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Abstract
A delta robot is an attractive platform for robotic applications involving contacts and colli-
sions, such as object assembly, because of its low mass and inertia (for low impedance and
high speed), low link and joint compliance (for precision), and mechanical simplicity (for
low cost). For these types of applications, impedance control is desirable, enabling a task-
level controller to modulate the manipulator impedance to minimize the transfer of energy,
momentum and force between the manipulator and the environment or task. In this paper, a
feedback linearizing control law in task space is derived and used to construct an impedance
controller for a three degree of freedom delta robot. Because the robot is a complex closed
chain, neither the forward kinematics nor the feedback linearizing control law can be expressed
analytically, in closed form. However we show that both can be computed algorithmically.
We also show how tactile sensors, integrated into the gripper, may be used in an outer loop
feedback to modify, and specifically reduce, the robot impedance. This is useful for manip-
ulating objects of relatively low mass, or where transfer of energy, momentum or force from
the robot to an object to be grasped must be minimized. We demonstrate the controller in
simulation for a soft grasping primitive, and also in a laboratory experiment, where it plays
speed chess.
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Abstract: A delta robot is an attractive platform for robotic applications involving contacts
and collisions, such as object assembly, because of its low mass and inertia (for low impedance
and high speed), low link and joint compliance (for precision), and mechanical simplicity (for
low cost). For these types of applications, impedance control is desirable, enabling a task-
level controller to modulate the manipulator impedance to minimize the transfer of energy,
momentum and force between the manipulator and the environment or task. In this paper, a
feedback linearizing control law in task space is derived and used to construct an impedance
controller for a three degree of freedom delta robot. Because the robot is a complex closed
chain, neither the forward kinematics nor the feedback linearizing control law can be expressed
analytically, in closed form. However we show that both can be computed algorithmically. We
also show how tactile sensors, integrated into the gripper, may be used in an outer loop feedback
to modify, and specifically reduce, the robot impedance. This is useful for manipulating objects
of relatively low mass, or where transfer of energy, momentum or force from the robot to an
object to be grasped must be minimized. We demonstrate the controller in simulation for a soft
grasping primitive, and also in a laboratory experiment, where it plays speed chess.
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1. INTRODUCTION

Delta robots are used in industry primarily for high speed
pick-and-place operations. For these applications, high-
gain PID control is sufficient, with actuation typically
provided by a set of base-mounted servomotors via high-
ratio gear trains. Servomotor reference trajectories are
computed from a task space reference trajectory using
the inverse kinematics, which are expressible analytically,
in closed form. However, the delta robot’s low mass and
high mechanical stiffness make it an attractive platform
for other applications such as robotic assembly, where
collisions and contact with objects in the environment are
commonplace. In these applications, when an end effector
comes in contact with an object to be manipulated, a
collision occurs, and the robot will transfer mechanical
energy and momentum to that object. In many situations,
it is critical to minimize this transfer, in order to avoid
damage, for example. However, the conventional high-
gain PID with actuation via a high-ratio gear train, both
intended to reject disturbances in order to provide precise
position tracking for pick-and-place operations, can be too
stiff when contacts and collisions occur.

There are several strategies to reduce the transfer of energy
and momentum from a manipulator to an object to be
grasped or manipulated. The approach velocity can be
reduced, which is commonly done but obviously reduces
productivity. Manipulator joints can be designed with a

reduced gear ratio, making them back-drivable, or may
employ torque / force feedback. This is a strategy used in
many cobots. Alternatively, mechanical compliance can be
introduced to soften the collision, and many end effectors
have been developed that effectively exploit this strategy.
However, for some applications, these approaches may be
insufficient. Considering more fundamental modifications
to the manipulator, the mass of the manipulator may be
reduced and direct drive actuation employed, effectively
reducing the robot inertia and joint friction. In addition,
advanced control can be used to modulate the manipulator
impedance depending on the task. For example, position
and velocity feedback gains can be reduced as a manipula-
tor approaches an object. This can reduce the transfer of
energy, momentum and force during and after a collision.

In this paper we derive a feedback linearizing control
algorithm for a three degree of freedom delta robot,
which can be used as a task-space impedance controller.
Feedback linearization of a serial link robot manipulator
is well-studied and arguably no longer a subject of active
research (Spong and Vidyasagar (2004); Lynch and Park
(2017)). However, the delta robot (and similar mechanisms
such as the Gough-Stewart platform) is a complex, closed-
chain mechanism, which makes the control derivation less
than obvious. This is because the forward kinematics are
not expressible as an analytic, closed-form mathematical
expression, so neither the manipulator Jacobian, nor the
feedback linearizing control law is expressible analytically.
However, we show how both may be computed using



Fig. 1. MERL delta robot playing chess.

an efficient iterative algorithm. This is the basis of an
impedance controller, where the manipulator impedance
can be modulated independently in each of the three
Cartesian directions.

As a second means to modulate manipulator impedance,
we introduce tactile sensors mounted on the gripper, used
in an outer-loop feedback control. We show how this can
reduce manipulator impedance within the sensor band-
width. This is useful in applications where a very soft touch
is needed. We discuss real-time implementation issues with
the control algorithm, and provide experimental validation
with our delta robot under impedance control playing
speed chess. For this example, the soft-touch impedance
control with tactile feedback improves robustness of grasp-
ing and also releasing the chess pieces with respect to the
small amount of position uncertainty of the pieces and also
the contact with the chess board. Further, the design, with
low mass links, low impedance control and direct drive, is
inherently safe for human interaction.

This paper is organized as follows. In Section 2, a dynamic
model is used to construct the feedback linearizing control
algorithm. The tactile sensing feedback is explained in
Section 3. Real-time control realization for the laboratory
delta robot playing speed chess is described in Section 4,
and concluding remarks provided in Section 5.

2. A SOFT GRASPING DELTA ROBOT

In this section we derive a feedback linearizing feedback
control algorithm for the delta robot that serves as an
inner-loop for the soft-grasping outer-loop derived in Sec-
tion 3. Referring to Figs. 1-2, the delta robot, invented
by Clavel (1990), consists of three (or more) identical,
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Fig. 2. MERL delta robot looking up.

under-actuated arms, arranged symmetrically about the
z3-axis (pointing down). Each arm has a proximal link,
attached to the servomotor shaft at the base, and a pair
of parallel distal links that are connected to the proximal
link by universal joints. The six distal links are connected
to the wrist flange by universal joints, so that the two
distal links associated with each arm remain parallel. A
gripper is mounted to the wrist flange. The servomotor
angles are measured, but the universal joint angles are
not. The configuration provides three translation degrees
of freedom for the gripper; its orientation is fixed.

As a platform for soft grasping and more generally, robotic
assembly, the delta robot offers several advantages over
serial link robotic manipulators. It is relatively low mass,
with carbon fiber distal links and direct-drive, base-
mounted servomotors. These characteristics reduce robot
impedance. Yet, its links are mechanically stiff, since the
distal links incur no bending moments due to the uni-
versal joints. As such, the robot has high precision and
repeatability. In addition, the translational and rotational
dynamics are decoupled at the wrist, simplifying control,
although the particular robot considered here lacks an
articulated wrist.

The manipulator dynamics are derived by first expressing
the dynamics for each unconstrained arm, lumping the two
parallel distal links together because of their constrained
motion. Following Bortoff (2018, 2019), the holonomic
coupling constraint that represents the connections of the
three arms to the wrist flange is incorporated using a
constrained Lagrangian or Hamiltonian approach. The
resulting index-3 differential algebraic equation (DAE) is
stabilized using Baumgarte (1972, 1983), giving an index-
1 DAE. Bortoff (2018) shows the DAE has 18 differential
equations and variables, and six algebraic equations and
variables, but the solution evolves on a six-dimensional,
invariant, zero-dynamics manifold, and is mathematically
equivalent to the solution of a conventional set of six
dynamic equations written in six generalized coordinates.
This formulation results in a single set of singularity-free
equations (no switching among systems using dynamic
state selection is required), despite the robot’s kinematic
singularities. It is computationally efficient and useful for
derivation of model-based control algorithms.



Table 1. Kinematic Parameters.

Symbol Description Value

l0 Base radius 0.165 m
l1 Length of proximal link 0.2 m
l2 Length of distal link 0.4 m
l3 Width of wrist flange 0.0562 m
l4 Height of gripper 0.075 m

Let qi ∈ R3 denote the joint angles of arm i, ordered so
that qi1, is the ith servomotor angle, and the remaining two
angles correspond to the universal joints, for 1 ≤ i ≤ 3.
The position of the geometric center of the gripper relative
to the base frame, denoted z ∈ R3, is expressed in terms
of arm 1 coordinates as

z = ψ(q1) =

[
l2 sin(q12) sin(q13)

l0 − l3 + l1 cos(q11) + l2 cos(q12)
l4 + l1 sin(q11) + l2 sin(q12) cos(q13)

]
, (1)

with parameters listed in Table 1. Define z = ψ1(q1) :=
ψ(q1), z = ψ2(q2) := R2ψ(q2) and z = ψ3(q3) := R3ψ(q3)
as the forward kinematics of arms 1, 2 and 3 respectively,
where R2 = Rz(−2π/3), R3 = Rz(2π/3) and Rz(·) is the
rotation matrix about the z3-axis.

Following Bortoff (2018), define q = [qT1 qT2 qT3 ]T ∈ R9 and
v = q̇. Then the robot dynamics are the index 1 DAE

q̇ = v (2a)

M(q)v̇ + C(q, v) +D(v) +G(q) = HT (q)λ

+B(u+ τu) + τv (2b)

ḧ(q, v, v̇) + α1ḣ(q, v) + α0h(q) = 0 (2c)

where the constraint h(q) : R9 → R6 satisfies

h(q) =

[
ψ1(q1)− ψ2(q2)
ψ1(q1)− ψ3(q3)

]
= 0, (3)

H(q) is the Jacobian of h(q), λ ∈ R6 is the Lagrange
multiplier, τu ∈ R3 is the vector of matched disturbance
torques, τv ∈ R9 is the vector of virtual disturbance
torques, u ∈ R3 is the control input torque vector, positive
constants α0 and α1 are such that s2 + α1s + α0 is
a Hurtwitz (stable) polynomial. Bortoff (2018) provides
explicit formulas for M , C, D, G and B (the inertia
matrix, Coriolis and centripetal torque, damping, gravity,
and input vectors, respectively). Finally,

y = [q11 q21 q31]T (4)

is the vector of measured servomotor angles. The other six
joint angles are not measured. The distinction between τu
and τv is explained in the next subsections.

Forward Kinematics

The delta robot is a complex 1 closed kinematic chain, as
defined by Merlet and Gosselin (2008), which means that
it is not possible to compute the forward kinematics (the
function from measured servomotor angles to the location
of the end effector) as a closed-form analytic expression.
It is computed algorithmically from (3). Defining

x = [q12 q13 q22 q23 q32 q33]T , (5)

whose elements are the unmeasured joint angles, rewrite
(3) by reordering the arguments as

h(x, y) = 0. (6)

1 Meaning one link has a degree of connectivity ≥ 3.

For a given y, the solution x to these six nonlinear
equations can be computed iteratively using, for example,
Newton’s method,

∂h

∂x
(xk, y) · (xk+1 − xk) = −h(xk, y), (7)

which converges locally and quadratically assuming the
robot is not near a kinematic singularity (which implies
∂h
∂x is nonsingular). Then (1) is used to compute z.

Inverse Kinematics

The inverse kinematics, i.e., the function from z to y (and
q) is expressed analytically by computing the angles of the
planar triangle formed by each arm using the Law of Sines,
since the length of each side is known, and then solving a
quadratic equation. This gives two expressions for qi for
each arm, given a reachable z. One solution is for the arm
pointed outward, which is the normal mode of operation,
while the other is for the arm pointed inward, which is not
used. Details are omitted.

Manipulator Jacobians

The manipulator Jacobian is the map between end effector
velocity / force and joint angular velocity / torque, respec-
tively, and is important for (a) modeling and simulating
the effect of force disturbances on the end effector, and also
for (b) control purposes, such as computing reference joint
velocities from reference velocities of the end effector. For
serial link robots, it is the mathematical Jacobian of the
forward kinematics. For the delta robot, this is nontrivial
because the forward kinematics are not expressible ana-
lytically. In fact, the two uses for the Jacobian described
above require two different expressions for the Jacobian.

First, in order to model and simulate the effect of force
disturbances, we compute the Jacobian that maps an
external disturbance force f ∈ R3 that is applied to the
gripper to the vector of virtual torques τv that is applied
to all of the joints. First, sum the forward kinematics of
each arm,

z = (ψ1(q1) + ψ2(q2) + ψ3(q3)) /3. (8)

Differentiating gives the 3× 9 virtual Jacobian

Jv(q) =
1

3

[
∂ψ1

∂q
(q1)

∂ψ2

∂q
(q2)

∂ψ3

∂q
(q3)

]
, (9)

which is used to compute τv in (2b),

τv = JT
v (q) · f. (10)

This is non-singular, even at manipulator kinematic sin-
gularities.

The second formulation we denote the control Jacobian Jc,
which is the map between end effector forces / velocities
and servomotor torques / velocities. Following Okasha and
Bortoff (2020), by the Implicit Function Theorem, there
exists g : R3 → R6 such that

h(g(y), y) = 0, (11)

so that we may write x = g(y), if ∂h
∂x is nonsingular in a

neighborhood of (x, y). Write ψ1, ψ2 and ψ3 in the (x, y)-
coordinates to compute the Jacobians



Ψx :=

[
∂ψ1

∂x1

∂ψ1

∂x2

∂ψ2

∂x3

∂ψ2

∂x4

∂ψ3

∂x5

∂ψ3

∂x6

]
∈ R3×6 (12a)

Ψy :=

[
∂ψ1

∂y1

∂ψ2

∂y2

∂ψ3

∂y3

]
∈ R3×3. (12b)

Then, using the chain rule, the 3× 3 control Jacobian is

Jc =
∂z

∂y
= Ψx ·

∂g

∂y
+ Ψy , (13)

where
∂g

∂y
= −

(
∂h

∂x

)−1

· ∂h
∂y
. (14)

For time-domain simulation of the effects of disturbance
f , τv = JT

v · f , and not τu = JT
c · f , should be used,

because it is analytic and globally defined, whereas Jc is
undefined at kinematic singularities. Moreover, using Jc
for simulation would make the DAE non-smooth because
of the termination condition from (7), causing problems
with DAE solver error control as described by Cellier and
Greifeneder (1991) and Cellier (2006).

Gravity Compensation

At each sample time, the digital controller measures the
servomotor angles y, computes the forward kinematics (7),
giving q, z, and x, and then computes Jc. Referring to (2a),
τu is computed at each sample time to cancel the effect of
G(q), by solving the six-dimensional, globally nonsingular
linear system

[B HT (q)]

[
τu
λ

]
= G(q) (15)

for τu and λ.

Exact Feedback Linearization in Joint Space

Applying the value τu computed in (15) to (2a), re-
ordering the equations and expressing them in the (y, x)-
coordinates results in the gravity-compensated model[

M̄11(q) M̄12(q)
M̄21(q) M̄22(q)

] [
ÿ
ẍ

]
+

[
C̄1(q, v)
C̄2(q, v)

]
+

[
D̄1(v)
D̄2(v)

]
=

[
u
0

]
, (16)

where the overbar denotes the reordering. Next write ẍ in
terms of ÿ by differentiating (6) twice, giving

∂h

∂y
ÿ +

∂h

∂x
ẍ+ ẏT

∂2h

∂y2
ẏ + ẋT

∂2h

∂x2
ẋ = 0. (17)

Solving for ẍ and substituting into (16) gives

M̄y · ÿ + D̄1 + a = u, (18)

where, using (14), the 3× 3 inertia matrix

M̄y = M̄11 − M̄12 ·
∂h

∂x

−1

· ∂h
∂y

= M̄11 + M̄12 ·
∂g

∂y
, (19)

and a includes the higher-order terms (the second two
terms in (17) and C̄1). The feedback linearizing control
in the y-coordinates is then

u = M̄yv + D̄1 + a, (20)

where
v = kp(r − y) + kv(ṙ − ẏ) + r̈, (21)

which, applied to (16) gives

(ÿ − r̈) + kv(ẏ − ṙ) + kp(y − r) = 0, (22)

where r, ṙ and r̈ are the reference trajectory for y and
its first two derivatives, kp = diag{kp1 kp2 kp3} and
kv = diag{kv1 kv2 kv3} are position and velocity gains,
respectively.

Fig. 3. Flow chart for approximate feedback linearization.

Approximate Feedback Linearization in Task Space

For the delta robot, the higher order terms a in (18) are
small in magnitude. The Corriolis and centripetal torque C̄
is small because the distal link and wrist flange masses are
small, and the maximum joint velocities in practice rarely
exceed 5 rad/s (for our robot), because the delta robot
has a relatively small work volume. Therefore, we neglect
a, and use the first two terms of (20) as an approximate
feedback linearization in the y-coordinates.

Finally, to express the approximate feedback linearization
in Cartesian task space (z-coordinates), substitute z̈ =

Jcÿ + J̇cẏ ≈ Jcÿ into (18) giving

u = M̄yJ
−1
c v + D̄1, (23)

which, when applied to (18) gives

ë+ kv ė+ kpe ≈ 0,

where e = z − r, and r, ṙ and r̈ in (21) are redefined
to be the reference trajectory and its derivatives in the
task coordinates z. Control (23) and (15) decouple the
dynamics in each Cartesian direction, and render them
(approximately) linear and second order. Outer loop gains
kp and kv may be adjusted to modify the manipulator
impedance independently in each direction. Fig. 3 is a flow
chart for the complete approximate feedback linearizing
control algorithm.

3. TACTILE SENSOR FEEDBACK

A parallel gripper is attached to the underside of the wrist
flange, with its axis aligned with the z1-axis. The two
fingers do not operate independently; only the distance
between them can be controlled. Denote the right finger
position relative to the center of the end effector as z4.
Then the robot impedance is ratio of force applied to the
gripper left or right finger, fi, i = 1, 2, respectively, to the



Fig. 4. Delta robot with tactile sensor (blue) feedback in-
tegrated into the fingers (green) of a parallel gripper,
positioned to grasp a block (brown).

velocity of the finger, ż1 + ż4, and is generally represented
in the frequency domain.

The gains kp and kv in (23) shape the robot impedance.
For contact applications, it is desirable to reduce the
impedance, and it is common to set kp = 0 and make kv
small. However, this can have an adverse affect on robust-
ness with respect to disturbances and model uncertainty,
and result in unacceptably large reference tracking errors.
An alternative means to shape the impedance is to use
tactile sensor feedback.

Consider the feedback system diagrammed in Fig. 4. Force
sensors mounted to the insides of the fingers directly
measure contact forces fi. Their difference is amplified by
k∗, fed back, and subtracted from v1 in (21). Conceptually,
when one finger contacts an object, the sensed force is
amplified and fed back to provide an outer loop force in
the same direction, effectively reducing the impedance of
the robot.

A Bode diagram of the admittance (inverse of the
impedance)

A(s) =
s(Z1(s) + Z4(s))

F (s)

for the combined robot and gripper is shown in Fig.
5 for k∗ = 0 (blue) and k∗ = 2 (red). (Note: A(s)
depends on kinematic, dynamic and control parameters of
the gripper and is omitted for space reasons.) The force
sensor dynamics are modeled as a first-order low pass
filter with bandwidth ks = 100 rad/s. This particular
gripper provides only velocity control, as shown in Fig.
4, and has a large gear ratio, making its effective inertia
and impedance relatively large compared to the robot.
Because of this, force feedback to the gripper velocity
loop is not as effective. The effect of the tactile sensor
feedback is to increase the robot admittance (decrease the
robot impedance) in the sensor bandwidth, in this case by
10dB. This is a useful means to shape the robot impedance
beyond modulation of the gains kp and kv, and more
complex forms of compensation than just k∗ are possible.

Fig. 5. Bode plot of robot admittance with tactile sensor
feedback, with kp = 1, kv = 2, ks = 100, and k∗ = 0
(blue) and k∗ = 2 (red).

3.1 Soft Grasping Example

Consider the situation diagrammed in Fig. 4, where a
parallel gripper is positioned to grasp a block (brown),
which rests on a surface (gray). The block location is offset
from the gripper centerline by an unknown distance δ. The
objective is to close the fingers and grasp the block while
minimizing the resulting horizontal sliding motion. Note
that if the robot horizontal position z1 was to be held
fixed, then the block would slide a distance δ.

When the first finger (i = 1 or 2, depending on the
sign of δ) contacts the block, this feedback actuates the
robot to maintain the force fi to be small relative to the
nominal case (k∗ = 0), reducing the transfer of momentum
to the block after the first collision event. This feedback
remains active before and after both of the collisions occur,
and, together with the velocity control for the fingers, it
naturally results in both fingers closing, contacting the
block in sequence, with a final contact force of fi =
ṙ4kv4. The grasping operation is accomplished with no
hybrid switching or mode changing, and results in minimal
perturbation of block.

The scenario was simulated for the delta robot dynamics
(1) - (4), (9) and (10), with feedback control (23), using
the Modelica realization described by Bortoff (2018) and
Okasha and Bortoff (2020). The parameters of the robot
are identified from our laboratory robot, and the block
parameters represent a wooden Jenga piece. Static friction
is modeled assuming wood-on-wood contact.

Figs. 6 and 7 show the results of a grasp simulation,
comparing active tactile feedback (red) with the non-
tactile feedback case (blue). For the both cases, the z1
direction gains were kv1 = 0.1 and kp1 = 0, so that it
had a very low impedance, while the other directions have
higher gain. Note especially the block displacement which
was nearly zero using the tactile feedback, whereas for the
nominal case, the block slid 4 mm, nearly half the possible
δ = 10 mm.



Fig. 6. Grasp simulation results showing resulting robot,
finger and block displacement for k∗ = 0 (blue) and
k∗ = 2 (red).

Fig. 7. Initial and final displacement of grasp simulation,
showing approximately 4mm motion of the block with
no tactile sensor feedback (top right), but less than
1mm motion with k∗ = 2 (bottom right). The white
lines on the block (brown) and surface (gray) are
aligned in the initial positions (left).

4. CHESS PLAYING DEMONSTRATION

The MERL delta robot shown in Figs. 1 and 8, is a
custom-built research robot intended for assembly control
experiments. Each machined aluminum proximal link is
directly actuated by a Mitsubishi Electric HG-KR-73B
rotary AC servomotor with 0.75 kW rated power, 2.4 Nm
rated torque, and a 22-bit rotary encoder resolution, giving
a task-space resolution of less than 5µm. The distal links
are are hollow carbon fiber tubes to reduce weight. A
parallel gripper by New Scale Robotics, with a modified
interface and control, is mounted to the underside of the
aluminum wrist flange. Each servomotor is driven by an
MR-J4-B servo amplifier in torque mode, which is in turn
controlled by a MR-MC210 motion control board that is

Fig. 8. System diagram.

installed in a PCI slot of a PC. The gripper is actuated by
a commanded velocity, provided by an analog signal from a
D/A board installed in the same PC. Tactilus piezoelectric
tactile sensors mounted to the inside of each gripper finger,
are also interfaced through the same A/D board.

As a demonstration of impedance control (21), (23) and
the soft-touch force feedback, a speed chess demonstration
was programmed. Of course, robots playing chess is not
novel; the classic Mechanical Turk played chess in the
18th century! But in July 2022, a chess playing robot
broke a 7-year-old player’s finger at a chess tournament
in Moscow, as reported by CNN 2 , highlighting the risks
of human interaction with a manipulator not intended for
such purposes. The contribution here is to demonstrate a
low-mass, direct drive robot controlled by the task-space
variable-impedance feedback (23), which is inherently safer
for human-robot interaction, yet quite fast.

The system can play chess against a human opponent
or against itself. Referring to Fig. 8, the open-source
StockFish chess engine was interfaced to Matlab and
computes moves. When playing a human opponent, a
RealSense camera monitors the board, determines the
human’s chess move, and communicates that to StockFish,
which computes the robot’s next move. From this, a set of
waypoints is computed, and a minimum-time trajectory
generator computes a reference trajectory and feedback
gains for the next move. During play, chess pieces are
grasped by the robot, and either moved to a new location
on the board, or removed from play (if it has been
captured). Feedback gains are reduced as a function of
distance from the board, which minimizes the impact when
the piece is put on the board. Each piece is subject to
a small amount of position uncertainty, and each piece
has a different shape. (The vision system is not used to
determine precise locations of each piece; rather, they are
all assumed to be in the center of their square.) Between
each move, the robot moves to a home position so that it
does not obstruct the view of the camera, and is not in the
way of a human player.

The software is organized in a client-server architecture,
with communication among the components by UDP.
Processes run on two computers. An interrupt service
routine (ISR) runs on the first PC, and is triggered by the
MR-MC210 motion control board every 0.88ms to measure
the servomotor angles and velocities, and also to write the

2 https://www.cnn.com/2022/07/25/europe/chess-robot-russia-
boy-finger-intl-scli/index.html



previously computed torques to the servos. The inner-loop
control (23), computed as in Fig. 3, is realized as a server
running on the same PC. It is triggered every time the
ISR runs. The server takes approximately 90µs to compute
(23), which is about 10% of the available time between
samples. Because of the high sample rate (1.1kHz), the
Newton solver (7) runs only 1-2 iterations to reduce error
to less than 8 decimal places. The rest of the control
consists of evaluation of linear and nonlinear functions,
and solving linear systems of dimension 3, 6 or 9 by LU
decomposition. All software is written in C.

Matlab, running on the same PC, interfaces to the Stock-
Fish engine. A script runs after every move to determine
a human player’s move via the RealSense camera. Matlab
maintains the state of the chess board, and computes a set
of way points for the robot to execute its next move. These
are sent to the Trajectory Generator, which computes the
reference r and its first two derivatives to interpolate the
way points. The reference is a C2 (so r̈(t) is continuously
differentiable), and is nearly the minimum time trajectory,
within upper bounds on position, velocity, acceleration
and jerk. The reference follows straight lines between way
points, with clothoid splines inserted at the intermediate
way points to ensure the jerk remains bounded, which is
important to minimize vibration.

Fig. 9 shows trajectories in the z-coordinates of one game,
in which the robot plays itself. The tracking error is good
during motion, but as can be seen in the lower plot, there
is larger tracking error for the z3 coordinate when it grasps
or places pieces, because the gains are detuned when the
robot is closer to the board.

5. CONCLUSION

A feedback linearizing control algorithm for a delta robot
in task coordinates was presented, with detail provided
about the steps for efficient computation. This is useful for
impedance control of a delta robot, where its impedance is
decoupled in each Cartesian direction, and can be modu-
lated by a higher level control. Tactile sensors were shown
to be useful to further modulate manipulator impedance.
A chess playing demonstration was also described that
uses both. These results may be useful in developing
more transparent robots, with reduced mass, inertia and
friction, that are especially useful for robotic applications
involving contact and collision such as robotic assembly.
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