a train platform. Hence, the
pedestrians do not leave the post-segments at any time.

2) Train platform but unknown train schedule: In the
second scenario, the post-segments lead to a train platform.
A train departs every 10min. However, here we consider that
the train schedule is not known. We study this scenario as it
illustrates how the algorithm can cope with uncertainty in the
train schedule. We implement a constraint that no pedestrians
can leave the post-segments within the MPC horizon. Hence,
a train leaving the station is treated as a disturbance.

3) Train platform and known train schedule: In the third
scenario, the post-segments lead to a train platform, and
where the train schedule is given. Hence, the algorithm
leverages the information about the times when pedestrians
can leave the post-segments on a train. Here, too, trains
depart in 10min intervals.

B. Illustration and Interpretation of Results

Fig. 3 illustrates one simulation trial. It shows both
congestion levels that would have resulted had no arrow
display been shown and congestion levels where pedestrians
are guided. Fig. 3 illustrates Scenario 1 in Section V-A.1
with continuous pedestrian outflow, i.e., no platform. Fig. 3
presents a simulation trial in which pedestrians favor the
blue post-segment, see top plot. Consequently, the algorithm
displays an arrow to guide the pedestrians away from the blue



Fig. 3. Congestion imbalance of three post-segments without and with
arrow display. Top: Congestion imbalance without display. Second from
top: Congestion imbalance with display. Third from top: Arrow display
computed with presented technology. Bottom: Congestion imbalance. The
plots illustrate the benefits of using an arrow display computed by model
predictive control to balance congestion.

post-segment into the orange and green post-segments. The
MPC alternates between the two less traveled post-segments
as the MPC cannot show an arrow in two directions. The
predictive nature of the proposed algorithm can be seen best
in the third plot in Fig. 3 during the interval 20–30min. Here,
the arrow display stops signaling into the green post-segment
anticipating that more pedestrians will be traversing the green
post-segment during the interval 30–60min. The qualitative
results after guidance in the second plot from the top show
that congestion levels are significantly closer, which can also
be seen in the congestion imbalance plot. In this trial, the
congestion imbalance has been reduced by 56% on average.

Fig. 4 illustrates Scenario 3 in Section V-A.3 with a train
platform. Scenario 2 in Section V-A.2 is not illustrated as it
yields similar graphs to Fig. 4. The train departures can be
identified by sudden drops in pedestrians on the platform. In
the illustrated scenario, the orange post-segment is traversed
less frequently during the intervals 0–30min and 90–120min
in the top plot. Hence, the MPC displays an arrow with
appropriate intensity to balance congestion, see the same
intervals in the third plot. Consequently, pedestrians are re-
routed into the orange post-segment reducing the congestion

Fig. 4. Congestion imbalance of three post-segments at train station without
and with arrow display. Top: Congestion imbalance without arrow. Second
from top: Congestion imbalance with arrow. Third from top: Arrow display
computed with presented technology. Bottom: Congestion imbalance.

imbalance significantly. The reduced congestion imbalance
is illustrated in the bottom plot. The congestion imbalance
reduction in the simulation trial displayed in Fig. 4 is 76%.

C. Statistical Evaluation

Fig. 5 shows statistics of 500 Monte Carlo trials of the
setup in Section V-A. For Scenario 1 with continuous people
outflow, congestion imbalance is reduced by 47%–62% with
a median of 54%. For Scenario 2, the congestion imbalance
is reduced by 29%–58% with a median of 49%. This scenario
exhibits the largest spread as the train schedule is not
included in the algorithm. For Scenario 3, the congestion
imbalance reduction can be expected to be superior to
Scenario 2 as more information is used. Here, the congestion
imbalance is reduced by 61%–76% with a median of 70%.

Table I shows median congestion imbalance reductions
for variations of the three scenarios in Fig. 5. First, Ta-
ble I shows how much the congestion imbalance is reduced
when the pedestrian flows are given (rather than estimated).
Consequently, the imbalance can be reduced more as the
pedestrian flows are more accurate. However, using a train
schedule, the pedestrian flows are recovered quite accurately
as the congestion imbalance reductions are similar for given
and estimated flows, which is due to the train-departure
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Fig. 5. Statistics of 500 Monte Carlo trials. The plot shows congestion
imbalance reduction when using the arrow display. It shows box-plots for
all three scenarios representing the 10th percentile, the 25th percentile, the
50th percentile (the median), the 75th percentile, and the 90th percentile.

TABLE I
EXTENDED STUDY OF IMBALANCE REDUCTION

Scenario Schedule Flows Arrow Imbalance Reduction

train known estimated varying 70% (in Fig. 5)
train known estimated unit 63%
train known given varying 76%
train known given unit 63%

train unknown estimated varying 49% (in Fig. 5)
train unknown estimated unit 48%
train unknown given varying 74%
train unknown given unit 61%

no train N/A estimated varying 54% (in Fig. 5)
no train N/A estimated unit 9%
no train N/A given varying 64%
no train N/A given unit 17%

constraints. Second, Table I shows simulation results where
the intensity of the arrow display cannot be used as a
degree of freedom. Here, the MPC can either choose to not
display an arrow or to display a unit arrow in one of the
three segments. As expected, the congestion imbalance is
reduced less due to removing the degree of freedom of a
varying intensity. Finally, we have conducted a robustness
simulation study, where at each simulation trial we sampled
rtrue ∈ [30%, 70%] and the MPC used r = 50%. Here, for
Scenario 1, the median congestion imbalance reduction is
68%; for Scenario 2, 48%; and for Scenario 3, 53%. This
robustness evaluation indicates the applicability of the algo-
rithm in practice, where r may only be known approximately
from human factor studies and experimental data.

VI. CONCLUSIONS

This paper presented an MPC-based algorithm for routing
pedestrians in crowded places in order to balance congestion
levels. The pedestrian guidance algorithm used a convex
optimization problem to estimate pedestrian flows from con-
gestion predictions and a mixed-integer program with only a
few mixed-integer constraints to compute an arrow display
for balancing congestions. Simulation results show that the
algorithm was able to reduce congestions at train stations
between 61%–76% with a median of 70%, and in scenarios
with a continuous outflow between 47%–62% with a median
of 54%. Further, robustness studies with respect to modeling
uncertainty indicate the algorithm’s applicability in practice.
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