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Constrained Gaussian-Process State-Space Models
for Online Magnetic-Field Estimation

Karl Berntorp and Marcel Menner

Abstract—We address the magnetic-field simulteanous localiza-
tion and mapping (SLAM) problem for global positioning. We
leverage a previously-developed particle filter (PF)-based frame-
work for online Bayesian inference and learning of Gaussian
Process state-space models (GP-SSMs). We extend the framework
to directly incorporate physical properties of the magnetic field in
the GP formulation, by leveraging that magnetic fields under the
absence of free currents are curl free. Because of its flexibility,
the method can include any motion model that can be expressed
by a general nonlinear function, with potential applications
to, e.g., mobile robotics and pedestrian localization. Simulation
results indicate that our method performs similar to recent batch
methods for magnetic-field slam, while the computation times are
feasible for online implementations.

I. INTRODUCTION

The magnetic materials present in buildings cause anomalies
in the ambient magnetic field. These anomalies are dominated
by spatial variations, although temporal variations exist, for
example, in the vicinty of mobile magnetic structures, such
as elevators or robots [1], [2]. Because the spatial variations
dominate over the temporal variations, using the ambient
magnetic field for indoor positioning and navigation has been
increasingly studied over the last decade, often, but not alywas,
in a simultaneous localization and mapping (SLAM) setting
[3]–[8]. Relying on the magnetic field for localization is
convenient for several reasons. First, it can be measured by
a magnetometer that is more or less present in any inertial
measurement unit (IMU). Second, it does not need to rely on
additional infrastructure or line-of-sight measurements [4].

Localization and SLAM using magnetic fields have been
tackled using several different types of methods and using
different sensor setups. It is common to complement the
magnetometer measurements with odometry readings—for
example, acceleration and gyroscope measurements from an
IMU. Different examples of combining magnetometer readings
with odometry are [6], which uses an odometry readings of the
relative pose, [9], which uses odometry readings for pedestrian
localization, and [10], which uses a foot-mounted IMU. Gaus-
sian processes (GPs) have been proven potent for magnetic-
field mapping. GPs are nonparametric modeling tools, which
imply flexibility in the ability to model general nonlinear func-
tions without a priori enforcing an explicit parametric structure
[11]. The paper [12] models the magnetic field in a GP by
incorporating physical knowledge from Maxwell’s equations
into the GP prior. Later, [4] extended [12] by rewriting the
GP model in terms of a reduced-rank approximation [13] and
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performed subsequent sequential update of the magnetic field
as new measurements arrive. Another follow-up work is [5],
which combined the physical knowledge about the magnetic
field in the GP prior and the reduced-rank formulation in a
Rao-Blackwellized particle filter (RBPF) [14] for SLAM. The
approach in [5] relies on an RBPF and is computationally
tractable, as it represents the magnetic-field map as a linear
combination of basis functions on hexagonal domains. Another
related approach is presented in [6], which implements an
extended Kalman filter (EKF) for slightly less accurate, but
substantially faster, magnetic-field SLAM.

In previous work, we developed a flexible framework for
online learning of GP state-space models (GP-SSMs) [15].
The framework is based on a variant of the particle filter
(PF) that leverages a reduced-rank formulation [13], [16] of
the GP-SSM, in which connections between GPs and a finite
basis-function expansion of the unknown system dynamics is
made by introducing certain priors on the basis-function coef-
ficients. The method in [15] is highly accurate and shown to
provide computation times suitable for real-time execution of
low-dimensional problems such as tire-friction estimation for
vehicle-control applications. In subsequent work, we showed
that our framework can be used for online learning where
the system to be learned has intrinsic constraints. In [17] we
showed that we could handle symmetry, antisymmetry, and
various types of boundary conditions.

In this paper, we further extend our method in [15], [17]
and show that it is well suited to solve the magnetic-field
SLAM problem. In current-free environments, the magnetic
field is curl-free, which can be formulated as a linear operator
constraint on the magnetic field. We show that our method
readily handles such constraint by a transformation of the basis
functions.

A. Related Work

Exploiting that magnetic fields are curl-free has been done
before, also with GPs (e.g., [4]–[6], [12]). While [4] uses
sequential updating of the magnetic field and a reduced-
rank approximation for computational efficiency, it does not
perform localization. The work [5] uses an IMU-based RBPF
for SLAM and similar to us leverages the reduced-rank for-
mulation [13] leading to a weighted basis-function expression
of the magnetic field map. However, the RBPF in [5] is based
on a state augmentation of the IMU state with the map state
and tailored to the particular setting where the map does not
evolve in time, whereas we leverage the general framework in
[15], [17] where marginalization leads to analytic map updates



that are different from the RBPF, and we introduce the notion
of a forgetting factor to handle magnetic fields that have a
slowly varying time component.

B. Notation
For a vector x, x ∼ N (µ,Σ) indicates that x ∈ Rnx is

Gaussian distributed with mean µ and covariance Σ and xn

denotes the nth component of x. Matrices are indicated in
capital bold font as X and the element on row i, column
j of X is denoted with xij . The determinant of X is |X|
and the trace of X is Tr(X). With p(x0:k|y0:k), we mean
the posterior density function of the state trajectory x0:k from
time step 0 to time step k given the measurement sequence
y0:k := {y0, . . . ,yk}, and xi

0:k is the ith realization of x0:k.
The notation f ∼ GP(0, κ(x, x′)) means that the function
f(x) is a realization from a GP prior with a given covariance
function κ(x, x′) subject to some hyperparameters ϑ, and ∇
is the standard vector differential operator.

II. MODELING AND PROBLEM FORMULATION

We are interested in jointly estimating online the state x ∈
Rnx of a magnetometer and the magnetic field h(p) : R3 →
R3 measured by the magnetometer, for example, included as
part of an IMU, where the position p is included in x. We
consider the estimation model

xk+1 = f(xk) +wk, (1a)
yk = h(xk) + ek, (1b)

where the (latent) state xk ∈ Rnx at each time step k is
implicitly observed through the measurement yk ∈ R3. The
nonlinear function f : Rnx → Rnx describes the motion of the
magnetometer mounting point and is a description capturing
a wide range of scenarios, for example, robotics, pedestrian
localization, and vehicles, both airborne and wheeled. For sim-
plicity we have omitted an external (control) input uk in (1a).
The process noise wk and measurement noise ek are Gaussian
distributed with covariance Q and R = σ2I according to
wk ∼ N (0,Q) and ek ∼ N (0,R), respectively. Note that
we can extend (1b) to also include nonmagnetic measurements.
Similar to previous work [4]–[6], [12], we model the magnetic
field h by a GP with prior h(p) ∼ GP(0,κ(p,p′)). See
[12] for a motivation of the choice of GPs. Furthermore,
from Maxwell’s equations, by assuming no free currents, the
magnetic field h is curl-free [18], implying

∇× h = 0. (2)

According to [4], (2) is valid in most indoor environments.
We assume that the state-transition model f is known, that

is, we have a model of the motion of the magnetometer.
This is reasonable and a standard assumption, since we have
control of where the magnetometer is mounted. However, the
magnetic field h is unknown, and the state x is only implicitly
measured through (1b). We solve the joint state and magnetic-
field estimation problem in a Bayesian setting, where the goal
is to estimate the joint posterior

p(x0:k,h|y0:k) (3)

at each time step k under the constraint (2).

A. Approximate Formulation of a GP

The learning method in [15] expresses an unknown function
g = [g1 · · · gng

]⊤ by a basis-function expansion according
to

ĝi(x) =

M∑
j=1

γijϕj(x) (4)

for each i = 1, 2, . . . , ng , where the weights γij are to
be determined. The basis-function expansion (4) originally
proposed in [13] leads to a joint inference and learning
approach that is linear in the weights γij . The eigenfunctions
with associated eigenvalues λj are solutions to the Laplace
operator over a domain. For our setting, over the rectangular
domain [−L1, L1]× [−L2, L2]× [−L3, L3] ∈ R3, the solution
is

ϕj1,...,j3 =

3∏
n=1

1√
Ln

sin

(
πjn(xn + Ln)

2Ln

)
, (5a)

λj1,...,j3 =

nx∑
n=1

(
πjn
2Ln

)2

. (5b)

The connection between a basis-function expansion (4) with
basis functions (5a) and a GP is

g(x) ∼ GP(0,κ(x,x′)) ⇔ g(x) ≈
M∑
j=1

γjϕj(x), (6)

for a function g with γj = [γ1j · · · γ3j ]
⊤ and

γij ∼ N (0,S(λj)), (7)

where S is the spectral density of the GP covariance function
κ [13].

The Earth’s underlying magnetic field depends on the lo-
cation on the Earth but can locally be modeled as constant,
which also deviate from the Earth’s magnetic field in indoor
environments due to magnetic material in the structure of the
building. The unknown mean can be modeled as one part of
the covariance function κ, κC = σ2

Cp
⊤p′ for each dimension.

Because the magnetic field is smooth, we use the squared
exponential covariance function to model the magnetic field
variations,

κSE(p,p
′) = σ2 exp

(
−∥p− p′∥22

2ℓ2

)
, (8)

with hyperparameters ϑ = {σ, ℓ}, where for simplicity we
assume the same hyperparameters for each dimension. Using
the basis-function expansion, the total covariance function is
approximated as

κ ≈ κC +

M∑
j=1.

S(λj)ϕj(p)ϕj(p
′), (9)

where the covariance (8) has the spectral density

S(ω) = σ2
√
2πℓ2 exp

(
−π2ℓ2ω2

2

)
. (10)



While setting h = g would be possible, it would violate (2).
With a matrix-multiplication interpretation, we can rewrite (2)
as

Hh = 0, (11)

where

H =

 0 − ∂
∂x1

∂
∂x2

∂
∂x3

0 − ∂
∂x1

− ∂
∂x2

∂
∂x1

0

 .

Hence, if we choose h = ∇g for a scalar basis-function
expansion g,

H∇g = 0, (12)

that is, by the transformation h = ∇g, h is ensured to
be curl free. In this paper, we choose g as in (4) with ϕj

according to (5a) and with the connection (7), (10) being
used to assign informed priors on the weights. With the basis-
function expansion (4) and basis functions (5), a reduced-rank
model of (1b) is

yk =

c⊤ 0 0
0 c⊤ 0
0 0 c⊤


︸ ︷︷ ︸

C

vec(∇ϕ1, · · · ,∇ϕM )︸ ︷︷ ︸
φ(xk)

+ek, (13)

where c = [γ11, · · · , γ1m]⊤, c is Gaussian distributed with
prior

c ∼ N (c|0, σ2V ) (14)

and V ∈ RM×M is a diagonal matrix with entries S(λj) [16].
Hence, the problem is to estimate x and c at each time step
k using the estimation model

xk+1 = f(xk) +wk, (15a)
yk = Cφ(xk) + ek. (15b)

III. ONLINE MAGNETIC-FIELD SLAM

Our magnetic-field SLAM method considers approximate
joint state inference and learning of the GP-SSM (1a) with
unknown measurement equation (1b). Instead of targeting (1),
the method learns (15), where we leverage the block-diagonal
structure in C, allowing a dimension reduction and instead
estimating c. This implies estimating the posterior distributions
of x and c at each time step k. The problem cannot be resolved
analytically, and the estimation of x and c is therefore based
on a tailored PF for approximating p(xk|y0:k) and p(ck|y0:k)
recursively. Specifically, the method approximates the joint
posterior density p(x0:k, ck|y0:k), from which marginal densi-
ties p(xk|y0:k) and p(ck|y0:k) can be computed. We decom-
pose the joint posterior as

p(x0:k, ck|y0:k) = p(ck|x0:k,y0:k)p(x0:k|y0:k). (16)

The two densities on the right-hand side of (16) are estimated
recursively. Given the state trajectory, we update the sufficient
statistics of the unknown parameters. The second distribution
on the right-hand side of (16) is approximated with the PF,
while the first distribution on the right-hand side is updated
analytically, for each particle.

A. Estimating the Parameter Posterior

The distribution of the basis-function weights ck are com-
puted conditioned on the realization of the state and mea-
surement trajectories for each particle. Using Bayes’ rule,
p(ck|x0:k+1,y0:k) can be decomposed into a likelihood and
prior as

p(Ck|x0:k,y0:k) ∝ p(yk|ck,x0:k)p(ck|x0:k,y0:k−1). (17)

The first term on the right-hand side of (17) is (13),

p(yk|ck,x0:k) = N (yk|Ckφ(xk),Rk). (18)

The magnetometer measurements are assumed mutually in-
dependent, and we proceed by updating the parameters of c
iteratively, leading to updates of (17).

Theorem 1: Suppose that the initial prior p(c0) is distributed
according to p(x0) = N (c0|0,V ). Define Ξ := Σk|k+V −1.
Then, for realizations x0:k and y0:k, (17) can be computed at
each time step k as

p(ck|x0:k,y0:k) = N (ck|Ψk|kΞ
−1, σ2Ξ−1), (19)

where Ψk|k and Σk|k can be recursively updated as

Ψk|k = Ψk|k−1 +

3∑
j=1

yj,kφ(xk)
⊤, (20a)

Σk|k = Σk|k−1 +φ(xk)φ(xk)
⊤. (20b)

Proof 1: See [15] for the matrix-Normal case. Eqs. (19),
(20) is achieved by collapsing the matrix-Normal case to a
standard Gaussian distribution.

For constant parameters, the time-update step is (∗)k|k−1 =
(∗)k−1|k−1 for both quantities in (20). However, for PFs
it can be problematic to estimate static parameters. Using
the principle of exponential forgetting [19], for slowly time-
varying parameters an approach is to write the time-update
step of the predictive statistics as

Ψk|k−1 = λΨk−1|k−1, (21a)
Σk|k−1 = λΣk−1|k−1. (21b)

The forgetting factor 0 ≤ λ ≤ 1 helps in the estimation of
dynamic variables by forgetting older data as new data are
accumulated in time. As a rule of thumb, for a forgetting factor
λ the update of the statistics will rely on the last 1/(1 − λ)
time instants.

To find the posterior distribution of ck, we marginalize out
the state trajectory according to

p(ck|y0:k) =

∫
p(ck|x0:k,y0:k)p(x0:k|y0:k) dx0:k

≈
N∑
i=1

qikp(ck|xi
0:k,y0:k), (22)

where p(ck|xi
0:k,y0:k) is given by (19) and qik is the particle

weight, see Sec. III-B.
Remark 1: The scalar real-valued number λ ∈ [0, 1] pro-

vides exponential forgetting in p(ck|x0:k,y0:k) that allows the



algorithm to adapt to (slowly time-varying) changes in c over
time. That is, our method handles magnetic fields that also
have a slow temporal dependence. For λ = 1 we recover the
case of static parameters, that is, a static magnetic field.

B. Particle Filtering for State Inference

PFs approximate the posterior density p(x0:k|y0:k) by a set
of N weighted trajectories,

p(x0:k|y0:k) ≈
N∑
i=1

qikδxi
0:k

(x0:k), (23)

where qik is the importance weight of the ith state trajectory
xi
0:k and δ(·) is the Dirac delta mass. The PF algorithm

iterates between prediction and weight update, combined with
a resampling step that removes particles with low weights and
replaces them with more likely particles. The particle weights
are typically updated as

qik ∝ qik−1p(yk|xi
k). (24)

C. Determining the GP Hyperparameters

In this section we discuss how to adjust the GP hyper-
parameters. For simplicity, we assume one set of range and
hyperparameters for all three dimensions. Determining online
all parameters associated with GPs is usually prohibitive. If
there are data available a priori, it is possible to set the
parameters based on offline learning methods—for example,
using GP hyperparameter optimization [12] or offline particle
Markov chain Monte-Carlo methods [16]. One approach is
then to collect data, run an offline method to get a sensible
hyperparameter set, and then execute the proposed online
magnetic-field SLAM method based on the offline estimated
parameters. Another possibility is to occasionally update the
parameters online using a data batch. While fully recursive
adaptation of the basis-function range L may be infeasible, it is
possible to adapt the GP the length ℓ and scale σ online when
L has been set. Intuitively, the GP hyperparameters adjust to
the prior choice L, as long as it covers the feasible space.

To this end, let the GP hyperparameters evolve according to
a random walk and assume independence between the different
dimensions,

ϑk = ϑk−1 + wϑ,k−1, (25)

where wϑ,k ∼ N (0,Qϑ), Qϑ is a diagonal matrix. Instead of
having V in (14) fixed, we now let it be updated according
to the sampled GP hyperparameters. The additional steps in-
volved when including GP hyperparameter estimation amount
to; (i) sample {ϑi}Ni=1 from the prior (25); (ii) update the co-
variance prior {V i

k }Ni=1 in (14) according to (10). The updated
{V i

k }Ni=1 affect the update of c by Theorem 1. The additional
steps for the GP hyperparameter updates imply an estimation
of the joint posterior density p(x0:k+1,ϑ0:k, ck|y0:k). How-
ever, in the end we are interested in the marginal densities
p(xk|y0:k) and p(ck|y0:k). The standard PF implementation
marginalizes out x0:k−1 by discarding it, which leads to an
O(N) implementation. This approximation relies on sufficient

mixing properties in the dynamic model to avoid the depletion
problem, essentially meaning that errors in the state are for-
gotten as time progresses, which is the reason why the O(N)
implementation of the PF works in many realistic scenarios.
In addition, the use of exponential forgetting by introducing
λ helps in this regard [20]. However, when adapting the GP
hyperparameters the model used to generate the state samples
will differ at each time step, which increases the risk of particle
depletion. Especially in high signal-to-noise ratios, it may be
important to account for different paths, which leads to the
modified weight update

qik ∝ p(yk|xi
k)

N∑
j=1

qjk−1p(x
i
k|x

j
k−1). (26)

Eq. (26) results in an O(N2) method, but it is possible
to implement (26) with O(N logN) complexity and even
linearly (e.g., using accept-reject sampling [21]).

D. Algorithm Summary

Algorithm 1 summarizes the proposed SLAM method. In
the proposed method, each particle i retains its own set of
Ψi,Σi, which forms the sufficient statistics to describe the
magnetic field.

Algorithm 1 Pseudo-code Magnetic-Field SLAM
Initialize: Set {xi

0}Ni=1 ∼ p0(x0), {qi−1}Ni=1 = 1/N ,
{Ψi,Σi}Ni=1 = {0,0}.

1: for k = 0, 1, . . . do
2: for i ∈ {1, . . . , N} do
3: if GP hyperparameter estimation then
4: Update weight q̄ik using (24).
5: else
6: Update weight q̄ik using (26).
7: end if
8: Determine Ψi

k|k−1,Σ
i
k|k−1 using (21).

9: end for
10: Normalize weights as qik = q̄ik/(

∑N
i=1 q̄

i
k).

11: Compute Neff = 1/(
∑N

i=1(q
i
k)

2).
12: if Neff ≤ Nthr then
13: Resample particles and copy the corresponding

statistics. Set {qik}Ni=1 = 1/N .
14: end if
15: for i ∈ {1, . . . , N} do
16: if GP hyperparameter estimation then
17: Sample ϑk from (25).
18: end if
19: Sample xi

k+1 from a proposal distribution.
20: Determine Ψi

k|k,Σ
i
k|k using (20).

21: end for
22: end for

Remark 2: In this work we use the basis functions (5b),
which are coupled in all three dimensions. However, for many
positioning applications the movement in the horizontal plane
dominates over the movement in the vertical plane, which



enables a decoupling between the different dimensions. This
can be done in numerous ways, for example, according to the
decoupling in [5]. We have not considered decoupling in this
work but it is conceptually straightforward to include.

IV. RESULTS

In this section we evaluate our magnetic-field SLAM
method using synthetic data and compare with our base
method proposed in [15], as well as comparing with a GP
formulation. The scenario we consider is the example used
in [12] tailored to the recursive setting. Consider a sphere
centered at the origin with a radius of r0 = 3m having
a uniform magnetization of m = [0, 1, 0]⊤A/m. Then, the
magnetic field h in (15b) is described by

h =

{
−m/3 if r < r0

m0

4π

(
m/r3 + 3/r5(m⊤p)p

)
if r ≥ r0

(27)

where m0 = 4/3πr30 and r = ∥p∥. We consider a robot
described by a nearly-constant velocity model moving in three-
dimensional space

ṗ = v +w, (28)

where the velocity v is controlled by a state-feedback con-
troller

v = −L(pr − p), (29)

where L is the feedback gain matrix and pr is the reference
path. The process noise describing model uncertainties is as-
sumed zero-mean Gaussian distributed with covariance matrix
Qw according to w ∼ N (0,Qw). We discretize the system
(28), (29) with a sampling rate Ts = 1s and execute the system
for 40s. We set L = 20 in (5), use M = 83 = 512 basis
functions (i.e., 8 in each dimension), and set ℓ = 5, σf = 1
in (10). The particle filter uses N = 50 particles and we set
the forgetting factor to λ = 0.99. We initialize Algorithm 1
at each of the NMC = 100 Monte-Carlo runs around the true
intial state with 1m standard deviation in each dimension. We
use the root mean-square error (RMSE) at each time step as
the measure of performance. The position RMSE at time step
k is computed as

RMSEk =

√√√√ 1

NMC

NMC∑
j=1

∥pk,j − p̂k,j∥2. (30)

To get a sense of the generated trajectory used in the
SLAM problem, Fig. 1 shows the true path and generated
particle cloud for one of the realizations. The robot moves
outside the sphere with radius r0 at all times, with most
of the movement in the XY -plane, which is consistent with
many indoor positioning applications, for example, for mobile
robotics and pedestrians. Except for the initial time step, the
estimates are close to the true values. To get a measure of
the performance of Algorithm 1, Fig. 2 displays the state
RMSE for Algorithm 1 and for the unconstrained case, that
is, applying the method in [15] directly. The proposed method
suppresses the initial transient faster, but in steady state the
difference in RMSE is small.
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Fig. 1. True path (black) and estimated path (red) for one realization, as well
as the particle cloud (blue) at every other time step.
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Fig. 2. State RMSE computed as (30) of proposed (black) and unconstrained
case (red) for 100 Monte-Carlo runs.

The benefits with Algorithm 1 become more clear when
investigating Fig. 3, which shows the true magnetic field
overlaid with the estimated field and the training points. While
the estimates for the unconstrained case seem reasonable
when studying them very close to the observed points, the
results do not generalize. For instance, inside the sphere or
around any of the corners, which the robot has not traveled,
the proposed method provides estimates that are of similar
direction and magnitude as the true field. In contrast, not
including the physical properties yields decent results in the
close vicinity of the traversed points, but the magnetic-field
estimates are wrong in both magnitude and direction for most
of the unobserved points. As a further illustration, Fig. 4 shows
the error fields for the two cases for the same realization as in
Fig. 3. The proposed method (left plot) displays smaller error
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Fig. 3. True magnetic field in green, our proposed Algorithm 1 in black
(top plot), without including constraints in red (lower plot), and the observed
points in magenta. Note that the observed points are increased in magnitude
for clarity. The results are for one typical realization.

fields throughout and particularly in unexplored areas.
To quantify the performance increase by the proposed

approach and see how the method estimates the magnetic field
in areas the robot has not traveled, Fig. 5 shows the RMSE
of the magnetic field as a function of time over an equidistant
grid in the state space. The RMSE is computed by gridding
the XY -plane equidistantly with an interval of 0.5m, resulting
in Nt = 400 evaluation points, and evaluating

RMSEk =
1

NMC

NMC∑
i=1

√√√√ 1

Nt

Nt∑
j=1

∥h(pj)− ĥk,i(pj)∥2. (31)

The proposed method in black enjoys a reduction in RMSE
with roughly 50%. The performance after 1 time step is
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Fig. 4. Error fields of our proposed Algorithm 1 in black (top plot),
unconstrained learning in red (lower plot). The results are for the same
realization as in Fig. 3.

significantly better than the end point when not incorporating
the constraint. Table I summarizes the results as time-averaged
RMSEs. The conclusion is that while our base formulation
[15] exhibits good positioning performance and good (local)
mapping, Algorithm 1 improves the map also in locations it
has not observed, implying it needs much fewer data points
to create a sensible magnetic-field map. The RMSE values
are very similar to the results reported in [12] where a batch
method was used on the same magnetic field, although there
are some differences in the setup so the results are not exactly
comparable.

V. CONCLUSION

In this paper we extended our recently developed recur-
sive Bayesian inference and learning method (see [15]) to
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Fig. 5. RMSE computed as (31) of the magnetic field as a function of time
for the proposed (black) and unconstrained case (red) over 100 Monte-Carlo
Runs.

TABLE I
TIME-AVERAGED RMSES FOR ALGORITHM 1 AND WHEN NOT INCLUDING

THE CURL-FREE PROPERTY INTO THE BASIS FUNCTIONS.

Measure Algorithm 1 [15]

State RMSE (30) 0.26 0.29
Map RMSE (31) 0.31 0.59

magnetic-field SLAM. The method is based on PFs and a
reduced-rank formulation of GPs, in which we leveraged
the curl-free property of magnetic fields to determine basis
functions such that the constraints are inherently satisfied in
the estimation formulation. In the formulation, a finite basis-
function expansion of the GP is used and by leveraging the
marginalization concept in PFs, the method is well suited for
real-time estimation. While similar methods for magnetic-field
mapping have been presented before, our proposed method
is part of a general framework which, together with the
conclusions in [17], can handle a large number of system
constraints applicable to a wide range of applications . In
a simulation study we showed that while the positioning
performance is not notably increased compared to the nominal
formulation in [15], its ability to learn maps in areas it has
not already observed makes a large difference on mapping
performance.

There are several ways to extend the method. The method
currently relies on modeling the magnetic field using a single
rectangular grid. While this is sensible for single rooms, it will
become intractable for larger buildings. Here, various ways to
combine segments of grids is something that has been explored
(e.g., [5]) but further work is possible. In the future we plan
to apply the method to mobile robotics applications related to
legged robots and drones for indoor localization and control
(see, e.g., [22]).
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