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Abstract—Automotive perception involves understanding the
external driving environment as well as the internal state of the
vehicle cabin and occupants using sensor data. It is critical to
achieving high levels of safety and autonomy in driving. This
paper provides an overview of different sensor modalities like
cameras, radars, and LiDARs used commonly for perception,
along with the associated data processing techniques. Critical
aspects in perception are considered, like architectures for
processing data from single or multiple sensor modalities, sensor
data processing algorithms and the role of machine learning
techniques, methodologies for validating the performance of
perception systems, and safety. The technical challenges for each
aspect are analyzed, emphasizing machine learning approaches
given their potential impact on improving perception. Finally,
future research opportunities in automotive perception for their
wider deployment are outlined.

Index Terms—Automotive perception, radars, cameras, Li-
DAR, sensor data processing, advanced driver assistance system,
autonomous driving, safety.

I. INTRODUCTION

Different levels of automation are being included in modern
vehicles, from an Advanced Driver Assistance System (ADAS)
to a fully automated driving system (ADS). These systems
use sensor and control technologies to improve driving safety
and comfort. Automotive perception is a core module in such
systems. Perception information relies on using one or more
sensor modalities like camera, radar, and LiDAR. By suitably
processing raw sensor data, information on the environment
around the vehicle (external perception) and the state of the
vehicle cabin (internal perception) is derived. Each sensor
has its strengths and limitations, and its signal response will
vary according to the driving environment [1]. The processing
of sensor data is thus key to deriving reliable environment
information for safe vehicle driving. This includes different
aspects: (i) processing architectures considering what data
to combine from sensors at which level of the processing
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chain, (ii) processing algorithms for external perception ca-
pabilities like object detection and classification, range and
velocity estimation, or for internal perception capabilities like
occupancy detection, occupant alertness, (iii) incorporation
of physics/model/data-driven methods into data processing,
(iv) application-level performance metrics and validation ap-
proaches, and (v) safety in perception-driven vehicle functions.
In this paper, our objectives are to identify the key challenges
in sensor processing for automotive perception, to review the
advances towards addressing them, and to identify the gaps
that exist to attain higher levels of perception.

High-quality, robust automotive perception is needed to
reduce the number of traffic accidents and fatalities resulting
from human driving errors. Automotive perception has seen
significant progress in the past years due to the emergence
of advanced sensors, computing power, and the successful
application of machine learning techniques. This has led to the
deployment of multiple driving functions with increased levels
of autonomy in commercial vehicles. Automotive perception,
however, is a challenging problem for several reasons. First,
the operational design domain (ODD) is complex, and per-
ception needs to be reliable across different environmental and
driving conditions. Second, the interaction between perception
and driving controls may lead to propagation errors when the
human is no longer part of the control loop. Third, the design
and deployment of perception-based autonomous vehicles in-
volves new technological as well as social challenges.

The remainder of the paper is organised as follows. Sec-
tion II outlines the architecture of ADAS/ADS systems to
provide the context within which automotive perception sys-
tems are used. Section III describes the different applications
of automotive perception systems to infer information about
the exterior and interior of the vehicle. Section IV provides
details of state-of-the-art methods used to infer information
from data acquired from major classes of sensors, namely
radar, camera and LiDAR. It includes the challenges involved
in deriving reliable and robust perception. Section V addresses
the emergent validation domain, discussing the norms, safety
metrics, and the monitoring of abnormal situations especially
considering machine learning. Finally, Section VI concludes
the paper by presenting future opportunities for automotive
perception.

II. GENERIC ADAS/ADS ARCHITECTURE

An ADAS/ADS as depicted in Fig. 1, has multiple compo-
nents [2]: a sensor system with sensors, data processing involv-
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ing sensing and perception, a decision and planning system,
and advanced driving controls and automotive services.

The perception system covers awareness information both
external and internal to the automotive. External perception
covers information on static and dynamic objects on the street,
traffic and street signs, and is obtained using sensors like
cameras, radars, and LiDARs. External perception provides
a real-time picture of the dynamic environment around the
vehicle, either by advanced processing of data from a sen-
sor modality [3], [4], [5], or by fusing data from multiple
modalities [6], [7]. Another aspect of external perception is
localization to determine the location of the vehicle. Global
Positioning System (GPS) is commonly used for localization
to provide a global position of the vehicle as well as a velocity
estimate. A limitation of GPS is that the received signals suffer
from blockage and heavy multipath conditions typical in dense
urban environments. To compensate for resulting localization
vulnerabilities in GPS, an inertial measurement unit (IMU)
with sensors like gyroscopes and accelerometers is employed.
In such a fusion-based localization system, GPS position errors
are corrected using IMU data along with additional constraints
on vehicle motion, orientation and its position on a map. Note
that external perception sensors can also be used to derive
relative localization information using cameras [8] and radars
[9]. Internal perception provides information on the occupants
and objects in an automotive. Using sensor technologies like
camera and radar, presence, activity and attention levels of the
driver and passengers may be monitored to support various
levels of autonomous driving. Understanding the state of
occupants is crucial for effective human-vehicle interaction in
ADAS/ADS.

The decision and planning system determines the maneuvers
for a vehicle. Driving decisions are based on previously ac-
quired knowledge about the environment, such as the drivable
area and traffic rules, and also real-time information such
as objects in the vicinity and traffic patterns. Decision and
planning can be divided into three stages: global routing,
behavior inference, and local motion planning. Global routing
determines vehicle routes from source point A to destination
point B, according to some criteria like shortest travel time or
least number of traffic signs encountered. This determination is
done using graph routing algorithms, a digital map and a traffic
management system. After a global route has been determined,
the automotive must be able to navigate the selected route
and interact with other traffic participants according to driving
conventions and rules. Given a sequence of road segments
specifying the selected route, the behavioral inference stage is
responsible for selecting an appropriate driving behavior at any
point of time based on the perceived behavior of other traffic
participants, road conditions, and other available signals from
the infrastructure. The local motion planning stage translates
the behavioral inference stage decisions into a feasible local
path plan. It determines a path that is dynamically feasible
for the automotive, comfortable for the passenger, and avoids
collisions with obstacles determined by the perception system.

Vehicle driving control executes the reference path defined
by the decision and planning system by selecting appropriate
actuator inputs to carry out the planned motion path. Controls

need to be accurate for safe automotive driving and robust
under various driving conditions. As such, the control system
should also be able to deal with diverse physical vehicle
characteristics and dynamics. The vehicle control system is
intimately linked to advanced driving functions like adaptive
cruise control, emergency braking, and lane keeping assis-
tance; automotive services like assisted parking, traffic alerts
and diagnostics further enhance the experience and safety of
a user.

III. SENSORS FOR AUTOMOTIVE PERCEPTION
APPLICATIONS

A. Automotive-external perception

Different sensor-based vehicle applications, as depicted in
Fig. 2, rely on information from the perceived environment for
situational understanding and decision making. These extero-
ceptive sensors acquire data from the vehicle’s environment,
which is then transformed into meaningful information such
as the occupancy grid map, the 3D position of different traffic
agents, and road characteristics (e.g., lane markings). There
are two types of sensors: Passive sensors, like video cameras
and infrared/thermal imaging sensors, which measure ambient
environmental energy entering the sensor; and active sensors
which emit energy into the environment and then measure the
environmental response. These sensors can manage more con-
trolled interactions with the environment; however, the emitted
energy is limited by safety constraints or from interference
between its signal and those of other active sensors which may
impact sensing performance (refer to [10], [11] for automotive
radar transmission power limits). Examples of active sensors
include ultrasonic, LiDARs and Radar.

Exteroceptive sensors are sensitive to the operating outdoor
environment conditions, and their performance can vary con-
siderably according to their deployment location and weather
conditions. The performance of perception algorithms depends
on the ODD where the automotive operates [12], with various
factors coming into play like: Dynamic range (e.g., the ratio
of the largest to the smallest measurable signal for a radar),
Range (e.g., how far or how near a radar or LiDAR can
detect), Resolution (e.g., the number of pixels in an image),
and frame rate (e.g., the rate at which data is acquired or the
frames per second of a camera). In addition, the performance
of perception sensors is also impacted by its layout. For
example, while radars are commonly placed around vehicle
bumpers or brand emblems, the same placement may not be
suitable for other modalities like cameras due to an impeded
field-of-view. Environment conditions have a role on sensor
lifetime performance - very low or high temperatures, dust,
humidity are factors that affect sensor performance and means
to weather-proof sensors or to service them must be accounted
for.

B. Automotive-internal perception

Automotive-internal perception, also termed in-cabin mon-
itoring, systems are an indispensable feature of vehicle safety
systems. They are a part of cyber-physical human systems
(CPHS) capable of responding or taking actions based on
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Fig. 1. Architecture of an ADAS/ADS equipped automotive.

perception of the human condition in the vehicle, as shown
in Figure 3. Four principle tasks have been the focus of de-
velopment: 1) occupancy detection/characterization, 2) driver
monitoring, 3) passenger monitoring, and 4) human-vehicle
interaction. Occupancy detection/characterization refers to the
ability to automatically detect where people are located in the
vehicle and especially the presence of children and infants.
Occupancy sensing can provide valuable input on the proper
use of child seats and seat belts, while also enabling the
optimization of airbag function according to the height of the
person sitting in the seat. This function is also an important
safety feature for preventing the death of children and pets left
in vehicles on hot days, as a vehicle perceiving this situation
could take preventive measures, such as notifying the owner
of the vehicle, turning on the air conditioning or opening a
window. New U.S. federal regulations require all new cars
to be equipped with a back-seat alert system [13], while the
European New Car Assessment Program also prescribes new
Child Presence Detection (CPD) protocols [14] to prevent in-
vehicle heat-related child deaths.

Driving monitoring systems are primarily targeted towards
ensuring safety by monitoring a driver’s ability to effectively
drive the vehicle. This can be indicated by a variety of
measurable variables, such as driver vital signs (heart rate and
respiration), driver fatigue, drowsiness and attention. Examples
of attention monitoring include tracking the direction that the
driver is gazing, head movements, and eye blinking, especially
blink duration and frequency. Because there is a correlation
between fatigue and heart rate, vital sign monitoring can be
used for detection of critical health events, such as a heart

Fig. 2. Driving features based on automotive-external perception.

attack, but also for drowsiness detection. Other health related
indicators that have been considered include blood pressure
measurement and blood glucose level monitoring. Passenger
monitoring includes features of vital signs and health monitor-
ing, as well as general activity within the vehicle. Especially
when children are present, monitoring seat belt usage and
whether potentially dangerous passenger activity is occurring
(such as children changing seats) can be important for safety.

Human-vehicle interaction (HVI) has been predominantly
considered within the context of non-contact gesture recog-
nition for control of user interfaces and vehicle sub-systems,
such as the radio, infotainment systems, or air conditioning,
among others. However, the prospect of autonomous vehicles
raises new dimensions in HVI, whereby two-way human
communications with the vehicle must also be considered.
Examples motivating such functionality include not just in-
cabin HVI, but interactions that might occur if a passengerless
autonomous vehicle were pulled over by a police officer. HVI
also arises in environmental scene understanding outside the
car, as an autonomous vehicle must also be able to navigate
based on directions from a police officer directing traffic
with the additional consideration that some detours may not
be well marked with driving lanes. Moreover, while current
collision avoidance systems simply try to detect and steer away
from obstacles, HVI systems of the future could also include
pedestrian injury mitigation features in the event of collision.

Currently, automotive-internal perception systems imple-

Fig. 3. Driving features based on automotive-internal perception.
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Fig. 4. Automotive external perception frames of stereo camera (top row), Radar (middle row) and LiDAR (bottom row) under different weather and light
conditions (sun, fog, rain, snow, and night in five columns). Figures are plotted from data in the open RADIATE dataset [15].
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Fig. 5. Illustrative processing for radar, camera and LiDAR external-
perception.

mented in commercially-available vehicles rely on video-based
technologies [16] for extracting passenger information such as
occupancy, posture, whether part of the body is outside the
vehicle, seat belt usage, use of a car seat, whether a child has
been left unattended, whether there are objects or belongings
in the vehicle, and detection of pets, animals, or miscellaneous
irregular situations. In addition to these functions for safety,
video can also be used for security purposes to detect incidents
of vandalism, abuse, presence of dangerous weapons, theft or
other illegal activities. Video has also been used to enable non-
contact user interface control via gesture recognition. In this
case, a small camera is positioned such that it can monitor
the area immediately in front of the touch screen next to the
driver.

Although cameras have enabled some in-cabin monitoring
features, their performance is adversely impacted by chang-
ing and low ambient light conditions. There has been an
increased interest in radars recently for in-cabin monitoring,
as millimeter wave radars can be used to remotely measure

vital signs, track eye blinking, recognize gestures and detect
vehicle occupancy. Radar offers sensing solutions that are less
invasive of privacy in comparison to video, while not being
dependent upon ambient lighting conditions. Over the last
few years, several studies examining radar-based occupancy
detection have been published. While some studies have con-
sidered continuous wave [17], pulsed [18], and impulse radio
ultra-wide band (IR-UWB) radar [19] systems, most works
have focused on utilization of high-range resolution FMCW
radars [20], especially multi-channel FMCW [21]–[23] due to
its greater angular resolution.

Driver attention monitoring studies have focused on radar-
based vital sign recognition [24]–[26], monitoring of driver
head movements [27], eye blinking [28]–[31], fatigue, con-
centration and drowsiness [32]–[35], and health indicators,
such as blood pressure [36] and blood glucose levels [37].
The presence of body movements and respiration effects both
the measurement of heart rate as well as that of eye blinking
frequency and duration. Thus, methods for jointly estimating
heartbeat and blink rate have also been proposed [38].

Gesture recognition using radar was postulated early in [39],
but was made practically possible with the development of
integrated, millimeter wave RF transceivers. Radar-based ges-
ture recognition gained significant attention due to the Google
SOLI project [40]. While gesture recognition research has
predominantly focused on the design of deep neural networks
to improve classification accuracy of common, ubiquitous
hand gestures, such as virtual knob, slider, and push button, the
efficacy of radar has also been demonstrated for sign language
recognition [41]. In automotive environments, studies have
considered radar-based intelligent driver assistance [42], the
utilization of LiDAR, camera and radar for traffic signalling
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gesture recognition [43], and radar-enabled HVI for in-car
infotainment control [44]. In-vehicle behavior and gesture
recognition has also been proposed using Wi-Fi signals [45].

IV. PROCESSING AND LEARNING ALGORITHMS

As discussed in the previous section, exteroceptive sensors
exhibit considerably varying performance and sensitivity to
operating outdoor environment conditions. This is manifested
in Fig. 4 where stereo camera, radar, and LiDAR frames
from the RADIATE dataset [15] are plotted under various
light/weather conditions (e.g., sun, night, fog, rain, and snow)
in different driving scenarios (e.g., urban, suburban, highway,
etc.). Specifically, Fig. 4 clearly shows the adverse impact
(e.g., blur) of fog, rain, and snow on the stereo camera,
while LiDAR frames show dense false point clouds due to
snowflakes in snow conditions. On the other hand, radar
frame quality is limited by its resolution, particularly at long
distances. In the following, we overview the processing and
learning algorithms for each sensor modality and the need for
sensor fusion.

A. Radar

Automotive radar has been traditionally a part of ADAS
for safety features such as emergency braking, adaptive cruise
control, and self-parking systems. These features have been en-
abled using traditional frequency-modulated continuous wave
(FMCW) chirp signals along with signal processing techniques
such as pulse compression, low-pass filtering, analog-to-digital
conversion (ADC), fast Fourier transform (FFT), Doppler
processing, clutter removal, and constant false alarm rate
(CFAR) detection. For each receiver RF chain, by applying
FFTs on the fast-time and slow-time samples of the baseband
signal as depicted in Fig. 5, the range-Doppler (RD) heatmap
can be constructed with options to apply a window function
to suppress sidelobes. These RD heatmaps from multiple
receiver RF chains can be combined to increase signal-to-
interference-and-noise ratio (SINR). Then radar detection is
performed by comparing the output power of a receiving
filter with a threshold. If the measured power exceeds the
threshold, an object is detected and the associated signals are
then processed to estimate object parameters such as range,
radial velocity (or range rate), and angles. In this context, a
CFAR detection or its variant is commonly used to maximize
detection probability while maintaining a fixed probability of
false alarm for a given SINR. One example of CFAR detection
is the cell-averaging CFAR which computes the threshold from
the average power of neighboring range-Doppler cells that
are separated by several guard cells to the cell of interest
(COI) to avoid possible object contamination and determine
whether the COI contains an object (H1 hypothesis) or not
(H0 hypothesis) by comparing the detection statistic with the
threshold. Comprehensive overview of basic FMCW-based
automotive radar signal processing techniques can be found
in [46] and [47]. Conventionally, these automotive radar
systems were designed to achieve desired resolution and max-
imum unambiguous limits in the range and velocity domain

by optimizing waveform parameters (e.g. bandwidth, chirp
period).

Beyond the safety features, current automotive radar is
limited in terms of its pixel information (i.e., limited azimuth
and elevation angular resolutions) to deliver high-quality per-
ception information [46]. To meet the challenge, a new wave of
chip developments eye on improving the angular resolution of
automotive radar [59] to deliver LiDAR-like radar perception
with enriched semantic features. Particularly, high-resolution
3D (range-velocity-azimuth)/4D (3D+elevation) radar images
enable the ability to correctly detect and classify objects in
the environment. For example, it is crucial to differentiate
overhead objects such as bridges and traffic signs while being
aware of low-lying objects such as manholes, road debris, and
curbs.

Since the angular resolution is determined by the beam
width that is inversely proportional to the aperture size,
chip vendors take various approaches to form the beam and
synthesize a large aperture. Mechanically scanned FMCW
radars, e.g., Navtech CTS350-X, have been used to collect
360◦ bird’s-eye view (BEV) radar images in the range-azimuth
domain but without the Doppler velocity [15]. Assuming
that the ego vehicle’s motion is known, synthetic aperture
radar (SAR) techniques can coherently combine returned radar
waveforms to create a high-resolution two-dimensional image
of the scene [60]. For instance, a 0.1◦ azimuth resolution
was achieved for imaging static objects and can deliver
∼1, 000, 000 points for a typical scene [61].

To achieve high angular resolution, another popular ap-
proach is to use multiple-input multiple-output (MIMO)
radar [62] where multiple Nt transmitting (Tx) and Nr re-
ceiving (Rx) antennas are used to form a virtual array with
NtNr elements. The combined MIMO-FMCW automotive
radar only employs Nt+Nr RF chains to reduce the hardware
cost. The shape of the virtual array is determined as the
convolution of the transmitter array and the receiver array.
To achieve this, one needs to separate corresponding wave-
form to each transmitter at each receiver, provided that the
transmitting waveforms from different Tx antennas can be
separable or orthogonal. Several orthogonal MIMO signal-
ing schemes can be realized in time-division multiplexing
(TDM), frequency-division multiplexing (FDM), and Doppler-
division multiplexing (DDM) (also referred to as slow-time
MIMO) modes [63]–[66]. Once the waveforms are separated,
the received MIMO radar waveforms can be arranged along
the fast-time (range/distance), slow-time (Doppler/velocity),
azimuth (horizontal array orientation) and elevation (vertical
array orientation) dimensions. Depending on the computing
resources and power consumption budget, the MIMO-FMCW
automotive radar may coherently process the separated MIMO
waveforms in one or more dimensions at once or in a cascad-
ing fashion (e.g., range-Doppler domain first and then angular
domains) with standard FFT operations or more advanced
super-resolution spectrum estimation methods such as MUSIC,
ESPRIT, and compressed sensing. The TDM-MIMO mode has
been commercialized by various chip vendors due to relatively
easy implementation and less computational requirements on
the waveform separation to achieve more than 100 or even
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TABLE I
OPEN AUTOMOTIVE RADAR DATASETS

Datasets Year Size Annotation Data Format Adverse Weather
nuScenes [48] 2020 large bounding box, Track ID sparse points Yes

RadarScenes [49] 2021 large Point Annotation sparse points Yes
RADIATE [15] 2020 medium bounding box, Track ID dense points (scanning) Yes

Oxford robotcar [50] 2020 large object pose dense points (scanning) Yes
MulRan [51] 2020 large object pose dense points (scanning) No

TJ4DRadSet [52] 2022 medium bounding box, Track ID dense points No
VoD [53] 2022 small bounding box, Track ID dense points No

CARRADA [54] 2020 medium bounding box, Track ID RAD heatmap No
CRUW [55] 2021 medium object class, position RAD heatmap No

RaDICal [56] 2021 large bounding box Raw data No
RADDet [57] 2021 medium bounding box RAD heatmap No
RADIal [58] 2021 medium object, segmentation RAD heatmap+points No

∼2, 000 virtual channels in the azimuth and elevation domains
[63], [67], [68].

Open radar-included automotive perception datasets have
begun to emerge by using commercial radar chips; see Table I.
Earlier efforts focused on the collection of radar detection
points for perception. nuScenes [48] is one of the first large-
scale (1 million annotated frames) automotive perception
datasets with commercial automotive radar included. However,
due to poor angular resolution, the radar point clouds per
vehicle are very sparse (e.g., less than 10). RadarScenes [49]
combines detection points from 4 automotive radar sensors
operating at 79 GHz to boost the number of detection
points per object. For high angular-resolution automotive radar
datasets, the Oxford radar robotcar [50], MulRan [51], and
RADIATE [15] (see the middle row of Fig 4) datasets used
mechanically scanning FMCW radar to get sub-1 degree
angular resolution for BEV radar images but without the
Doppler velocity information. More recent efforts focus on the
radar heatmap in range-Doppler (RD), range-angle (RA), and
range-angle-Doppler (RAD) domains [54]–[58]. For instance,
the CARRADA dataset provides three (RA, RD and RAD)
heatmaps on a scenario of test tracks [54].

Driven by the availability of high-resolution automotive
radar hardware platforms and open datasets, advanced model-
based signal processing and learning-based pipelines [69] have
shown great potential to achieve state-of-the-art performance
in radar-assisted object detection, segmentation, multi-object
tracking, simultaneous localization and mapping, trajectory
and behavior prediction, multi-modal sensor fusion, and scene
understanding.

1) Radar Detection Point: For sparse radar detection
points, model-based object detection and tracking algorithms
have been considered in the context of extended object track-
ing (EOT) [70]. One of the key challenges for EOT is to model
the spatial distribution of radar detection points over the extent
of an automotive vehicle and the subsequent prediction and
update of expanded state (e.g., vehicle position, orientation,
speed, turn rate, length, width, etc.) using Bayesian filtering
[71]–[77]. These sparse radar detection points can also be
processed by heuristic distance-based clustering algorithms
such as DBSCAN or PointNet-like learning algorithms. For in-
stance, PointNet [78] and PointNet++ [79], [80] were applied
to segment radar detection points and estimate 2D bounding

boxes from those segmented radar points by taking into
account unique radar features such as the Doppler velocity and
radar cross-section (RCS) [81]. A two-branch radar point seg-
mentation network was considered in [82] with a convolution
network branch performing semantic segmentation over radar
grid maps in the static environment and the other recurrent
segmentation network on radar point clouds of moving objects.
Then a merging step takes the output class probabilities of
each cell in the grid map from the two classifiers to form
point clouds.

Compared with sparse points, dense radar points from high-
resolution automotive radar platforms (e.g., scanning-based,
SAR or MIMO-based) may enable radar feature extraction
at a level closer to LiDAR perception networks. Particularly,
PointPillars was applied to the 4D radar data in a new VoD
dataset [53] and a reduced performance gap in terms of object
detection can be achieved between a 64-line LiDAR sensor
and a high-resolution 4D radar sensor with the utilization
of elevation resolution and integration of successive radar
frames. [83] proposed a radar transformer that uses both vector
and scalar attention mechanisms to construct attention maps
over 3D (spatial, Doppler, and RCS) domains. Exploiting
the temporal relation of successive radar frames can further
enhance feature extraction of radar point cloud. [84] proposed
a cross-attention network that exploits the consistence of
objects over successive radar frames in different levels (e.g.,
the input level by permuting the frame order and the feature
level by introducing the cross-attention feature module). These
selected temporally enhanced features are then used to regress
oriented bounding boxes (OBB) at each of successive radar
frames, similar to the CenterPoint framework [85].

2) Radar Heatmap: Radar heatmaps may have more se-
mantic features for low-RCS and static objects than the
after-CFAR radar detection points. It might be arguable that
the neural network-based feature extraction can be more
representative from the heatmap domain for complex-shape
objects than the model-based CFAR detection and point-based
networks. For instance, the CA-CFAR detection is optimal in
the Neyman-Pearson criterion if the noise and interference
amplitude is Rayleigh distributed, which may not hold in
practice. Moreover, the choice of guard cells is critical to
avoid object contamination. Direct heatmap-based approaches,
on the other hand, skip the traditional model-based CFAR
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detection and can directly backpropagate the training loss into
the heatmap feature extraction networks. To this end, image-
based backbone networks and downstream pipelines have been
applied to the radar heatmap [86]. A straightforward way is
to treat the 3D RAD heatmap as an RGB image but with
the number of channels the same as the number of Doppler
bins. Then, image-domain object detection, segmentation and
tracking pipelines can be applied to the input RGB-like radar
heatmap [57], [87], [88]. In [57], a one-stage anchor-based
YOLO framework with a dual detection head was considered
to generate both 3D RAD and 2D Cartesian bounding boxes.
Evaluation on their own RADDet dataset shows a 56.3%
average precision (AP) at intersection over union (IoU) of
0.3 on 3D bounding box predictions and, respectively, 51.6%
at IoU of 0.5 on 2D bounding box prediction. To reduce
the input dimension of a full 4D heatmap with two angular
azimuth and elevation domains, the 4D RAD heatmaps can
be decomposed or projected into multiple 2D heatmaps. [87]
proposed a RAMP-CNN approach to bypass the complexity of
4D convolutions and to fuse extracted features from multiple
2D heatmaps. [88] takes three projected 2D “views” of the
RAD heatmaps as the input and three feature extraction net-
works are used for each projected view. These view-dependant
features are then concatenated and fed to a decoder for
the segmentation task. Evaluation on the CARRADA dataset
shows a mean IoU at 58.7 on the RD heatmap and 41.3% on
the RA heatmap over 4 categories of pedestrian, cyclist, car
and background.

The tremendous progress in the recent years, driven by the
open access of high-resolution automotive radar datasets, pro-
vides a promising future for radar-based external perception.
For the external perception task, achieving higher angular res-
olution radar detection points or heatmaps poses further strain
on the cost, computational resources, and power consump-
tion budget. Similar to the ResNet and Vision Transformer,
strong and unified radar-specific feature extraction backbone
networks are needed. The need of strong backbone networks
also call for diverse downstream tasks such as object detection,
segmentation, and tracking, or self-supervised learning without
any (or with limited accuracy) annotation labels.

B. Camera
As evident from Fig. 5 and the top row of Fig. 4, camera-

based images provide distinct features to separate objects
of interest (e.g., vehicles, pedestrians) from the background,
and such features can be integrated into state-of-the-art deep
learning frameworks for downstream tasks including object
detection, classification, depth regression, object association
and tracking, pixel and instance segmentation [89].

Large-scale datasets involving cameras have been collected
for the development of autonomous driving technologies. The
details of these datasets are listed in Table II. The most widely
used ones are the KITTI and BDD100K because of its early
release with various sensor signals or large number of images
in various traffic situations to examine the effectiveness of
developed methods.

Current learning-based methods can be generally classified
into two categories including two-stage detection and one-

stage detection. The two-stage detection, also called region-
based detection, firstly scans the complete image to find the
potential regions of interest and then focuses on these regions
for deeper understanding, which generally imitates the atten-
tional mechanism of human brain [103]. The two stages for
detection are respectively responsible for generating a set of
proposals and making predictions for these proposals. During
the proposal generation phase, a set of proposals is generated.
In the prediction phase, the feature vectors of generated
proposals are encoded by deep convolutional neural networks
and then classifiers are used to determine the category labels of
the proposals [104]. R-CNN is a pioneering two-stage object
detector proposed by Girshick et al. [105]. Xie et al. [106]
proposed an improved object detection approach based on R-
CNN. High-quality oriented proposals were firstly generated in
an almost cost-free way, and then regression and classification
technologies were used for prediction. The testing results on
two datasets including DOTA and HRSC2016 showed that the
mean average precisions (mAPs) were 75.87% and 96.50%,
respectively. Despite the advances in learning detectors based
on R-CNN networks, proposal generation still relies on tradi-
tional methods such as selective search [104]. Studies [107]
[108] show that CNN has a remarkable ability to locate objects
in convolution layers. Therefore, the faster-CNN method is
proposed in [109] by developing a region proposal network
based on CNNs. [110] proposed to use faster R-CNN for
object detection in rainy weather for autonomous driving. The
detection results show that faster R-CNN incorporating image
translation and domain adaptation performed the best among
the examined methods in rainy weather.

Different from two-stage detection algorithms which divide
the detection pipeline into two parts, one-stage detection
assumes that each region in the image is with a possible
detected object, and each region of interest is categorized
into background or target object without a separate stage
to generate proposals [104]. Directly mapping from image
pixels to bounding boxes with category probabilities generally
saves time when comparing with the two-stage methods [103].
According to the searching methods for areas of interest, the
one-stage methods can be further divided into anchor-based
methods and anchor-free methods. The main idea of anchor-
based methods is to predict searching anchors based on prior
definition. Anchor boxes with different sizes slid over each
position of an image, predicting the searching anchor box as
background or object based on the ground-truth pre-defined
anchors. YOLO [111], as a typical anchor-based method, con-
sidered object detection as a regression problem and spatially
divided the whole image into a number of grid cells. Each
cell was considered as a proposal to detect the presence of
objects [103]. [112] proposed three deep learning methods
for pedestrian detection in haze weather based on YOLO.
The evaluation results showed that the proposed method
MNPrioriBoxes-Yolo with separable depthwise convolution
and bottlenecks had obvious advantages with fewer parameters
for pedestrian detection in haze weather. Improved lightweight
detection algorithms based on YOLO (e.g., YOLOv4 and
YOLOv5) further enhance the recognition ability on small
objects with limited number of parameters [113].
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TABLE II
OPEN-SOURCE DATASETS FOR AUTONOMOUS DRIVING

Datasets Year Number of images Viewing Angle Resolution Camera Type Adverse Weather
CamVid [90] 2008 18× 103 Dashboard 960× 720 Monocular No
KITTI [91] 2012 15× 103 Vehicle Roof 1392× 512 2 Stereo No

Cityscapes [92] 2016 25× 103 Windshield – Stereo No

Oxford RobotCar [93] 2017 19× 103 360 Degree 1280× 960 Stereo & Monocular Yes
1024× 1024

Mapillary [94] 2017 25× 103 – 1920× 1080 – Yes
BDD100K [95] 2017 100× 106 Windshield 720p Video Yes

ApolloScape [96] 2018 144× 103 360 Degree 3384× 2710 Stereo No
CULane [97] 2018 130× 103 Windshield 1640× 590 – No

H3D [98] 2019 25× 103 Vehicle Roof 1920× 1200 3 Monocular –
NuScenes [48] 2019 1.4× 106 360 Degree 1600× 900 6 Monocular Yes

Foggy [99] 2019 14× 103 Windshield 960× 1280 Stereo Yes
Sim 10K [100] 2017 10× 103 Windshield – Gaming Engine Yes
TuSimple [101] 2017 6.5× 103 Windshield 1280× 720 – No

RDD2020 [102] 2020 26× 103 Windshield 600× 600 Smartphone No
720× 720

The main idea of anchor-free methods is using keypoints
to describe the boxes used for detection, hence the main task
is transformed into keypoint detection. The related methods
have two branches, namely corner-based methods and center-
based methods [104]. For corner-based methods, also called
multiple keypoints estimation methods [114], the confidence
scores of bounding boxes are predicted through joint corner
information in the feature map. Compared to RepPoints [115]
using 9 keypoints, [116] used a large number of adaptive
points to model objects, which achieves the state-of-the-art
performance on instance segmentation tasks. Center-based
methods simplify object detection to a central point detection
task by estimating the probability of a pixel as the central
point. Inspired by region proposal network in the anchor-
based method, [114] proposed the FII-CenterNet (foreground
information introduction CenterNet) method for traffic object
detection based on CenterNet [117].

For improvement based on these two-stage or one-stage
methods, many advanced data augmentation and deep learning
technologies have been developed to help learn effective
features for better prediction. Data augmentation changes char-
acteristics of images by cropping, flipping, rotating, scaling,
translating, color perturbations, and adding noise to enrich the
diversity of data samples for training to learn stable features
[108]. The mainly incorporated deep learning modules for per-
formance improvement include attention mechanism, pyramid
pooling, linear bottleneck and inverted residuals, depthwise
separable convolution, atrous convolution, knowledge distil-
lation, domain adaptation, SEBlock, ResBlock, mask mech-
anism, network pruning and quantification [110] [118] [119]
[120].

Anther advanced technology used to improve the perfor-
mance of learning-based algorithms in cameras is a trans-
former proposed in [121]. Inspired by the success of trans-
former in neuro-linguistic programming, transformer has also
been widely used in computer vision tasks. These methods
mainly include pure transformer, transformer with convolution,
and self-supervised representation learning with transformer.
Transformer with convolution combines transformer modules
with convolutional network modules, and self-supervised rep-

resentation learning uses transformer self-supervised mech-
anism for training. As a typical pure transformer, vision
transformer [122] divides the 2D image data into image
blocks as the input to the standard transformer for supervised
training. [123] adopted the transformer encoder structure and
the convolution module for lane detection, and the verification
results showed that optimal performance was achieved in
both efficiency and accuracy. Here a novel decoder with
dense queries and rectified attention field was proposed, which
alleviates the deficiency in pedestrian detection by using the
transformer decoder DETR (DEtection TRansformer).

Most existing approaches are supervised and rely on large-
scale datasets with reliable annotated labels, which is difficult
to obtain especially for extreme weather and driving situations.
Developing unsupervised and weakly supervised learning al-
gorithms is a promising solution. In [124], an image-level
multi-label classifier was integrated on the detection backbone
to obtain sparse but critical image regions corresponding
to the classification information to bridge the gaps between
source and target domains. In [125], a cross-domain adaptive
clustering approach was proposed by pulling into distances
between peers while simultaneously pulling away distances
from different categories, which achieves the state-of-the-art
performance in semi-supervised domain adaptation. Although
approaches have been developed for unsupervised solutions
[126], [127], [128], more efforts are still needed for further
improvement in this research area.

The other remaining challenges in camera-based processing
and learning algorithms include: (1) Deep learning based
methods are end-to-end with insufficient model interpretabil-
ity. More attention to provide model insights is required
in the future. (2) Most of the learning based methods are
with complex networks, with high computation requirements
on hardware. This makes these ML methods infeasible to
implement in the current generation of ADAS. Lightweight
ML technologies need to be developed for wide deployment
in automotives. (3) Detection of small objects is still not
satisfactory. Fusing the signals from multiple sources for
multi-modal fusion may be a solution to this challenging issue.
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C. LiDAR

As seen in Fig. 4, LiDAR provides a direct depth profile
over the angular (azimuth and elevation) domains with a reso-
lution even finer than the automotive radar. Most LiDAR type
sensors are based on different types of scanning mechanisms
that allow for the laser beams to be projected over a large
field of view following specific patterns and according to
the technology used. Scanning can be through mechanical
spinning or solid state. The former often includes a bulky
rotating module which will spin a mirror around a vertical
axis and tilt it along the pitch orientation. The latter refers
to a scanning system though micro-mirrors based on MEMS
technology [129]. A LiDAR generates streams of 3D-points,
with intensity data associated to each point (proportional to the
reflected signal). Unlike video cameras, LiDARs measure the
distance applying mostly the time of flight method. Photonics
principles are part of the technology used to operate with light
sources that need to convert signals rapidly and process them
to generate the desired measurements, whilst at the same time
mapping the direction and position of the beams as they scan to
attain the sensor field of view. It must be considered that there
is substantial processing prior to the generation of the sensor
data, thus purpose-built processors are often used that need to
comply with automotive operating standards (e.g. temperature,
vibration, etc.).

The data streamed out from the LiDAR is interpreted
through perception algorithms into hierarchical object descrip-
tions. This process can be divided into ground segmentation,
object detection, tracking, recognition and motion prediction.
Previously, these phases were addressed separately using ge-
ometric and early machine learning techniques (e.g., Support
Vector Machines, based on statistical learning frameworks).
However, the success encountered on the use of deep learning
in machine vision is also reflected on its effective use on 3D-
point clouds. Deep Learning technologies can automatically
extract features from the raw input in a single phase. Convo-
lutional neural networks (CNN) and recurrent neural networks
(RNN), such as long short-term memory (LSTM), are the most
frequently used models. Ground segmentation can be achieved
by applying CNN to LiDAR points represented by multi-
channel range images [130]. Deep neural network (DNN)
based solutions achieve object detection by recognition, keep-
ing to the paradigm of supervised learning. For example,
vehicles can be detected by CNN based neural networks on
a bird’s eye view (BEV) representation of LiDAR 3D-points
[131]. A major constraint is the low density of LiDAR 3D-
points at long distances, methods using CNN on the range
image and BEV representation like in [132], detect mainly
vehicles and no pedestrians. A compact representation of a
LiDAR point cloud as a graph was proposed as a Point-GNN
(graph neural network) method in [133]. A semi-supervised
using temporal GNNs to leverage the rich spatio-temporal in-
formation in 3D LiDAR point cloud videos for object detection
was considered in [134]. A novel approach is to integrate
evidential theory into a deep learning architecture for LiDAR
based road segmentation and mapping [135]. Currently, object
tracking is implemented mainly using deep learning, replacing,

the conventional tracking algorithm based on estimation filters
[136]. A detection net will process first a sequence of LiDAR
3D-points and images to generate detection proposals. Then,
tracks are estimated by finding the best detection associations.
This is achieved by a marching net and scoring net.

Point-wise semantic segmentation, which was previously
difficult to attain using model-based methods, is now possible
using deep learning models. One of the most popular networks
is PointNet which provides a unified architecture for appli-
cations ranging from object classification, part segmentation,
to scene semantic parsing, directly from LiDAR 3D-point
clouds [78]. As the point cloud density is increased, together
with more annotated datasets, LiDAR performance for seman-
tic segmentation should improve providing not only classes of
objects but also spatial information. A major constraint for
the application of these methods is the need for large datasets.
However, different annotated datasets have recently emerged
including the SemanticKITTI dataset [137]. It is based on the
KITTI dataset and is considered one of the largest pointwise
annotated dataset. Synthethic datasets like the PRESIL dataset
[138] that provide labelled scenarios for particular situations
are also available.

D. Fusion

Table III shows a comparison of different sensor modalities
in terms of sensing and operational features. Sensing features
depict sensing performance characteristics, while operational
features capture robustness and system integration aspects.
Typically, radars can provide range, velocity and angular
information with high resolution, in comparison to visible light
and infrared cameras. Cameras on their own are unreliable
in situations of abrupt change in illumination, such as when
entering/exiting a tunnel or extreme weather conditions. Li-
DARs also suffer from performance degradation in extreme
weather conditions, while radars are robust under adverse
weather, environmental and illumination conditions. Compared
to radars or LiDARs, cameras can capture contour, texture
and color information of the scene enabling excellent recog-
nition capabilities under non-extreme environments. Although
LiDARs are superior to radars in ranging accuracy and denser
point cloud, their cost is much higher and have a larger form-
factor making it difficult for integration in a flexible and
aesthetic way. In summary, visible light cameras are superior
in determining object features and hence find use in traffic
scene/sign understanding, radars have the better performance
in determining object motion characteristics with high res-
olution and low cost, while LiDARs have superior ranging
performance with a wide detection coverage. However each
sensor modality also has limitations, with no single modality
providing the needed sensing and perception functionalities.

The aim of sensor fusion is the collectively processing
of inputs from various modalities to perceive and derive
interpretations with defined level of certainty about the en-
vironment around the vehicle. Based on the discussion in
earlier sections and depicted in Fig. 4 and Table III, it is clear
that each individual sensor cannot work independently under
all scenarios and deliver accurate information with precision
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Se
ns

in
g

Fe
at

ur
es Distance measurement Medium Medium Very High High
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Measurement resolution High Low High High
Object Features Color & contour — Intensity Intensity
Field of View Medium Medium Medium 360◦

Sampling Rate High Medium Medium Low
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es Weather (rain, snow, fog) Vulnerable Vulnerable Robust Vulnerable
Visibility (dust, smoke) Vulnerable Vulnerable Robust Vulnerable
Illumination (low-light, glare) Vulnerable Robust Robust Robust
Sensor Interference None None Yes Yes
Processing Requirements Medium Medium Medium Medium
Sensor Layout & Aesthetics Good Medium Good Low
Costs Low-Medium High Low High

TABLE III
COMPARISON OF SENSORS FOR EXTERNAL PERCEPTION.

required to operate an autonomous vehicle with the highest
degree of safety. Sensor fusion allows information from all
sensors to be fused meaningfully to extract the best of all
sensors while offsetting the disadvantages of an individual
modality.

For ADAS/ADS, it is important that the sensor fusion archi-
tecture combines data or processed data at different meaningful
stages of the pipeline. To enable perception functions, there are
three fundamental sensor fusion approaches to associate and
integrate data across modalities to enable an informed decision
[139], [140], [141].

• Late fusion: Each sensor is operating individually and
then the processed data, i.e. likelihood function, gets
fused at the end to make a collective decision for the
system. In [142], a multi-modal vehicle detection system
employing late fusion strategy was proposed combining
optical image and 3-D LiDAR detections. Individual
modalities have their own detection pipeline, and then the
detection information is fused via a joint re-scoring and
non-maximum suppression, and demonstrated improved
detection performance over single modality detection.

• Early fusion: Sensor fusion happens at the initial data
stage with no to minimal data pre-processing to align and
normalize the raw data. The fused data is collectively
used to improve detection, classification, segmentation
and monitoring of the objects. In [143], early fusion of
LiDAR and camera data into a multi-dimensional occu-
pation grid representation as input to fully convolutional
networks for lane detection was proposed.

• Mid-level (or cross) fusion: This fusion approach com-
bines the early and late fusion approaches. Targeted
information derived from different sensors are fused at an
initial data stage given that a certain predefined criterion
is fulfilled, while other target information are fused at
higher levels under other pre-defined criteria, such as low
signal-to-noise ratio conditions. In [144], radar detections
were associated to preliminary detection results obtained
from a camera image, and then generates radar feature
maps in addition to image features to estimate 3D object
bounding boxes. Camera and LiDAR features are fused in

a shared bird’s eye view space in [145] showing improved
mAP for 3D object detection in comparison to [144] and
individual sensors in adverse weather and illumination
conditions.

V. VALIDATION METHODOLOGIES AND SAFETY
CONSIDERATIONS

Evaluating the performance of a perception system is a
complex task. It involves regulation concerning software to
ensure safety, defining system performance metrics and de-
signing methodologies for robust ML perception systems.

A. Safety standards and guidelines for perception

Currently, ISO 26262 [146] defines processes and measures
for the functional safety of systems including one or more
electrical and/or electronic systems. The requirements in ISO
26262 are considered to be sufficient to deal with risks due to
random hardware faults or classic systematic software faults
(e.g., array-out-of-bounds) for sensors.

While a system involving ML components may (ideally) be
free of hardware or systematic software errors as governed by
ISO 26262 (functional safety), the performance limitations of
ML (functional insufficiencies) within the Operational Design
Domain (ODD) can still lead to risks. ISO 21448 [147]
focuses on processes and measures to ensure the absence
of unreasonable risk due to a hazard caused by functional
insufficiencies, where the performance limitation of sensors is
also explicitly mentioned as one of the sources of functional
insufficiencies. The basic safety specification considers the
occurrence of an error pattern [148] within the ODD being
sufficiently low, commonly reflected as a probability term.
While the appendix of the ISO 21448 covers some high-
level aspects and some of the process-oriented results aim at
offering a general argumentation framework [148]–[152], we
consider the key technical challenge to be the “implementation
aspects” of such a process.

ANSI/UL 4600 [153] is a standard to promote a proper
consideration of safety issues for generic autonomous systems,
and specifically adopt autonomous vehicles as a concrete case.
Specifically for perception, the standard describes how an
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Fig. 6. Illustration where standard performance metrics may not be directly
used in safety-critical driving contexts.

acceptable perception system can only be achieved after a
proper ODD definition. The ODD determines a perception
ontology (objects and events for perception functionality) and
the challenges encountered (e.g., seasonal effects). Thus, a
perception module’s performance is defined by its ability to
map sensor data to the ontology.

B. Performance evaluation and safety-aware metrics

State-of-the-art perception algorithms are often compared
on benchmark datasets such as [48], [91], [154]. Leader-
boards in categories such as 3D Camera-Only Detection,
LiDAR segmentation are maintained by developers and re-
searchers employing a set of metrics, often derived from
metrics in computer vision literature. Standard metrics are
based on Intersection over Union (IoU), precision, recall (both
at pixel/point level or object level) with some aggregation
function applied (e.g., mAP on averaging over all consid-
ered prediction classes). Moreover, tracking is a crucial step
for perception, so tracking metrics such as Multiple Object
Tracking Accuracy/Multiple Object Tracking Precision are
also employed [155]. These standard metrics are designed
to measure the average difference between specific features
of the ground truth and the perception output. However,
the resulting safety is much more relevant than perception
accuracy. In fact, we can observe the seemingly subtle fact that
optimizing a DNN following standard performance metrics
does not necessarily imply that the DNN produces a safe
prediction. One intuition can be observed from the fact that
for autonomous driving, pedestrians that are distant should not
be equally weighted compared to pedestrians being close by.
Another visual example is shown in [156] where the standard
IoU metric for bounding box detection will indicate that within
Figure 6, the prediction in the left image is better than the
right. However, when safety is defined at the ML-level to
be “completely covering the object” as any region outside
the bounding box is considered to be an empty space, the
right image, although “worse” in terms of IoU, is safe. To be
used in safety-critical ADAS, the developed metrics need to
be connected to concrete performance limitations and driving
applications, and the acceptance threshold should be justified.
Despite recent developments [157]–[160] in developing safety-
aware metrics by including various factors such as reaction
time or imperfection of the labeling, these metrics are not
direct reflectors of safety. To be used in a concrete safety

case, one needs to fine-tune these metrics by matching the
definition of acceptably safe defined in a concrete application.
A similar phenomenon also occurs in associating the degree
of robustness related to safety. Within the field of machine
learning, researchers formulate robustness using concepts such
as L∞ norms, characterizing the minimum amount of input
change that maintains prediction consistency. Nevertheless,
deciding the required minimum robustness bound of an ML
model in a given application with convincing rationale (so that
the noise to the ML model will not be the source of harm) is
far from trivial.

Moreover, detection, tracking, and scene segmentation are
only sub-tasks of the overall perception algorithm required
in ADAS. This makes the connection between safety and
perception evaluation challenging to be tackled with summa-
rized metrics. Vehicles are deployed in uncontrolled traffic,
and the same perception error (e.g., misclassification), may be
irrelevant in some situations while crucial in others.

Another reason for this limitation is the decision and plan-
ning module (refer to Fig. 1), which is crucial in determining
how the ADAS reacts to the perception output. The same
perception error can be a safety issue or not depending on the
driving style of the ADAS-equipped vehicle. For example, a
vehicle driving at a higher speed may demand better perception
at longer distances. At the same time, a slower vehicle could
achieve adequate safety even with sensors with a shorter
operating range. Thus, an end-to-end testing step is necessary
to evaluate the perception quality while accounting for both
traffic scenarios and the decision and planning module. On
this topic, Piazzoni et al. propose perception error models to
test the impact of specific perception errors of safety (e.g.,
detection accuracy over time, tracking-loss probability) via
virtual testing and scripted scenarios [161]. This approach
requires accurate modeling of the perception errors that affect
the perception algorithm under test [162], [163].

C. Data considerations and ML systems

A public dataset for automotive perception is usually a
combination of sensor data collected by a vehicle on the road
with annotated ground truth, typically 2D/3D bounding boxes
of obstacles and road users. Each data collection campaign
generates a dataset with unique limitations and features, as
shown in Table I. Moreover, each dataset may include a
different set of labels and detected objects. Perception datasets
are expensive, with inaccurate ground truth, and limited in
nature. The high cost of data collection results from the need
to drive on the road with sensor-equipped vehicles, which
is either expensive in terms of time or amount of vehicles.
Alongside the cost of collecting data, there is also a constant
need for new data collection campaigns that employ more
recent sensor hardware or firmware releases.

As part of data collection, data needs to be labeled with
ground truth. Common solutions are manual labeling that
suffer from high cost and possible interpretation errors, or the
application of offline algorithms which offer higher reliability
than online algorithms by exploiting causal information. A
data collection campaign can only collect and label a limited
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amount of data. Besides planned limitations (e.g., type of
sensor used, location, and time of the day), features such
as weather conditions and traffic events cannot be controlled.
Since the traffic environment is not controlled, the accuracy of
automated labeling techniques may be limited. Furthermore,
data reflecting life-threatening events (e.g., close-to-collision)
may not be easily obtained.

D. Virtual testing and sensor simulation

To overcome issues with real-world testing, synthetic data
can be obtained in virtual environments [100], [164]–[166],
e.g. using photo-realistic simulation or emulating humans and
motion behaviors. This approach has a few key advantages.
Firstly, it is much less time-consuming and resource intensive,
as no vehicle is driven on the road in uncontrolled traffic. Ad-
ditionally, virtual environments can offer perfect ground truth
values, and every simulation aspect can be controlled (e.g.,
weather conditions or traffic events). Thus, this approach can
provide a huge amount of labeled data, which ML algorithms
could exploit.

However, the use of synthetic data unavoidably raises the
problem of domain gap, where one can not ensure the perfor-
mance demonstrated on synthetic data can be faithfully trans-
ferred to the real world. Model training for domain adaptation
is under active research (e.g., [167]–[169]). For demonstrating
diversity, it is also related to ODD, where one should develop
methods to have a systematic understanding regarding how
data is collected. Evidence based on combinatorial testing is
based on characterizing the ODD, followed by ensuring that
the collected data set can have a reasonable amount of data
for any arbitrary pair of criteria. The idea has been applied
in the ML setup [150], [170], [171] for highway and urban
autonomous driving.

Moreover, the standard ANSI/UL 4600 [153] recommends
using virtual environments for autonomous vehicle testing, for
both Hardware-in-the-Loop and Software-in-the-loop modali-
ties. The employment of virtual simulators is common prac-
tice [165], [166], [172]–[174]). Figure 7 illustrates a typical
architecture for a co-simulation loop. The simulator handles
the objects in the scene (e.g., traffic vehicles and pedestrians)
and employs sensor models to generate synthetic data. The
vehicle stack process the synthetic data and determine the
response, which is then sent to the simulator. Most simulators
also include complex vehicle dynamics, road maps, and tools
to script traffic scenarios.

Along with individual strengths and weaknesses, most
simulators share the advantage of offering safe, scalable,
controlled, and scriptable test solutions. However, a major
challenge is their fidelity, i.e., their ability to provide results
that are representative of real-life situations. This aspect is
particularly relevant for perception, as virtual environments
have to generate synthetic signals (e.g., images and point
clouds) to feed the autonomous vehicle stack. Thus, a high-
fidelity sensor model requires accurate modeling of materials,
physical properties, and effects of weather conditions [175],
[176].
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Fig. 7. Typical architecture of virtual testing involving sensor simulation.

E. Monitoring against abnormal situations

Finally, as the ML model is only expected to function in the
ODD, the ML system should have the mechanism to notify if
the current input is “outside the ODD”. Practically, the speci-
fied operational domain can be ambiguous (e.g., autonomous
highway driving in Germany), but the ML function can still
produce incorrect outputs due to errors in generalization. This
problem is mediated by building up a monitor to “detect
unknowns in runtime” by various means. As research in this
field is still under active development, we only discuss some
representative ideas.

The simplest method, similar to the work of Hendrycks
et al. [177], is to use softmax in the output for proxying
the likelihood of being a specific class. Then a warning
is raised when the prediction is not particularly strong for
every class. The ODIN approach utilizes the softmax clas-
sification but uses the temperature scaling [178] to perform
uncertainty calibration. Apart from interpreting the output
values, another direction considers the inspection of features
within intermediate layers. The work of Lee et al. [179]
assumes that feature vectors of intermediate layers produced
by the training data are approximately Gaussian-distributed.
The authors use the Mahanalobis distance as a confidence
score for adversarial or out-of-distribution (OoD) detection.
Extending this line of thoughts, recent work also aims at
training the DNN to allow directly outputting uncertainty (the
DUQ network) [180], where for classification, the network
is trained in a way such that within the feature space, each
class has a representative vector. In operation, the training
input is translated into the feature vector; the classification
and the uncertainty are based on the distance to all class-
representative vectors. The application to object detection is
reflected in CertainNet [181], where the classification is done
similarly to DUQ. However, for regression, the estimation is
based on computing the variance of all nearby grids having
overlapping predictions over the same object. Yet another
possibility is to consider OoD detectors built using abstraction-
based approaches [182]–[184], where DNN-generated feature
vectors from the training dataset are clustered and enclosed
using hyperrectangles. Note that input outside the training data
distribution may not imply that it is not in the operational
design domain.

Uncertainty can also be measured using redundancy and
majority voting. This leads to Bayesian approaches such as
drop out at runtime [185] or ensemble learning. Deep Ensem-
bles [186] achieve state-of-the-art uncertainty estimation but
at a large computational overhead (since one needs to train
many models by taking different random seeds), thus recent
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work attempts to mitigate this with various ideas [187], [188]
such as parameter sharing in earlier layers for different models.
Beyond direct measurement, the recent work on evidential
learning [189] aims to learn parameters in a higher-order
setup, where the learned parameters are used to uncover the
distribution of the uncertainty model.

Apart from technical challenges, a crucial implementation-
related challenge for monitors lies in the imbalanced data for
“unknowns” or input outside the ODD. Many of the presented
techniques here use in-distribution data in a self-supervised
fashion, and use out-of-distribution data for calibrating the
boundary. However, to perform such a calibration and as well
as to test the applicability, one only has “known unknowns”
collected before the development.

VI. FUTURE OUTLOOK

The selection of sensor modalities, sensing and percep-
tion algorithms, data processing and multi-sensor fusion ar-
chitectures, to deliver robust, high-quality perception for
ADAS/ADS vehicles will remain a topic of interest. Perception
systems need to provide high levels of functional performance
for safe driving under diverse ODDs during the entire opera-
tional lifecycle. It is expected that perception can support high
levels of autonomous driving functions in restricted ODDs,
e.g., on well-mapped highways in good weather conditions.
Validation of sensing and perception methods, especially
based on machine learning methods, can thus be done in
different ODDs to ensure safety and incremental adoption of
autonomous features.

Although sensor fusion strategies leveraging supervised al-
gorithms are able to mitigate the shortcomings in an individual
sensing modality, these are still not perfect. Utilizing rein-
forcement learning paradigms in conjunction with supervised
learning algorithms within the sensor fusion context could
assist in scenario-based learning. Furthermore, reinforcement
learning algorithms can be used to assess the risk of failure
of the sensor fusion solution early on and facilitate human
intervention.

Besides local fusion discussed in Section IV-D, cooperative
perception is another approach to enhance the capabilities
of local perception sensors by sharing information among
vehicles, or by communicating with the infrastructure. Vehicle
connectivity is a means to enable such information sharing.
The role of connectivity in extending automotive perception
capabilities is however outside the scope of this paper - the
reader is referred to [190], [191]. Connectivity also enables
updates and thus improvements in ML models whilst offering
new perception-driven services [192], [193]. However it also
brings additional challenges like transformation errors between
the different reference frames, delays, uncertainty with respect
to the shared information, security and trust, that need to be
addressed.

It is expected that ML-driven automotive sensing and per-
ception will lead to “better than human” capabilities like
having obstacle information over a 360◦ field-of-view. How-
ever, the response of ML components cannot be guaranteed
by traditional system engineering and software validation

approaches. Aspects like explainability and reproducibility of
ML processing become critical in ADAS/ADS and, given their
safety-critical nature, remain a challenge [194], [195].

One of the challenges in reliable automotive sensing and
perception information across diverse ODDs is the limited
availability of data in difficult driving and weather conditions,
diverse in-cabin conditions, and along the sensor operational
lifecycle. The availability of quality sensor datasets is crucial
to avoid issues like class imbalance in training ML models.
As discussed in the earlier sections, the validation of automo-
tive perception systems is a substantial challenge. Traditional
computer vision metrics used in automotive perception are not
context-aware; there is a need to consider safety-awareness
and ADAS/ADS applications. Due to the lack of large real-
world datasets, there is a need to use synthetic data. For this
purpose, the development of virtual simulators could lead to
more effective and efficient ways of end-to-end perception
system and ADAS/ADS testing. Improving their fidelity via
more realistic sensor models can provide better synthetic data
for ML training.

With greater driving autonomy, there is also a concern that
over-reliance on machine-based decisions may lead to bad
driving habits and increased driving distractions. This brings
about the need for human-vehicle interaction mechanisms that
enable humans to take over driving operations on time by over-
riding autonomous systems when necessary. New decision-
making and control designs that leverage both automotive-
external and automotive-internal perception information whilst
taking into account deployment differences are needed.

Research on automotive perception technologies to support
the holy grail of fully autonomous driving should address
synergy between technology and the fields of ethical, le-
gal and social sciences. Greater collaboration among diverse
disciplines like hardware and software reliability, algorithm
designs, safety and quality engineering, security and pri-
vacy, human-machine designs, insurance and legal, is required
for perception based ADAS/ADS designs to be successfully
deployed at scale to provide enhanced safety and driving
comfort.
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S. Barro, A. Bugarı́n, and J. Lang, Eds., vol. 325. IOS Press, 2020,
pp. 2433–2440.

[183] C.-H. Cheng, C.-H. Huang, T. Brunner, and V. Hashemi, “Towards
safety verification of direct perception neural networks,” in Design,
Automation & Test in Europe Conference & Exhibition. IEEE, 2020,
pp. 1640–1643.



18

[184] C. Wu, Y. Falcone, and S. Bensalem, “Customizable reference runtime
monitoring of neural networks using resolution boxes,” arXiv preprint
arXiv:2104.14435, 2021.

[185] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in International
Conference on Machine Learning. PMLR, 2016, pp. 1050–1059.

[186] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Proceed-
ings of the 31st International Conference on Neural Information
Processing Systems, ser. NIPS’17. Red Hook, NY, USA: Curran
Associates Inc., 2017, p. 6405–6416.

[187] M. Dusenberry, G. Jerfel, Y. Wen, Y. Ma, J. Snoek, K. Heller, B. Laksh-
minarayanan, and D. Tran, “Efficient and scalable bayesian neural nets
with rank-1 factors,” in International Conference on Machine Learning.
PMLR, 2020, pp. 2782–2792.

[188] M. Havasi, R. Jenatton, S. Fort, J. Z. Liu, J. Snoek,
B. Lakshminarayanan, A. M. Dai, and D. Tran, “Training
independent subnetworks for robust prediction,” in International
Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=OGg9XnKxFAH

[189] M. Sensoy, L. Kaplan, and M. Kandemir, “Evidential deep learning
to quantify classification uncertainty,” Advances in neural information
processing systems, vol. 31, 2018.

[190] A. Caillot, S. Ouerghi, P. Vasseur, R. Boutteau, and Y. Dupuis,
“Survey on cooperative perception in an automotive context,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp.
14 204–14 223, 2022.
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