
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Adaptive Smoothing with Ambiguity Fixation for GNSS
Post-Processing

Greiff, Marcus; Berntorp, Karl; Di Cairano, Stefano

TR2023-083 July 08, 2023

Abstract
We propose a complete post-processing solution for GNSS (global navigation satellite sys-
tem) positioning leveraging linear-regression Kalman filtering methods, employed in a Rauch-
Tung-Striebel (RTS) smoothing context, and adapting the model parameters in an expecta-
tion maximization (EM) framework. In particular, we (i) discuss the effects of using different
moment approximations in the smoother; (ii) demonstrate that it is advantageous to fixate
the integer ambiguities on the smoothing posterior; and (iii) show that the proposed method
is viable for a wide range of GNSS measurement models, including single difference, double
difference, and ionosphere-free combinations of the multi-band GNSS observations.

World Congress of the International Federation of Automatic Control (IFAC) 2023

c© 2023L̇icensed under the Creative Commons BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-
nd/4.0/.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Adaptive Smoothing with Ambiguity
Fixation for GNSS Post-Processing

Marcus Greiff ∗ Stefano Di Cairano ∗ Karl Berntorp ∗

∗Mitsubishi Electric Research Labs, 02139 Cambridge, MA, USA
(e-mail: greiff@merl.com, {karl.o.berntorp,dicairano}@ ieee.org).

Abstract: We propose a complete post-processing solution for GNSS (global navigation satellite
system) positioning leveraging linear-regression Kalman filtering methods, employed in a Rauch-
Tung-Striebel (RTS) smoothing context, and adapting the model parameters in an expectation
maximization (EM) framework. In particular, we (i) discuss the effects of using different moment
approximations in the smoother; (ii) demonstrate that it is advantageous to fixate the integer
ambiguities on the smoothing posterior; and (iii) show that the proposed method is viable for
a wide range of GNSS measurement models, including single difference, double difference, and
ionosphere-free combinations of the multi-band GNSS observations.
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1. INTRODUCTION

The GNSS positioning problem concerns the estimation of
a receiver’s states from a set of pseudo-range, phase-range,
and potentially also Doppler measurements, acquired from
one or several constellations of satellites (see Teunissen
(1997)). The measurement equation, from which the re-
ceiver state is inferred, is time-varying, nonlinear in the
position of the receiver, and incorporates various biases,
as discussed in Leick et al. (2015). Some of these are
integer-valued, commonly referred to as ambiguities (see,
e.g., Teunissen et al. (1995)). If leveraging this information
and fixing the integers, the estimation accuracy generally
improves at the cost of a significantly more complex es-
timation problem (see Teunissen (1997)). The problem
is often considered in a filtering setting, as in Berntorp
et al. (2018); Greiff et al. (2021); Odolinski and Teunissen
(2016); Takasu and Yasuda (2010); Zhao et al. (2014).
However, the GNSS data are often stored in batches in
the RINEX format, and there is significant interest in post-
processing such data, amounting to a smoothing problem.

With this motivation, we consider smoothing for models

xk+1 = Akxk +BR
kqk +BZ

ksk, (1a)

yk = gk(xk) +Ckxk + rk, (1b)

where the noise terms are independent and additive,

p(qk, rk, sk) = N (qk; 0,QR
k (θ))N (qk; 0,Rk)J (sk; a1, b1),

where θ is a parameter vector; N denotes the Gaussian
density; and J is the integer jump process in Greiff et al.
(2021). Here, elements of [sk]i ∈ [−a, a] ⊂ Z are realized
as nonzero integers with a probability b. The notion is
clarified in Sec. 2 and the problem is defined as follows.

Problem 1. Given a p(xk+1|xk) and a measurement model
p(yk|xk), with xk = (xR

k ,x
Z
k) ∈ Rm × Zn, compute a

fixed-interval approximate Gaussian smoothing posterior
p(xR

k |xZ
0:K ,y0:K) ≈ N (xR

k ; m̆k|K , Σ̆k|K) conditioned an

associated fixed integer trajectory xZ
0:K and a set of all

measurements y0:K (where 0 ≤ k ≤ K), and estimate θ.

Smoothing for GNSS post-processing has been analyzed
rigorously in the literature, with methods generally involv-
ing smoothing passes with known model parameters θ.
Typically, this is done using the Rauch-Tung-Striebel
(RTS) framework (see Rauch et al. (1965)), or Fraser-
Potter (FP) smoothing (see Fraser and Potter (1969)),
with explicit linearizations (the smoothing equivalent of an
extended Kalman filter) under known model parameters.
For instance, the work in Vaclavovic and Dousa (2015)
considers RTS smoothing in a precise-point positioning
(PPP) setting, without adapting the model parameters.

In this paper, we propose an iterative algorithm for to ap-
proximately solve Problem 1, inspired by the dual-density
filtering in Greiff et al. (2021). The algorithm consists of
two main steps. The first is a generalized RTS smoother,

used to compute the posterior p(xk|y0:K) given some θ(i),
using the partially linear moment approximations in Greiff
et al. (2020). The second step consists of an update law of
the parameters using a structured expectation maximiza-
tion (EM) in which the objective function is defined in the
smoothing posterior (see Särkkä (2013)), facilitating a safe
and efficient adaptive post-processing algorithm.

Contributions We demonstrate that parameter adap-
tion, when done in the EM framework, can yield significant
improvements in GNSS post-processing. We also show
that fast and efficient smoothing algorithms can be imple-
mented using various extended- and/or linear-regression
Kalman filtering (LRKF) moment approximations if the
linear substructures in the model are exploited. We dis-
cuss the effects on integer fixation accuracy when done
with respect to the filtering and smoothing posteriors,
respectively. Finally, we give examples considering models
with multiple frequency bands, double- or single-difference
measurements, and ionosphere-free observations.

2. PRELIMINARIES

Vectors are denoted by x ∈ Rn with [x]i denoting the ith

element of x. Matrices are indicated in bold font, X, and



the element on row i and column j of X is written [X]ij .
The notation

¯
v ∼ N (v;mv,Σvv) indicates that

¯
v is Gaus-

sian distributed random variable with mean mv and co-
variance Σvv, and the super-indices are often dropped for
brevity. The bar

¯
(·) is used to indicate a random variable

if necessary, but often dropped to clarify the presentation.
Given the set of measurements y0:k = {y0, . . . ,yk}, we let
p(xk|y0:k) ≈ N (xk;mk|k,Σk|k) denote a marginal filter-
ing posterior; p(xk|y0:K) ≈ N (xk;mk|K ,Σk|K) denote a

marginal smoothing posterior; and take N (xR
k |m̆k, Σ̆k) to

denote a fixed estimate. To make the exposition clear, we
let (·)k|k = (·)k in the filter posterior, and distinguish the
moments of the smoothing posterior with (·)k|K = (·)sk.

2.1 Linear RTS Smoothing

If relaxing the integer constraint such that xk ∈ Rm+n,
and assuming knowledge of the parameters θ (hence omit-
ted), the solution to Problem 1 is given by the Bayesian
optimal smoothing equations (see, e.g., Kitagawa (1987)),

p(xk+1|y0:k) =

∫
p(xk+1|xk)p(xk|y0:k)dxk (2a)

p(xk|y0:K) = p(xk|y0:k)

∫
p(xk+1|xk)p(xk+1|y0:K)

p(xk+1|y0:k)
dxk+1

(2b)

For a Gaussian prior N (x0;m0,Σ0), and a linear time-
varying (LTV) motion model

xk+1 = Akxk + qk, qk ∼ N (0,Qk), (3a)

yk = Ckxk + rk, rk ∼ N (0,Rk), (3b)

the Chapman-Kolmogorov equation in (2a) and subse-
quent conditioning on the new measurements results in the
Kalman filter (KF). In the notation of Särkkä (2013), we
let p(xk|y0:k) = N (xk;mk,Σk) be the filtering posterior.
From (2b), the smoothing posterior can be obtained by
backward pass (BP) from ms

K = mK ,Σ
s
K = ΣK , as

Gs
k = ΣkA

>
k (Σk|k−1)−1 (4a)

ms
k = mk +Gs

k(ms
k+1 −mk|k−1) (4b)

Σs
k = Σk +Gs

k(Σs
k+1 −Σk|k−1)(Gs

k)>, (4c)

with a smoothing posterior p(xk|y0:K) = N (xk;ms
k,Σ

s
k).

This is the common Rauch-Tung-Striebel (RTS) smoother.

2.2 Partially Linear RTS smoothing

If the estimation model is nonlinear with additive noise,

xk+1 = fk(xk) + qk, qk ∼ N (0,Qk), (5a)

yk = hk(xk) + rk, rk ∼ N (0,Rk), (5b)

the RTS smoother can be employed with first-order lin-
earizations, under the assumption that the filtering and
smoothing posteriors are both approximately Gaussian.

However, we will be deadline with a liner prediction model
in (3a), and a partially linear measurement model, where

h(xk) = gk(zk) +Ckxk, (6)

and zk is a subset of the states in xk. As such, we employ
the partially linear moment approximations in Greiff et al.
(2020) and modify the RTS smoother by assuming

p(xk,yk|y0:k−1)≈N
([
xk
yk

]
;

[
mk|k−1
my
k|k−1

]
,

[
Σk|k−1 Σxyk|k−1
? Σyyk|k−1

])

directly approximating the moment integrals

my
k|k−1 =

∫
h(xk)N (xk;mk|k−1,Σk|k−1)dxk, (7a)

Σxyk|k−1 =

∫
[xk −mk|k−1][h(xk)−my

k|k−1]>×
N (xk;mk|k−1,Σk|k−1)dxk, (7b)

Σyyk|k−1 =

∫
[h(xk)−my

k|k−1][h(xk)−my
k|k−1]>×

N (xk;mk|k−1,Σk|k−1)dxk +Rk, (7c)

and subsequently performing the KF update with

Kk = Σxyk|k−1(Σyyk|k−1)−1, (8a)

mk = mk|k−1 +Kk(yk −my
k|k−1), (8b)

Σk = Σk|k−1 −Kk(Σxyk|k−1)>, (8c)

Remark 1. Note that the measurement model does not
appear in the RTS backward pass in (4). If the model
retains linearity in the prediction model, the backward
pass does not require burdensome approximations even if
the measurement model is (partially) nonlinear.

In light of Remark 1, we only need to evaluate (7) in the
forward pass of the RTS smoother under the assumption of
a linear motion model. Furthermore, if the measurements
are partially linear as in (6), we can leverage (Greiff et al.,
2020, Proposition 1) to implement an RTS smoother to
approximate the integrals in (7) with the number of in-
tegration points scaling with dim(zk) instead of dim(xk).
We refer to this family of smoothers as Partially Linear RTS
smoothers (PL-RTS), prefacing this with UT when using the
unscented transform given in Wan and Van Der Merwe
(2000); and SR when using the Spherical Radial rules of
the Cubature Kalman filter in Arasaratnam (2009).

2.3 Structured Expectation Maximization

We briefly describe the expectation-maximization (EM)
and refer to (Särkkä, 2013, Section 12.2.3) for additional
details. The idea of EM is to define an arbitrary probability
distribution over the states q(x0:K), and lower-bound the
negative log-likelihood of the measurements y0:K given θ,

L(θ) = − log p(y0:K |θ)

≤ −
∫
q(x0:K) log

p(y0:K ,x0:K |θ)

q(x0:K)
dx0:K , (9)

and minimize the left-hand side (LHS) by minimizing the
upper bound on the right-hand side (RHS). The appeal of
this idea lies in that the LHS in (9) may be a complicated
function in θ, while the RHS (9) under certain conditions
and choices of q can be expressed as a convex function in

θ. Specifically, if we let q(x0:K) , p(x0:K |y0:K ,θ
(i)), the

RHS upper bound in (9) can be written as

L(θ).
∫
p(x0:K |y0:K ,θ

(i)) log p(y0:K ,x0:K |θ)dx0:K (10a)

'Q(θ,θ(i)). (10b)

Consider a case where: (A1) the motion model is linear;
(A2) only the process noise covariance matrix is parameter
dependent; (A3) this process noise is symmetric positive
definite, block structured, and linear in the parameters, as

Qk(θ)−1 = M
(0)
k +

dim(θ)∑
j=1

M
(j)
k [θ]j , (11)



with {M (j)
k }

dim(θ)
j=0 of appropriate dimensions. Assume

that (A4) the basesM
(j)
k are block diagonal, each contain-

ing a single block N
(j)
k ∈ Rn

j
k
×nj

k that is positive definite.
The solution minimizing the bound in (10b),

θ(i)◦ = argminθQ(θ,θ(i)), (12)

can be written compactly as

[θ(i)◦ ]j=

K−1∑
k=0

njk

K−1∑
k=0

Tr[M
(j)
k (Ψk − ΓkA

>
k −AkΓ

>
k +AkΦkA

>
k )]

,

where Ψk,Γk,Φk are computed from the smoothing pos-

terior evaluated with respect to the parameters θ(i), as

Ψk = Σs
k+1 +ms

k+1(ms
k+1)>, (13a)

Γk = Σs
k+1(Gs

k)> +ms
k+1(ms

k)>, (13b)

Φk = Σs
k +ms

k(ms
k)>. (13c)

Hence, forming and minimizing Q(θ,θ(i)) is much faster
than computing the two RTS passes, and does not require
any costly moment approximations or gradient evaluations
once a smoothing posterior has been computed. An EM
that alternates between computing the smoothing poste-
rior (E-step), and minimizing Q (M -step) using (13) given
(A1)-(A4) is referred to as a structured EM-algorithm.

3. MODELING

To define the prediction models, we consider two models:
a constant position (CP) model with unit variance, with
a sampling period of hk, where xCP

k+1 = xCP
k + qCP

k , qCP
k ∼

N (0, hk); and constant velocity (CV) model with, xCV
k+1 =

ACV
k xCV

k + qCV
k , qCV

k ∼ N (0, (MCV
k )−1), and where

ACV
k ,

[
I hkI
0 I

]
, MCV

k ,
12

h3k

[
1 −hk2
−hk2

h2
k

3

]
. (14)

The reason for these definitions is to simplify the model
building and facilitate the EM algorithm. We can now
define a receiver model with three-dimensional position
(pX , pY , pZ) ∈ R3, where the horizontal positions and
lateral velocity ṗZ = vZ ∈ R are driven by a random walk
processes. We collect zk , (pX , pY , pZ , vZ) ∈ R4, where

zk = Azkzk +
¯
qzk ,

¯
qzk ∼ N (qzk ; 0,Qzk(θ)), (15a)

Azk = diag(1, 1,ACV
k ), (15b)

Qzk(θ)−1 = diag([θ]1h
−1
k , [θ]2h

−1
k , [θ]3M

CV
k ), (15c)

where the parameters [θ]i constituting θ are the inverse
variances of the underlying random walks, and linear in
a matrix basis parametrizing the inverse process noise
covariance. Similarly, we let the ambiguities in the model,
nk ∈ Zn, be driven by an integer random walk. Further-
more, we consider real-valued biases collected in ξk (to
be defined in Sec. 3.1) driven by random walks in the
velocities. Here we consider Nξ different kinds of biases
(ionospheric, tropospheric, etc.), and n relates to the num-
ber of visible satellites, Ns, such that ξk ∈ RNξNs . Hence,

ξk+1 = Aξkξk +
¯
qξk,

¯
qξk ∼ N (qξk; 0,Qξk(θ)), (16a)

Aξk = diag(ACV
k , . . . ,ACV

k )⊗ INs , (16b)

Qξk(θ)−1= diag([θ]3+1M
CV
k , . . . , [θ]3+NξM

CV
k )⊗INs . (16c)

We reorder the states xk , (zk; nk; ξk), obtaining

xk+1 =

Azk 0 0
0 I 0

0 0 Aξk


︸ ︷︷ ︸

,Ak

xk +

[
I 0
0 0
0 I

]
︸ ︷︷ ︸
,BR

k

qk +

[
0
I
0

]
︸︷︷︸
,BZ

k

sk, (17a)

in the form of (1a) which satisfies (A1)–(A4), with

QR
k (θ) = diag(Qzk(θ),Qξk(θ)). (17b)

This is a flexible model that will be defined differently
depending on the considered GNSS measurement model.

3.1 GNSS Measurement Models

In this section, we consider the classic GNSS measure-
ments provided in the RINEX format. Here, R denotes a
receiver, B denotes a base station, and s ∈ N>0 denotes a
satellite. The measurements include a pseudo-range P sR ∈
R computed by an auto-correlation on the pseudo-random
code, the phase-range ΦsR ∈ R containing the integer
ambiguity, and a Doppler measurement ΓsR ∈ R. Fig. 1
provides the equations, defined in signals summarized in
Table 1. Here, the functional dependency indicates chan-
nels on which the signal differs. For instance, the noise
εsR between a satellite and receiver is realized differently
on every combination of measurements {P,Φ,Γ} with a
unique frequency band Lj . On the other hand, the initial
oscillator phases only depend on the frequency band Lj ,
as they solely appear in the phase-range measurements.

Table 1. Summary of GNSS model parameters.

Variable Functional dep. Description

ρsR – Euclidean distance from R to s
dtR, dt

s – Clock offset
DR, D

s Lj and {P,Φ} Inter-frequency bias
N Lj Integer ambiguity bias

λj Lj (= f−1
j ) Carrier wavelength

fj Lj (= λ−1
j ) Carrier frequency

αd
c Lc, Ld (= f2d/f

2
c ) ionosphere-free const.

T s
R – Tropospheric delay
IsR Lj Ionospheric delay
Ms
R Lj and {P,Φ} Multipath effects

εsR Lj and {P,Φ,Γ} Gaussian noise

To proceed, we define three different ways of combining
the GNSS measurements, which are often used in practice
to reduce the impact of the various biases in Fig. 1.

Definition 1. Let g represent any signal in Table 1, then

• A Single Difference (SD), is defined as

∆ab(gsi (Lj)) , gsi (Lj)|s=a − gsi (Lj)|s=b;
• A Base-Receiver Difference (BRD), is defined as

∇RB(gsi (Lj)) , gsi (Lj)|i=R − gsi (Lj)|i=B;

• A Double Difference (DD), is defined with as

∇∆ab
RB(gsi (Lj)) , ∆ab(∇RB(gsi (Lj)))

• An Ionosphere-Free (IF) combination, is defined as

IFdc(g(Lj)) , g(Lj)− αdcg(Ld).

The appeal of working with measurements subjected to the
DD operation, which not only includes measurements from
a receiver (R) but also measurements from a base station
(B), is that clock drift biases and inter-frequency biases



P s
i (Lj) = +ρsi + c[dti − dts] + [Di(Lj , P )−Ds(Lj , P )] + T s

i +Isi (Lj) +Ms
i (Lj , P ) + εsi (Lj , P )

Φs
i (Lj) = +ρsi + c[dti − dts] + [Di(Lj ,Φ)−Ds(Lj ,Φ)] + T s

i −Isi (Lj) +Ms
i (Lj ,Φ) + λjNi(Lj) + εsi (Lj ,Φ)

Γs
i (Lj) = −ρ̇si − c[ḋti − ḋt

s
] − Ṫ s

i+İ
s

i (Lj) − Ṁ
s

i (Lj ,Φ) + εsi (Lj ,Γ)

Fig. 1. GNSS observation equations for a receiver i and a specific satellite s ∈ [1, Ns] over frequency the bands {Lj}.

disappear from the estimation problem. Additionally, if
there exist astrophysical models of the ionospheric and
tropospheric biases, the resulting estimator becomes less
sensitive to modeling errors (as will be discussed later). To
proceed, we permit the SD-, DD-, and IF-maps to operate
on vectors. Without loss of generality, we let the satellite
s = 1 be the positive satellite in any differencing scheme.

Definition 2. Consider a vector gsi (Lj), with elements
[gsi (Lj)]l = gsi (Lj) being any signal in Table 1. Let

∆ :RNs 7→ RNs−1 [∆(g)]l−1 = ∆1,l(gsi (Lj))

∇ :RNs 7→ RNs [∇(g)]l−1 = ∇RB(gsi (Lj))

∇∆ :RNs × RNs 7→ RNs−1 [∇∆(g)]l−1 = ∆1,l
RB(gsi (Lj))

IF
d

c :RNs × RNs 7→ RNs [IF
d

c(g)]l−1 = IFdc(g
s
i (Lj))

3.2 A DD+IF Multi-band Measurement Model

In this measurement model, we consider three frequency
bands and two vector-valued bias states evolving by the
CV model in (16). The integer ambiguities are double
differenced, and the measurement model is defined by

yk ,



∇∆(P k(L1))
∇∆(Φk(L1))
∇∆(Γk(L1))

IF
2

1(∇∆(P k(Lj)))

IF
2

1(∇∆(Φk(Lj)))

IF
2

1(∇∆(Γk(Lj)))

IF
3

1(∇∆(P k(Lj)))

IF
3

1(∇∆(Φk(Lj)))

IF
3

1(∇∆(Γk(Lj)))
∇(Ik(L1))
∇(T k)



,

nk ,

∇∆(Nk(L1))
∇∆(Nk(L2))
∇∆(Nk(L3))

 ,

ξk ,


∇(Ik(L1))
∇( d

dtIk(L1))
∇(T k)
∇( d

dtT k)

 .
(18)

including virtual measurements on the BRD-bias terms
from physical models, such as the Klobuchar and SBAS
models, see Tian et al. (2022). The reason for including
these models in the measurement equation is to allow devi-
ations from the deterministic bias models, which enables us
to reason about how uncertainty in the bias models affect
the quality of the estimates. Here, the resulting model is
observable, and the measurement model is nonlinear in zk,
but linear in {nk, ξk}. The maps gk and {Ck,Rk} in (6)
follow directly from Fig. 1 and Definitions 1-2.

3.3 A SD+IF Multi-band Measurement Model

In this model, every instance of the DD- and SD-operation
in (18) is replaced by SD- and undifferenced signals,
respectively. Furthermore, the state vector is extended
with the satellite clock biases dt = (dt1k, . . . , dt

Ns
k ) ∈ RNs ,

and these obey a CV model. Here, we once again include
virtual measurements of the biases from physical models,
but also include a measurement on the clock bias of the
positive satellite dt1k to make the entire estimation model
observable. The reason for defining the problem in this
way is that it permits an extension to a multi-agent setting,
where several agents model the same satellite clock offsets.

4. AN ADAPTIVE POST-PROCESSING ALGORITHM

In this section, we define the proposed Adaptive Post-
Processing (APP) algorithm in three steps. We start by
discussing the notion of adaptive ambiguity priors in
Sec. 4.1, which is used to define an RTS-smoother with
adaptive priors (RTSAP). This algorithm fixes the inverse
basis of the process noise based on a 1-step ahead filtering
innovation error. Next, we discuss the heuristics used to
approximately solve the NP-hard integer fixation problem
in Sec. 4.2, defining a unimodular de-correlating transform
(UDT) and an integer search method (ISM). Finally, the
APP-algorithm is defined using structured EM in Sec. 4.3.

4.1 Relaxed Smoothing with Adaptive Ambiguity Priors

In the smoothing, we first consider a relaxed estimation
problem, where the ambiguities evolve by a random walk
over the real numbers. However, to capture the sporadic
jumps that these ambiguities exhibit, the process noise
is adapted depending on if a cycle-slip is likely to have
occurred. The presence or absence of a cycle-slip is deter-
mined by comparing the 1-step measurement prediction
with the actual measurement, ascribing all of the variation
in the prediction error to individual ambiguity dimensions,

n̄k−1 , |
(
G>kGk

)−1
G>k (yk −my

k|k−1)|, (19a)

Gk ,
∂

∂xZ
k

(h(xk) +Ckxk)
∣∣∣
xk=mk|k−1

, (19b)

and determining the presence or absence of a cycle-slip
between a time k−1 and k by applying a threshold to this
value, here denoted by εamb ambiguities. Consequently, in
the filtering the process noise is

Qk(θ) = BqkQ
R
k (θ)(Bqk)> +BskQ

Z
k(Bsk)>, (20a)

QZ
k = (σ2

L)I + (σ2
H − σ2

L)diag(ok), (20b)

[ok]i =

{
1 if [n̄k]i > εamb

0 otherwise
, (20c)

which is the same approach as in Greiff et al. (2021). When
performing RTS smoothing adaptive ambiguity prior, we
compute the sequence Q0:K−1(θ) in the forward pass, as
described in (19a) and summarized in Algorithm 1.

4.2 Integer Fixation Heuristics

Having computed a relaxed posterior p(xk|y0:K ,θ) using
the relaxed estimation model (letting x ∈ Rm+n and
using the adapted process noise), we subsequently fix the
ambiguities using methods common to GNSS position-
ing. Specifically, we compute a unimodular decorrelating
transform (UDT) as Zk ∈ Zn×n based on p(xZ

k |y0:K ,θ) =

N (xZ
k ;mZ

k ,Σ
Z
k), which aspires to find a transformed ηk ∈

Zn where ZkΣ
Z
kZ
>
k is less correlated than ΣZ

k . To this end,
we use the M-LAMBDA method in Chang et al. (2005).

In the decorrelated ambiguity space, we find the most
likely ambiguity hypothesis by solving the ML-problem



Algorithm 1 Nonlinear RTS smoother with Adaptive
Ambiguity Prior (RTSAP) computed in the forward pass.

1: Receive: y0:K ,m0,P 0,A0:K−1,h0:K ,R0:K , σL, σH ,θ
2: for k = 1, 2, . . . ,K do
3: Compute ok−1 from {yk,mk−1} by (19a)

4: {M (j)
k−1}

dim(θ)
j=0 ← get basis(ok−1, σL, σH) by (20)

5: {mk,Σk} ← KF(mk−1,Σk−1,yk,θ) using any
method in Sec. 2.2 for the nonlinearity.

6: end for
7: Initialize ms

K = mK ,Σ
s
K = ΣK

8: for k = K − 1, . . . , 0 do
9: {ms

k,P
s
k,G

s
k} ← BP(ms

k+1,Σ
s
k+1,G

s
k+1,mk, . . .

Σk,mk|k+1,Σk|k+1,Ak) by (4)
10: end for
11: Output: {mk,Σk,m

s
k,Σ

s
k}Kk=0,{M (j)

k }
k=K−1,j=dim(θ)
k=0,j=0

ηIk = argmin
ηI
k
∈Zm

‖ηIk −ZkmZ
k‖2(ZkΣZ

k
Z>
k
)−1 , (21)

approximately using a simple boot-strapping method (re-
fer to Teunissen (2001)), before converting this into the
original ambiguity space nIk = Z−1k η

I
k ∈ Zn. This is

referred to as an Integer Search Method (ISM). In the
implementation, the integer fixation is done independently
at each time-step, as done in the cited filtering methods.
Note that the integer fixation density used in (21) can
also be taken as the filtering posterior p(xk|y0:k,θ). A
comparison of fixing the integer on the smoothing versus
the filtering posterior is provided in Sec. 5.1.

4.3 Full Post-Processing Algorithm

We are now ready to express the full adaptive post-
processing algorithm (APP). We first perform a two-way
pass with thee RTSAP in Algorithm 1 of the relaxed
dynamics (letting xk ∈ Rn+m), where the cycle-slip
detection is used to form the matrix-basis of the inverse
process noise {M (j)

k }k,j . Next, we iterate the M -steps
and E-steps in the structured EM algorithm defined in

Sec. 2.3, to optimize the parameters θ given {M (j)
k }k,j

and y0:K . This is done until the majorizing objective

satisfies Q(θ(i−1),θ(i−2)) − Q(θ(i),θ(i−1)) ≤ εtol, or until
reaching a maximum number of Nmax iterations. Based
on the smoothing posterior from the last EM-iteration,
the integer trajectory is subsequently fixed using the
fixation outlined in Sec. 4.2, and we finally compute a fixed

estimate p(xR
k |nI0:K ,y0:K ,θ

(?)) ≈ N (xR
k ; m̆s

k, Σ̆
s
k) using

any RTS smoother in Sec. 2, outputting m̆s
k, Σ̆

s
k,n

I
0:K .

This adaptive post-processing is sketched in Algorithm 2.

5. NUMERICAL EXAMPLES

To demonstrate the algorithms, we present a quantita-
tive study to assess the choice of measurement equation,
fixation density, and moment approximation scheme on
the estimation performance of the RTSAP. This serves as
the benchmark for the subsequent simulation study of
the adaptive post-processing scheme APP, in which the
measurement noise covariance is initialized erroneously.
The parameters for the study are given in Appendix A.

5.1 Simulation Study of the RTASP with known parameters

We start by considering the RTSAP defined in Algorithm 1
in a setting where the noise statistics are known perfectly.

Algorithm 2 Pseudo-code for the Adaptive GNSS Post-
Processing (APP) with EM and adaptive ambiguity priors.

1: Initialize: m0,Σ0,θ
(0),y0:K , i = 1.

2: {mk,P k,m
s
k,P

s
k,G

s
k,Mk}Kk=0 ← RTSAP(y0:K ,θ

(0))
using the RTS with adaptive prior in Algorithm 1

3: while i ≤ Nmax and EM has not converged do

4: θ(i) ← argmin
θ∈Dθ

Q(θ;θ(i−1)) using (13)

5: Define Q
(i)
0:K using the basis M0:K and θ(i)

6: {mk,Σk,m
s
k,P

s
k,G

s
k}Kk=0 ← RTS(y0:K ,Q

(i)
0:K)

using any of the RTS smoothers in Sec. 2
7: end while
8: for k = 0, . . . ,K do

9: Zk ← UDT(p(nk|y0:K ,θ
(?)))

10: nIk ← ISM(p(nk|y0:K ,θ
(?)),Zk)

11: end for
12: {m̆k, Σ̆k, m̆

s
k, Σ̆

s
k, Ğ

s
k}Kk=0 ← RTS(y0:K ,n

I
0:K ,Q

(i)
0:K)

using any of the RTS smoothers in Sec. 2

13: Return, m̆s
0:K , Σ̆

s
0:K ,n

I
0:K ,θ

(?)

This is done to: (i) ensure that the filter/smoother posteri-
ors are consistent with the empirical statistics, even though
an approximate integer fixation scheme is used; (ii) study
the impact of fixing the ambiguities (see Sec. 4.2) on the
filtering/smoothing posteriors; and (iii) asses how the use
of various moment approximations affect performance in
this setting. To this end, we conduct a Monte-Carlo (MC)
simulation study with NMC = 103 different realizations of
the errors and noise for 12 permutations of the RTASP:

(i) DD-IF/SD-IF measurement models;
(ii) Integer fixation on the filtering/smoothing posteriors;

(iii) The ERTS/UT-PL-RTS/SR-PL-RTS approximations.

To assess consistency, we define the following statistics:

• The positional root mean-square error (RMSE)

RMSEk(p) ,
( 1

NMC

NMC∑
n=1

‖Π(x
R,(n)
k −m̆(n)

k )‖22
)1/2

, (22)

where Π extracts the positional subset of xR
k , and the

superscript (·)(n) denotes the nth simulation.
• The root positional posterior covariance (RAPC),

RAPCk(p) ,
( 1

NMC

NMC∑
n=1

Tr[ΠΣ̆
(n)
k Π>]

)1/2
. (23)

When using the PL-SR-RTS, the resulting statistics are
plotted in Fig. 2. Here, we note that the fixated estimate
errors of the RTSAP does seem to be consistent with the
variance estimates. We observe a slight difference in per-
formance when using the SD-IF and DD-IF models, with
the former yielding a lower positional RMSE. However,
as the difference is very slight, we recommend using the
DD-IF in practice, as it is less sensitive to errors in the
deterministic bias models. Finally, we note a significant
difference between the fixed estimates computed with re-
spect to the filtering and smoothing posteriors, with the
estimates fixed on the filtering posterior (red/black) result-
ing in a positional RMSE almost 30% higher than the the
fixed estimates computed from the smoothing posterior
(blue/green). Furthermore, we note a much faster transient
in the positional errors when fixed on the smoothing poste-



Table 2. Summary of quantitative results from 103 MC runs for permutations of the Algorithm 1.

Model Fixation density Scheme TA-RMSE (↓) S-RMSE [m] (↓) S-RAPC [m] (↓) TA-IFA [%] (↑) CT [s] (↓)

DD-IF Filtering ERTS 3.056 · 10−1 5.422 · 10−2 5.499 · 10−2 97.675 4.725
DD-IF Filtering UT-PL-RTS 3.056 · 10−1 5.422 · 10−2 5.499 · 10−2 97.675 6.272
DD-IF Filtering SR-PL-RTS 3.056 · 10−1 5.422 · 10−2 5.499 · 10−2 97.675 6.350

DD-IF Smoothing ERTS 4.732 · 10−2 3.838 · 10−2 4.063 · 10−2 99.843 4.877
DD-IF Smoothing UT-PL-RTS 4.732 · 10−2 3.838 · 10−2 4.063 · 10−2 99.843 6.230
DD-IF Smoothing SR-PL-RTS 4.732 · 10−2 3.838 · 10−2 4.063 · 10−2 99.843 6.245

SD-IF Filtering ERTS 2.789 · 10−1 4.655 · 10−2 5.379 · 10−2 98.507 6.248
SD-IF Filtering UT-PL-RTS 2.789 · 10−1 4.655 · 10−2 5.379 · 10−2 98.507 7.672
SD-IF Filtering SR-PL-RTS 2.789 · 10−1 4.655 · 10−2 5.379 · 10−2 98.507 7.574

SD-IF Smoothing ERTS 4.021 · 10−2 3.848 · 10−2 3.970 · 10−2 99.899 6.057
SD-IF Smoothing UT-PL-RTS 4.021 · 10−2 3.848 · 10−2 3.970 · 10−2 99.899 7.433
SD-IF Smoothing SR-PL-RTS 4.021 · 10−2 3.848 · 10−2 3.970 · 10−2 99.899 7.364
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Fig. 2. Positional RMSE and RAPC in time, indicating
that the fixed estimates are consistent after the initial
transient where the ambiguities are incorrectly fixed.

rior. Here, the utilization of future measurements greatly
reduces the initial uncertainty in the relaxed estimates,
thereby improving the fixed estimate convergence time.

To get more insight on this, we consider the following:

• Time-averaged RMSE, as 1
K+1

∑K
k=0RMSEk(p);

• Stationary RMSE, defined as RMSEk=K/2(p);
• Stationary RAPC, defined as RAPCk=K/2(p);
• Time-averaged integer fixation accuracy (TA-IFA), as

the percentage of correctly fixed ambiguities in time
considering each dimension of nIk independently;
• Computational time1 of running the resulting RTSAP.

The statistics are computed for the 12 possible combina-
tions of (i)–(iii) in Table 2, where the variants with the
PL-SR-version which was depicted in Fig. 2 are highlighted.

The choice of moment approximation has little impact on
performance. Indeed, the statistics only differ after the
fourth decimal when varying ERTS/UT-PL-RTS/SR-PL-RTS.
We observe the same general performance as indicated
by Fig. 2, and also note a significant difference in the
time-averaged integer fixation accuracy when using the
filter/smoothing posteriors. This largely explains the dif-
ference in the time-averaged statistics, where the empirical
errors are inflated due to the fixation being poor. We also
note that the computational time for running the RTSAP is
about 30% greater when using the PL-RTS moment match-
ing schemes. On this basis, it is clear that the choice of DD-
IF/SD-IF and ERTS/-UTPL-RTS/SR-PL-RTS matters less
than on which density the integers are fixed.

1 Using Matlab on an 8-core 11th Gen Intel i7-1165G7 @ 2.80GHz.
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Fig. 3. Positional RMSE and RAPC for: (A) the RTSAP
(red) and (B) the APP (blue) with bad parameters;
and (C) the RTSAP (green) with perfect parameters.

5.2 Simulation Study of the APP with parameter adaptation

As the estimates are consistent and we see significant
improvements when fixing the integer ambiguities on the
smoothing posterior, we next provide a second simulation
demonstrating the effects of parameter adaptation in the
APP. Due to the observations in the quantitative results we
consider three ways of computing the estimates:

(A) The same RTSAP algorithm with the SD-IF model, but

with poorly initialized parameters, θ(0) 6= θtrue.
(B) A APP post-processing algorithm, run with an ERTS,

the SD-IF measurement model, but with the same

poorly initialized model parameters, θ(0) as in (A).
(C) The RTSAP in Algorithm 1 as in (A), run with an

ERTS, the SD-IF measurement model, and knowledge
of the true model parameters θtrue (as in Sec. 5.1 );

Once again, we compute a positional RMSE and RAPC,
now from NMC = 10 simulations, as shown in Fig. 3, using
the ERTS with the SD-IF model and fixing the estimates on
the smoothing posterior (the same measures as the green
signals as in Fig. 2), and the majorizing objective in the
APP is also shown as a function of the EM iterates in Fig 4.

As we know the RAPC to be consistent with the empirical
positioning error statistics when the model parameters are
known (refer to Sec. 5.1), we note that the RTSAP initial-
ized with the erroneous model parameters greatly over-
estimates the confidence of the fixed estimates. Indeed,
the RAPC in (A) is lower than that in (B) and (C), yet
the positioning errors are significantly larger in (A). Here,
the adaptation in the APP algorithm yields a significantly
better model, and the errors in (B) are much smaller than



0 5 10 15 20 25 30

−1.94

−1.93

−1.92

−1.91

−1.9

·105

EM iteration i in the APP

Q
(θ

(i
) ,
θ
(i
−
1)
)

Fig. 4. Convergence of Q(θ(i),θ(i−1)) in i for the APP.

that of (A) as a consequence, despite the two algorithms
being initialized with the same model parameters.

6. CONCLUSION

In this paper, we explore how fast and efficient smoothing
algorithms can be implemented for GNSS post-processing
using: (i) two different candidate measurement models; (ii)
different ways of fixating the integer ambiguities; and (iii)
various RTS smoothers. We demonstrate that due to the
largely linear estimation model, the choice of moment ap-
proximation scheme or measurement model has a limited
effect on the empirical error statistics when the parameters
of the estimation model are perfectly known. Instead, the
design choice resulting in greatest performance improve-
ment was the density on which the integer ambiguities
were fixed. For the considered measurement models and
moment approximation schemes, fixating on the smooth-
ing posterior led to a reduction in empirical positional
RMSE of approximately 30%. Additionally, fixating the
ambiguities on the smoothing posterior significantly im-
proved the convergence time of the positional estimates.

We also demonstrate that parameter adaption, when done
in the EM framework, can yield significant improvements
in GNSS post-processing when the model parameters are
not perfectly known. Here, we propose the adaptive post-
processing APP algorithm, which uses the RTSAP on the
first EM-iteration to fix the noise covariance basis, sub-
sequently fitting the parameters of the estimation model.
Doing so does not achieve a perfect estimate of the model
parameters, but significantly improves the position RMSE
in the fixed estimates and the integer fixation accuracy.

Future work will evaluate and validate the proposed RTSAP
and APP on GNSS experiment logs, and extend the algo-
rithm to a multi-receiver post-processing setting.
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Appendix A. SIMULATION PARAMETERS

In the simulation examples, all noises are defined as i.i.d.
and unbiased. The true process noise is given by the
parameter vector θtrue = (σ−2x , σ−2y , σ−2z , σ−2I , σ−2T , σ−2t )
for the SD-IF model, and omits the last element in
the DD-IF model, where σx = σy = 0.01 and σz =
σI = σT = σt = 0.001. In the second simulation ex-
ample, the erroneous model parameters are initialized

such that [θtrue]i/[θ
(0)]i ∼ U([10−1, 10]). The integer

ambiguities are realized with a = 10 ambiguities and
b = 0.001 cycle-slips/s, and the standard deviation of
the code/phase/Doppler noises are defined with a stan-
dard deviation of 0.5/0.01/0.05, respectively. The standard
deviation of the noise by which the measurement mod-
els ionosphere/troposphere/clock-biases are introduced is
given by 0.01/0.01/0.001, respectively. A total number of
10 satellites are considered at all times with positions
and velocities corresponding to the GPS constellation. All
three frequency bands are used (Lj ∈ {L1, L2, L5}) with
(f1, f2, f5) = (1575.42, 1227.6, 1176) [MHz]. All experi-
ments are run with periodic sampling at 0.2 [Hz], over
K = 103 time steps. The relaxed estimate prior is

N (z0; 0,diag(I3, 0.1))N (n0; 0, I)N (ξ0; 0, 0.01I)

where only the ambiguity distribution differs in the syn-
thetic data, where we instead let n0 ∼ U([−10, 10]dim(n0)).
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