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Abstract
The need for accurate and timely destination prediction arises in many transportation ap-
plications. We formulate destination prediction as a multivariate time series classification
problem, and leverage part of the core components of the Transformer network to build a
new deep neural network model exclusively for this task. The key building block of our model
consists of Two Towers of Transformer encoders, and we call it “3T-Net.” Through extensive
comparison experiments on a simulated indoor trajectories data set, we show that 3T-Net
performs better or close to other investigated state-of-the-art deep learning based models.
Our model can also be used for outdoor destination prediction scenarios and more general
multivariate time series classification problems.
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1 Introduction

The need for accurate and timely destination prediction
arises in many transportation applications involving both ve-
hicular and pedestrian traffic. One ubiquitous such appli-
cation is car navigation, where the successful prediction of
the final destination of a car from its initial path could elim-
inate the need to set the destination manually while driv-
ing, thus avoiding the risk of collision and increasing con-
venience. Similarly, prediction of pedestrians’ destinations
indoors could open the possibility for innovative services,
such as predictive group elevator scheduling [1], where ele-
vator cars are dispatched ahead of time to the correct floor to
shorten or eliminate waiting times. At a larger scale, pedes-
trian destination prediction in shopping centers, airports, and
train stations can optimize the control of pedestrian traffic
and even the provision of personalized guidance informa-
tion.

The development of destination prediction technology is
aided by advances in technologies for position estimation,
both outdoors (for example based on GPS signals), as well
as indoors (for example, based on motion detectors, cameras,
Wi-Fi signal reflections, and even smart carpets [2–4]). Re-
gardless of the sensing mechanism, the collected data is in
the form of trajectories of positions. The objective of desti-
nation prediction is to infer the last position in the sequence
from an initial recorded sub-sequence, under the usually rea-
sonable assumption that movement patterns are repeatable,
and paths that started similarly will also end in the same final
position. This is largely true, with the important caveat that
paths to different destinations from the same original posi-
tion might look similar until a point where they diverge. This
means that destination prediction is by necessity a proba-
bilistic problem, where a set of likely destinations can be de-
termined only in a probabilistic sense, for example by means
of a multinomial probability distribution over them.

It is also clear that the needs for both accurate and timely
destination prediction are mutually exclusive. As time pro-
gresses and more and more of the traversed path becomes
known, prediction can be very accurate, converging to full
certainty just before the final destination is reached. How-
ever, such very accurate prediction is not timely enough

to solve decision and control problems of practical signif-
icance, such as rerouting a vehicle around a traffic jam or
informing an airline passenger about a gate change. For this
reason, predictive methods are needed that can achieve rea-
sonable accuracy based on a relatively small fraction of the
path to the destination observed.

The nature of traffic and the information contained in
partial paths also presents some challenges as regards the
use of machine learning technologies for destination pre-
diction. Basing the prediction only on the latest position
in the recorded partial path leading up to the time of pre-
diction is clearly sub-optimal, because it ignores the direc-
tion of motion that should be highly indicative of the general
area where the final destination is. In other words, the pro-
cess generating the locations along the path is not first-order
Markovian, and more observations should be used for bet-
ter accuracy. However, if more than one observation should
be used, the question arises how many. Ideally, all of the
observed path so far should be used for maximum accuracy,
but this precludes the use of many machine learning algo-
rithms that use an input vector of a fixed size. That is, what
is necessary is a predictive method that can classify entire
sequences of variable length, in a probabilistic setting.

Transformer networks [5], as widely acknowledged, are
a type of deep neural network that are primarily used for
natural language processing tasks such as machine transla-
tion, text classification, and question answering. They offer
several advantages over traditional recurrent neural networks
(RNNs), including faster training and inference due to paral-
lel computation and the ability to process sequences of vari-
able lengths. Transformer networks have also found appli-
cations in time series classification, where they can be used
both as feature extractors and end-to-end classifiers. When
used as feature extractors, the Transformer can extract im-
portant representations from raw time series data, which can
then be fed into other machine learning models for classifica-
tion. As end-to-end classifiers, the Transformer can directly
predict class labels from raw time series data, without the
need for manual feature engineering. The attention mecha-
nism in the Transformer can also help identify key regions
in the time series, thereby improving the performance of the



classification model.
In this work, we formulate destination prediction as a

multivariate time series classification (MTSC) problem, and
leverage part of the core components of the Transformer net-
work to build a new model exclusively for this task. The key
building block of our neural network model consists of Two
Towers of Transformer encoders, and we call it “3T-Net,” for
conciseness. Through extensive comparison experiments on
a simulated indoor trajectories data set, we show that 3T-Net
performs better or close to other state-of-the-art deep learn-
ing based models.

The remainder of the paper is organized as follows. We
review related work in Section 2, formally formulate the
MTSC problem in Section 3, and propose the 3T-Net model
in Section 4. In Section 5, we first describe the data sets
we use, and then present the experimental results comparing
our model with six other deep learning based models. We
conclude and propose future work in Section 6. Lists of key
hyperparameters of selected state-of-the-art models that we
use during training are provided in the Appendix.
2 Related Work

2.1 Multivariate Time Series Classification
Wang et al. [6] provided a baseline to exploit deep neu-

ral networks for multivariate time series (MTS) classifica-
tion without any dedicated feature engineering and data pre-
processing. The deep Multi-Layer Perceptrons (MLP) and
Fully Convolutional Networks (FCN) are included. Zhao et
al. [7] proposed a Convolutional Neural Network (CNN)
framework for MTS classification. Zhang et al. [8] proposed
a model named time series attentional prototype network
(TapNet) for MTS classification, which is capable of extract-
ing low-dimensional features from MTS with little domain
knowledge and handling the shortage of labeled data.

Wen et al. [9] reviewed about 60 papers on trans-
former schemes for time series modeling by highlighting
their strengths as well as limitations. The authors summa-
rized the adaptations and modifications made to transformers
for time series analysis, and categorized time series trans-
formers according to common tasks including forecasting,
anomaly detection, and classification. For MTS represen-
tation learning, Zerveas et al. [10] presented a transformer
encoder-based framework, which includes an unsupervised
pre-training scheme by reusing existing data samples. This
framework can deal with both regression and classification
tasks. Liu et al. [11] proposed a Gated Transformer Net-
work (GTN) for MTS classification. With a gate that merges
two towers of Transformer encoders, the model captures
both channel-wise and step-wise correlations. Chowdhury
et al. [12] proposed the Task-Aware Reconstruction Network
(TARNet), a model using Transformers to learn task-aware
data reconstruction that boosts end-task performance; it can
also tackle both classification and regression tasks for MTS.

2.2 Destination Prediction
Hidden Markov Models (HMM) have been extensively

researched for predicting routes and destinations [13–15].
However, these model-based approaches struggle with long
input sequences. Deep learning methods, such as Multi-
Layer Perceptrons (MLP) and Recurrent Neural Networks
(RNN), can overcome this limitation [16]. RNNs have been

commonly used for destination prediction [17–19]. In [20],
a hierarchical model combining attention mechanism and
Long-Short Term Memory (LSTM) was used for destination
prediction. In [21], a Transformer network was used for des-
tination prediction using only positioning information. In
[22], another approach was proposed using a spatiotemporal
Transformer with geographical information to predict taxi
drivers’ next destinations. Building on [21], [23] proposed a
Transformer Encoder Stack (TES) as a destination prediction
model that uses both position and context data to generate a
probability distribution for potential destinations in a given
area. It is worth pointing out that, as a preprocessing pro-
cedure, both [21] and [23] quantized the original continuous
spatial data to discrete symbols, which introduced redundant
candidate destination (classification) labels that could cause
VRAM issues for GPUs. This work, on the other hand, will
directly deal with continuous spatial data from the collected
trajectories.

3 Problem Formulation

As a convention, throughout the paper, all vectors are col-
umn vectors. Since destination prediction is essentially a
multivariate time series classification problem, we formu-
late the problem in a general form. Consider a multivari-
ate time series (MTS) X = [x1, . . . , xt] ∈ Rm×t, where
xj = [x1,j , . . . , xm,j ] ∈ Rm, j = 1, . . . , t. Here, m rep-
resents the number of variables and t is the length of the
time series. Each MTS is assigned a class label y from the
label set ∆. A collection of n such MTS is represented as
X = [X1, . . . ,Xn] ∈ Rn×m×t and their corresponding la-
bels are y = [y1, . . . , yn] ∈ ∆n. The task of MTSC is to
train a classifier f : X 7→ y that predicts the class label for a
given, previously unseen MTS.

4 The Proposed Model

In this section, we describe the architecture of our Two-
Tower Transformer Network (3T-Net). For economy of
space, we only briefly present the differences between our
model and the existing ones. The Transformer encoders we
use are transplanted from [5], and we omit the details of the
encoders themselves. It is worth pointing out that, differ-
ent from GTN [11], we do not use any masking mechanism
for multi-head attention computation, because we believe the
masking trick is designed exclusively for sequence genera-
tion purposes, which would be unnecessary for classification
tasks. We will demonstrate this in the next section through
extensive numerical experiments.

To capture step-wise dependencies across time stamps of
the MTS, the feature vectors xj are linearly projected onto a
d-dimensional vector space, where d is the model dimension:

uj = Wsxj + bs,

where Ws ∈ Rd×m, bs ∈ Rd are learnable parameters. To
capture channel-wise dependencies across variables (dimen-
sions) of the MTS, we transpose X and write it as Xτ =
[x̃1, . . . , x̃m] ∈ Rt×m, where x̃i = [xi,1, . . . , xi,t] ∈ Rt,
i = 1, . . . ,m. Similarly, the univariate time series x̃i are lin-
early projected onto the same d-dimensional vector space:

vi = Wcx̃i + bc,



where Wc ∈ Rd×t, bc ∈ Rd are learnable parameters.
Next, since the transformer is a feed-forward architec-

ture that is insensitive to the ordering of input, in order to
make it aware of the sequential nature of the time series and
also the variables (especially in our destination prediction
application where MTS data contain ordered positional in-
formation; latitudes and longitudes are not interchangeable),
we add positional encodings Wposs ∈ Rd×t and Wposc ∈
Rd×m to the input vectors U = [u1, . . . ,ut] ∈ Rd×t and
V = [v1, . . . , vm] ∈ Rd×m, respectively:

U′ = U + Wposs,

V′ = V + Wposc,

which become the final input vectors to the two-tower Trans-
former encoders, respectively; refer to Fig. 1. We note that
adding an additional positional encoding Wposc to the input
vectors V is another difference between our 3T-Network and
the existing GTN. All the positional encodings are computed
following the same choice as in [5].

Finally, instead of using a Gate [11] to learn the weights
of the outputted vectors from the two towers of Transformer
encoders, we simply concatenate them so as to simplify the
training process. We believe that the following linear layer
would be able to capture the variances of these weights. The
last layer of the model is a Softmax function that outputs
probabilities of candidate class labels from which we can
extract the maximum value and its index to locate a classifi-
cation label from ∆.

Fig. 1: The architecture of our Two-Tower Transformer Net-
work (3T-Net) for multivariate time series classification.

5 Experimental Results

5.1 Data Sets
We generate people’s movement data on a floor in a build-

ing. In particular, we use the SimTread software package
for this purpose. The layout of a floor in a building that we
use in the simulation is shown in Fig. 2, where we have
16 destinations denoted 0 through 15. Also shown in Fig.
2 are five typical trajectories; for example, the yellow line
starting from office 0 and ending at office 12 represents a
complete trajectory with office 12 as its destination. Note

that in our simulations, we assume all destinations 0 through
15 could also be an origin. To generate raw trajectories data
sets for training/testing, we use the prior probabilities spec-
ified in Table 1, and end up with 236 complete trajectories
for each data set. The number of variables in each trajectory
(represented as a multivariate time series) is 2, correspond-
ing to horizontal and vertical coordinates, respectively. The
maximum length of the trajectories in the raw training (resp.,
testing) data set is 83 (resp., 82), and the minimum length of
the trajectories in the raw training (resp., testing) data set is
20 (resp., 18).

For MTSC experiments, we extract partial trajectories
from the raw data sets; note that our actual goal is predict-
ing a destination for a given partial trajectory. To that end,
for each and every partial trajectory, its ground truth label (0
through 15) is the converted final point of the corresponding
entire trajectory. We also pad zeros to the end of each par-
tial trajectory to enforce a length of 100. Through careful
data preprocessing, we examine four combinations of train-
ing/testing settings:

• Case 1-1: Partial trajectories always start with their
actual origin. For the training data set, partial trajec-
tories with all reasonably possible lengths (e.g., ≥ 5;
we note that a too short partial trajectory would hardly
provide any meaningful trend information to a predic-
tive model and we have tested lengths less than 5 in
our experiments and found that partial trajectories with
such limited lengths would confuse classifiers more sig-
nificantly than longer ones) are included. The testing
data set contains only a selected proportion of the par-
tial trajectories whose length is reasonable (e.g., ≥ 5)
and equals the length of their respective entire trajec-
tory multiplied by a factor θ on some interval (e.g.,
θ ∈ [0.5, 0.6)).

• Case 1-2: Only entire trajectories excluding their re-
spective final point (destination) are included in the
training data. The testing data set is the same as in Case
1-1.

• Case 2-1: Partial trajectories start with their actual ori-
gin or any intermediate point along the route to their
respective destination. For the training data set, partial
trajectories with all reasonably possible lengths (e.g.,
≥ 5) are included. The testing data contains only
a selected proportion of the partial trajectories whose
length is reasonable (e.g., ≥ 5) and equals the length of
their respective entire trajectory multiplied by a factor
θ on some interval (e.g., θ ∈ [0.5, 0.6)).

• Case 2-2: The training data set is the same as in Case
1-1. The testing data set is the same as in Case 2-1.

Intuitively, Case 2-1 is the most interesting setting, be-
cause the training data set contains the richest partial trajec-
tories (MTS) that would help the model learn enough pat-
terns for prediction. Considering the current paper focuses
on deep learning (DL)-based models, which are are very
hungry for data, we find that the way of extracting partial
trajectories for training in Case 2-1 is most favourable, be-
cause it can drastically expand the collected raw trajectories.
To see this more clearly, considering a complete trajectory
with length t > 5, then the number of partial trajectories
with reasonable lengths (≥ 5) that we can extract would be



Table 1: Prior probabilities for destinations.
Destination 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Probability 0.05 0.03 0.05 0.06 0.05 0.04 0.11 0.04 0.05 0.04 0.1 0.03 0.03 0.2 0.04 0.08

∑t−1
l=5(t − l) = (t−5)(t−4)

2 = O(t2) for t ≫ 5. Of course,
to tackle such large-sized training data, we need significant
computational support (CPU/GPU/memory/VRAM). On the
other extreme, Case 1-2 uses the least number of partial tra-
jectories for training and, through extensive experiments, we
find that even if we use certain masking tricks (like the one
employed by GTN), the performance of all the investigated
classifiers would be very poor (see Fig. 5b). The other two
cases (1-1 and 2-2) use medium-sized data sets for training,
which could be useful when only limited computational re-
sources are available.

In Fig. 4b, we show the class-wise number of MTS (par-
tial trajectories) in the processed training/testing data sets for
Case 2-1 (with θ ∈ [0.4, 0.5)). Clearly, the classes in both
data sets are highly imbalanced. In the next section, we will
present experimental results showing that the proposed 3T-
Net, together with other state-of-the-art DL-based models,
can effectively classify the testing MTS without overfitting
the training MTS data.

5.2 Results
We compare the classification performance (in terms of

accuracy on the testing data set) of our 3T-Net with 6 other
DL-based models. Fig. 5 shows the prediction (classifica-
tion) accuracy vs. the percent of partial trajectory seen so
far. It is seen that for Cases 1-1, 2-1, and 2-2, the classifica-
tion accuracy given by 3T-Net is either the highest or close
to the highest. In particular, for the most interesting case
(2-1), 3T-Net yields the highest accuracy (above 0.7) even
when we only see a very small proportion (θ ∈ [0.2, 0.3) or
even θ ∈ [0.1, 0.2)) of the entire trajectories. On the other
hand, for Case 1-2, all models give almost unusable predic-
tion (classification) results — the accuracy is way too low. In
general, the more partial trajectories we use for training, the
higher accuracy the classifiers would produce for the testing
partial trajectories.

To see the classification results more clearly, in Fig. 3 we
show the confusion matrix obtained from 3T-Net for Case
2-1 with θ ∈ [0.5, 0.6). It is seen that, when only 50%-60%
of an entire testing trajectory is available, if its true label is
9, the 3T-Net classifier would predict its destination as 9 or
5 or 12, with probabilities of 245/(162+ 245+ 93) = 0.49,
162/(162 + 245+ 93) = 0.32, and 93/(162 + 245+ 93) =
0.19, respectively. This is not surprising, because we see
from Fig. 2 that a trajectory with origin 0 and destination 9
partially overlaps a trajectory with origin 0 and destination
12, and also partially overlaps another trajectory with origin
0 and destination 5. Such overlapping would confuse the
classifier when training; in this case, if only seeing a small
proportion of an entire trajectory, it is hard to judge how the
remaining trajectory would evolve and where the final des-
tination would be. Similar observations could be made for
other entries in the confusion matrix (e.g., the true label 3 is
predicted to be 3 or 13, with probabilities around 0.50 and
0.50, respectively).

Fig. 2: The layout of a floor in a simulated building [1]. The
bold black bars depict the walls or office desks, the green
rectangles with slashes depict origins/destinations, and the
light gray space represents corridors and other walkable ar-
eas. 5, 10: open offices; 6: a lab, 7: a restroom; 9: a kitchen;
13: an elevator; others: offices with a door.

Fig. 3: The confusion matrix obtained from 3T-Net for Case
2-1 with θ ∈ [0.5, 0.6); the overall accuracy is 0.91. For
economy of space, we omitted the zero (0) values which in-
dicate a true label would never be predicted as a certain label;
e.g., the true label 15 would never be predicted as 0.

6 Conclusion

We have proposed “3T-Net,” a deep neural network model
that utilizes two towers of Transformer encoders for desti-
nation prediction tasks, whose effectiveness comparing to
other state-of-the-art deep learning based models was shown
through extensive experiments on a simulated indoor trajec-
tories data set. It can also be used for outdoor destination
prediction scenarios and more general multivariate time se-
ries classification problems. For future work, it is of inter-
est to incorporate contextual information of pedestrians in a
building or drivers in an outdoor road network.
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7 Appendix

In this section, we list the key hyperparameters of selected
state-of-the-art models that we use during training for the
experiments.

• 3T-Net and GTN [24]:
– epoch = 100.
– batch size = 512.
– learning rate = 10−4.
– d = 512. Since the model processes time series in-

stead of natural language, the encoding of words in
NLP is omitted and only a linear layer is used to map
to a dense vector of dimension d. Additionally, d en-
sures that the dimensions are the same at each con-
necting point of the modules.

– The dimension of the hidden layer in Position-wise
Feed Forward: d hidden = 1024.

– The linear mapping dimensions in Multi-Head Atten-
tion: q = 8, v = 8.

– The number of heads in Multi-Head Attention: h =
8.

– The number of encoders in each tower: N = 8.
– dropout = 0.2.

• TapNet [25]:
– epoch = 100.
– batch size = 512.
– dropout = 0.25.
– filter sizes = (256, 256, 128). This sets the kernel

size argument for each convolutional block and con-
trols number of convolutional filters and number of
neurons in attention dense layers.

– kernel sizes = (8, 5, 3).
– layers = (500, 300). This is the size of dense layers.
– reduction = 16. This is for dividing the number of

dense neurons in the first layer of the attention block.
• TARNet1:

– epoch = 100.
– batch size = 128.
– dropout = 0.1.
– learning rate = 10−3.
– n layers = 4.
– n head = 8.

• CNN [25]:
– epoch = 100.
– batch size = 512.
– kernel size = 7.
– avg pool size = 3. This is the size of the average

pooling windows.
– n conv layers = 2. This is the number of convolu-

tional plus average pooling layers.
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