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Abstract
High-level synthesis (HLS) is a design flow that leverages modern language features and flex-
ibility, such as complex data structures, inheritance, templates, etc., to prototype hardware
designs rapidly. However, exploring various design space parameters can take much time
and effort for hardware engineers to meet specific design specifications. This paper proposes
a novel framework called AutoHLS, which integrates a deep neural network (DNN) with
Bayesian optimization (BO) to accelerate HLS hardware design optimization. Our tool fo-
cuses on HLS pragma exploration and operation transformation. It utilizes integrated DNNs
to predict synthesizability within a given FPGA resource budget. We also investigate the
potential of emerging quantum neural networks (QNNs) instead of classical DNNs for the
AutoHLS pipeline. Our experimental results demonstrate up to a 70-fold speedup in explo-
ration time.
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Abstract—High-level synthesis (HLS) is a design flow that
leverages modern language features and flexibility, such as
complex data structures, inheritance, templates, etc., to prototype
hardware designs rapidly. However, exploring various design
space parameters can take much time and effort for hardware
engineers to meet specific design specifications. This paper
proposes a novel framework called AutoHLS, which integrates a
deep neural network (DNN) with Bayesian optimization (BO) to
accelerate HLS hardware design optimization. Our tool focuses
on HLS pragma exploration and operation transformation. It
utilizes integrated DNNs to predict synthesizability within a
given FPGA resource budget. We also investigate the potential of
emerging quantum neural networks (QNNs) instead of classical
DNNs for the AutoHLS pipeline. Our experimental results
demonstrate up to a 70-fold speedup in exploration time.

Index Terms—HLS acceleration, design space exploration,
optimization, design automation, FPGA

I. INTRODUCTION

HLS is a widely used rapid design and prototyping method
in industry and academia. Still, it poses several challenges for
source code optimization due to the rich features of modern
programming languages such as C/C++. Careless optimization
can result in inefficient and resource-hungry designs with high
latency or, in some cases, loss of synthesizability under a
reasonable FPGA resource budget. HLS compilers such as
Vitis [1] offer optimization tactics such as pragma direc-
tives and timing/closure analysis to tackle these issues which
have spurred active research areas in design-space exploration
(DSE) for HLS. Accelerated DSE is required since down-
stream tools used for RTL generation, such as Vitis [1], can
take significant time to compile and report synthesis results.
This limits the number of designs evaluated during DSE, re-
sulting in sub-optimal solutions. Besides, the time required for
RTL generation can increase the DSE time from hours to days,
depending on the complexity of the design. The quest for faster
and more efficient DSE in HLS has led to the development of
machine learning (ML) and analytical methods. In this context,
ScaleHLS [2] presents an analytical approach that leverages
a Quality-of-Results (QoR) estimator to accelerate the DSE
process. By statically analyzing code blocks and modeling
latency and resource utilization, the QoR estimator enables
ScaleHLS’s DSE engine to explore the design space efficiently
and converge to the Pareto front faster. Other methods [2]–
[7] use statistical, heuristic, ML, or meta-learning approaches
to accelerate DSE. For instance, using an ML model, Pyra-
mid [8] estimates the maximum achievable throughput. At
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Fig. 1: Array doubling kernels having functionally equivalent
operations but different hardware profiles.

the same time, a recent work [9] predicts resource usage
for synthesizing convolutional neural networks. Sherlock [10],
another DSE tool, uses active learning with a surrogate model
to find Pareto front, highlighting the challenges in handling
conflicting objectives in parameter optimization. We consider
Optuna [11], a Bayesian Optimization (BO) framework, as
a baseline multi-objective optimization tool. BO is generally
slow to find the Pareto front as the downstream HLS flow
takes much time to generate QoR for each sample design point.
Therefore, we add an early failure prediction network with the
BO to accelerate the DSE. To the best of our knowledge, no
current works focus on reducing the search space based on
synthesizability constraints, such as FPGA footprints (DSP,
FF, LUT) or synthesis time budget.

Our proposed method, AutoHLS , optimizes the design by
considering synthesizability constraints as a multi-objective
optimization problem. AutoHLS efficiently determine loop un-
rolling factor, pipeline depth, array partition, etc., for pragma
installments in order to optimize HLS designs considering
signal processor (DSP), flip-flop (FF), look-up table (LUT),
power consumption, and latency. Furthermore, AutoHLS also
includes kernel operations transformation to further optimize
the designs. The contributions of this work are as follows.

• We reveal that existing multi-objective optimization tools
can fail to meet the budget-centric design approach.

• We propose AutoHLS framework to accelerate the DSE
using ML models.

• A novel QNN model is employed to predict synthesis
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Fig. 2: Overview of AutoHLS.

failure and resource usage accurately.

II. AUTOHLS FOR EFFICIENT HARDWARE DESIGN

In designing hardware in HLS, several critical factors must
be considered, such as the target device, available resources,
required precision level, simulation, synthesis, co-simulation
time, etc. In this regard, Fig. 1 (a) presents a regular array
doubling kernel in C++ as an example. However, HLS pro-
vides several alternative implementations, such as Fig. 1 (b),
where a functionally equivalent exponent addition replaces the
multiplication operation. Additionally, Fig. 1 (c) shows a more
optimized implementation that utilizes pragma insertion. The
synthesis profiling results over different pragma factors and
kernel operation transforms, shown in Fig. 1 (d), demonstrate
a tradeoff behavior in multi-objective optimization, where
the reduction in LUT resources and runtime would compete.
Nevertheless, due to the high degree of flexibility in pragma
installment and kernel operation transforms, finding an optimal
Pareto front in constrained development time remains chal-
lenging. AutoHLS , as depicted in Fig. 2, takes an unoptimized
kernel and efficiently explores different design alternatives to
meet design objectives such as runtime, precision level, DSP,
FF, LUT, etc., usage. It can discover an optimal set of pragma
and kernel operation transforms with the help of an ML-based
synthesizability prediction mechanism.

A. Scope and Definition

1) Pragma Selection: Pragma and their parameters guide
the HLS compiler toward optimal designs. For example,
AutoHLS uses a categorical sampling of BO to decide the
set of HLS pragma insertions PK ⊆ P, where P includes
pipeline, unroll, etc.

2) Pragma Parameter Selection: Each HLS pragma P can
have a set of parameters AP . Given a kernel K, AutoHLS
decides a parameter set AK ⊆ {AP } for each HLS pragma

P ∈ PK in the selection, using BO sampling. For example,
Fig. 1 (c) uses the parameters set of AK = {100, 1, 128} for
the pragma set PK .

3) Kernel/Operation Transformation: HLS synthesis tools
often utilize high-cost resources, such as DSP blocks, to meet
high throughput requirements, which may not be available for
resource-constrained applications like edge/embedded devices.
Therefore, considering alternative operations that can save
resources at a potential cost of throughput or precision. For
example, a regular multiplication kernel in Fig.1 (a) can be
functionally equivalent to an exponent addition kernel in Fig.1
(b) for a floating-point operation when the multiplicand is a
power-of-two (PoT) value. Furthermore, simplifications can
be achieved by reducing bit-width precision and using fixed-
point operations with bit-shifting. Given an HLS kernel K,
kernel/operation transformation produces another kernel KT

such that the outputs from both kernels are almost equivalent
or exactly equivalent within a specified tolerance range. In
addition, recent green ML models have also demonstrated
that quantized DNNs, such as DeepShift [12], can outperform
floating-point DNNs. Therefore, we explore PoT and additive-
Power-of-Two (APoT) quantization for further optimization.

B. AutoHLS Flow

AutoHLS explores both kernel and parameter space. Given
a set of kernels K, an objective function, and an HLS design
constraint, AutoHLS analyzes the kernels and returns a set
of optimal synthesizable kernels for the given objectives that
meet the design constraint.

1) Kernel Transformation: AutoHLS first parses the input
C/C++ kernels and constructs pragmas using the selected set
P, which includes the pipeline, unroll, latency, array partition,
etc. These kernels are then checked for feasibility before being
synthesized.

2) Kernel Synthesis: The transformed kernel is synthesized
using standard HLS tools (e.g., Vitis) with pre-set device-
specific parameters for FPGA. The synthesis process involves
functional correctness checking with csim and feasibility
checking with synth.

3) Kernel Profiling: After the synthesis step, the Quality
of Results (QoR), kernel type, and pragma parameters are
collected. The synthesis can be complete or fail for the given
constraint. These data are utilized directly or indirectly in the
objective function.

4) Bayesian Optimization: AutoHLS adopts the BO method
based on a tree-structured Parzen estimator (TPE) [11] for
DSE, which can handle multi-objective optimization. The
TPE-based optimizer suggests a set of optimized design pa-
rameters from the parameter space based on an acquisition
function for efficient Pareto optimization.

5) Decision Maker: AutoHLS tool incorporates machine
learning techniques to predict the synthesis failure and esti-
mate the resource utilization of the designed kernel. Specifi-
cally, DNN and QNN provide the failure prediction scores on
each sample set generated by the BO. Based on the prediction
results, the tool decides whether to synthesize or discard the
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Fig. 3: Failure/resource prediction models.

kernel and move to the next one. This approach enables
accelerated design space exploration and reduces the overall
design time.

C. ML models for Sample Analysis

AutoHLS employs ML models to predict synthesis failure
and estimate the resource profile of a design. These models,
including classifiers and regression models, are trained on the
already explored samples and assign a score to a new sample
generated by BO. A decision is then made based on a threshold
τ . Finally, the sample is sent for synthesis only if it passes the
decision-maker.

1) DNN: We propose a DNN model shown in Fig. 3 (a),
for predicting a design’s synthesizability score and resource
usage. The model takes design parameters as input and consists
of three batch normalization layers, a fully-connected layer,
and a Relu activation. A batch normalization layer, a dropout,
and a sigmoid are applied at the end. The model has 3243
trainable parameters and is designed to learn with limited
training samples, which is essential in DSE due to the long
synthesis time of HLS tools.

2) QNN: The recent advancements in quantum technology
have led to the availability of high-qubit processors, such as
the 433-qubit processors released by IBM in 2022. This has
given rise to a new paradigm of ML models known as QNNs,
which have the universal approximation property [13] and are
more compact than modern DNNs. We propose a proof-of-
concept evaluation of QNNs for HLS acceleration. First, we
present a QNN architecture shown in Fig. 3 (b) with only 54
trainable parameters. It has five quantum bits.

3) Classical ML Algorithms: We evaluate various classical
ML models, including SVM and LR for failure prediction and
linear regression, lasso, KRR, and Bayesian ridge regression
for hardware profile prediction.

III. AUTOHLS VALIDATION

Our experiments are performed on a machine with an
Intel® Core™ i7-8700K CPU @ 3.70GHz and 64GB of main
memory, running on Ubuntu 20.04.5 LTS. The Xilinx ZCU104
board is used as a target FPGA, and Vitis HLS 2022.1 is used
for kernel synthesis.

A. Problem Setup

We investigate the effectiveness of AutoHLS for the DSE
of a CNN block. We consider synthesis time t as a design
resource budget or constraint. The CNN block comprises a
window size L, an input channel Cin, and an output channel
Cout, where the convolution operation involves element-wise

TABLE I: Resource usage of convolution kernels

Kernel FF LUT DSP Latency MSE

MAC 40922 17761 5 3072 -
MAC<16, 6> 24784 8650 1 1352 5.09e-06
PoT 42396 18067 4 4533 3.78
PoT<16, 6> 24893 6947 0 925 3.78
APoT 45207 18593 4 4952 0.019
APoT<16, 6> 26061 7090 0 1039 0.019

multiplication and accumulation of the window and input
channel elements. Table I provides the area utilization of the
conventional multiplier-based implementation. MAC stands
for multiplication and accumulation-based convolution. In
Table I, we present the QoR results for Cin = 100, L = 7,
Cout = 106, and float32 as the datatype. The table shows
different types of kernels, such as PoT<16, 6> and APoT<16,
6>, which are arbitrary precision (ap) fixed-point data types.
The results reveal kernel transformation significantly impacts
the hardware footprint. However, kernel transformation may
cause some loss in precision, which MSE indicates. Addi-
tionally, the ap-type PoT has the lowest resource usage but
higher MSE than APoT, which has better MSE but consumes
more area than PoT. Finding the optimal kernel requires DSE
to determine the pragma and appropriate pragma parameters.
We conduct a case study on two kernels, PoT and APoT
that entirely eliminates the multipliers. We then evaluate the
performance of the conventional BO method and subsequently
employ AutoHLS for further optimization.

1) Quantizations: We use PoT and APoT quantizations
as kernel transformation schemes to create hardware-friendly
designs of green ML models [12]. A regular MAC with W
as a weight, b as the bias: y = Wx+ b; the PoT quantization
of weight, W , u ∈ Z: W = ±2u; and APoT quantization of
weight, W : W = ±2u ± 2v , where u, v ∈ Z and v < u.

2) Bayesian Optimization for DSE: To investigate the
performance of BO on parameter optimization, the kernels
are instrumented with four pragmas: unroll factor, pipeline
instantiation interval, latency max and min.

Table II presents the performance evaluation of BO on
the exploration process. The column ‘Time’ indicates the
synthesis time budget in minutes. The columns ‘Comp.’ and
‘Fail’ denote the number of samples for which the kernel
synthesis succeeded and failed, respectively. The exploration
involves 3302 designs, taking 4 to 6 minutes to complete,
regardless of the synthesis status. However, most of the
parameters suggested by BO failed to synthesize, resulting in
a vain attempt to synthesize the wrong design. To address
this problem, AutoHLS leverages an early failure prediction
mechanism.

B. Training and Validation

We generate 3302 convolution design points with BO, and
961 of them are synthesizable within the given time budget.
Each sample has five independent variables, one dependent
variable, and a kernel identifier. We use all samples to train
classification models and synthesizable samples to train regres-
sion models. Classification models predict the sample outcome



TABLE II: Kernel synthesis using BO with a given time budget

Kernel Time
(min.) Comp. Fail Comp.

+ Fail %Fail %Comp.

APoT

2.00 14 194 208 93.26 6.73
2.20 12 289 301 96.01 3.98
2.50 20 480 500 96.00 4.00
2.75 11 389 400 97.25 2.75
3.00 42 551 593 92.76 7.07

PoT

1.50 19 381 400 95.25 4.75
1.75 364 36 400 9.00 94.00
2.00 291 9 300 3.00 97.00
2.20 188 12 200 6.00 94.00

Total 961 2341 3302 70.90 29.10
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Fig. 4: ML model training: Cross-entropy loss over epoch.

TABLE III: AutoHLS parameter search with failure prediction.

τ samples TP FP %TP BO
hrs.

AutoHLS
hrs Speedup

0.95 2000 48 4 2.5 ∼333 ∼8 ∼38
0.85 2000 23 4 1.15 ∼333 ∼4.5 ∼74
0.75 200 14 1 7.0 ∼33 ∼2.5 ∼14

and are used as early failure prediction models. Regression
models predict FPGA resource usage. We show the model
training process over 100 epochs and the corresponding loss
in Fig. 4. Our models converge quickly on the training data.
Fig. 5 (b) demonstrates that our models can learn from a small
number of training samples and achieve high accuracy on the
test data.

Proposed models are validated under various conditions.
The results show high true positive rates in the ROC curve, as
demonstrated in Fig. 5 (a). The models’ robustness and gen-
eralization capabilities are also confirmed. They still achieve
high true positive rates even when trained on only 5% of
the samples. Proposed DNN and QNN models outperform
classical regression methods, as shown in Fig. 6 (a). Regarding
Pareto fronts, AutoHLS outperforms BO as highlighted in the
blue dotted line in Fig. 6 (b).

We evaluate the effectiveness of the proposed early failure
prediction model by running a pragma parameter exploration
for the APoT kernel. The estimated time for each design
point synthesis is ten minutes. Table III shows the results
for different threshold values τ , demonstrating a speedup in
synthesizable design exploration time ranging from 15 to 74
times faster when using the failure prediction model.
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Fig. 6: FPGA synthesis results using different models.

C. Discussion

An important concern regarding AutoHLS is its generality.
Future research can experiment with unseen designs to evalu-
ate the generalizability of this framework. Improvements can
also be made by leveraging the vast amount of open-source
FPGA synthesis data available in DB4HLS [14], which con-
tains more than 100,000 design points. Our experiments with
the CNN kernel demonstrate AutoHLS ’s efficacy, even with an
imbalanced training set. The low false positive rate achieved by
AutoHLS indicates that the machine learning models can learn
effectively. We consider synthesizability within a given time
budget and note that early failure prediction could be possible
for other metrics, such as DSP and clock cycle numbers. Due
to the nature of HLS synthesis data, AutoHLS can learn from
a small number of training data. Finally, we suggest exploring
multi-objective reinforcement learning methods to enhance the
robustness of this framework.

IV. CONCLUSION

This paper presents AutoHLS , a framework for accelerating
DSE for HLS using DNN/QNN-enabled multi-objective BO.
It addresses the shortcomings of BO in HLS optimization.
Furthermore, it provides resource prediction mechanisms and
faster exploration of the Pareto front. It demonstrates the effec-
tiveness of this framework in achieving specific design goals
through accelerated DSE and kernel operation transformation.
Our experiments significantly speed up finding optimal FPGA
design parameters for the CNN kernel.
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