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Abstract
Robots have been steadily increasing their presence in our daily lives, where they can work
along with humans to provide assistance in various tasks on industry floors, in offices, and in
homes. Automated assembly is one of the key applications of robots, and the next generation
assembly systems could become much more efficient by creating collaborative human-robot
systems. However, although collaborative robots have been around for decades, their appli-
cation in truly collaborative systems has been limited. This is because a truly collaborative
human-robot system needs to adjust its operation with respect to the uncertainty and im-
precision in human actions, ensure safety during interaction, etc. In this paper, we present a
system for human-robot collaborative assembly using learning from demonstration and pose
estimation, so that the robot can adapt to the uncertainty caused by the operation of humans.
Learning from demonstration is used to generate motion trajectories for the robot based on
the pose estimate of different goal locations from a deep learning-based vision system. The
proposed system is demonstrated using a physical 6 DoF manipulator in a collaborative
human-robot assembly scenario. We show successful generalization of the system’s operation
to changes in the initial and final goal locations through various experiments.
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Generalizable Human-Robot Collaborative Assembly Using
Imitation Learning and Force Control
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Abstract— Robots have been steadily increasing their pres-
ence in our daily lives, where they can work along with humans
to provide assistance in various tasks on industry floors, in
offices, and in homes. Automated assembly is one of the key
applications of robots, and the next generation assembly systems
could become much more efficient by creating collaborative
human-robot systems. However, although collaborative robots
have been around for decades, their application in truly
collaborative systems has been limited. This is because a truly
collaborative human-robot system needs to adjust its operation
with respect to the uncertainty and imprecision in human
actions, ensure safety during interaction, etc. In this paper, we
present a system for human-robot collaborative assembly using
learning from demonstration and pose estimation, so that the
robot can adapt to the uncertainty caused by the operation
of humans. Learning from demonstration is used to generate
motion trajectories for the robot based on the pose estimate
of different goal locations from a deep learning-based vision
system. The proposed system is demonstrated using a physical
6 DoF manipulator in a collaborative human-robot assembly
scenario. We show successful generalization of the system’s
operation to changes in the initial and final goal locations
through various experiments.

I. INTRODUCTION

The advent and increased adoption of collaborative robots
has created possibilities for humans and robots to work
together in many applications where barriers previously
separated them for safety. One such application of high
practical significance is robotic assembly, where executing
tasks collaboratively and concurrently might allow for a
much more optimal division of labor, such that the robot
does more straightforward and repetitive tasks that might also
require more physical power, while humans perform more
dexterous and intelligent operations. While appealing, such
collaborative robotic assembly applications generally cannot
be implemented with traditional robot control technology.
In traditional robotic assembly (and automation in general),
various jigs and fixtures are used to ensure that the assembled
parts are exactly where the robot expects to find them so that
pre-programmed paths can perform the assembly operation.
However, in collaborative assembly, the position of parts will
typically vary, depending on where human workers place or
hold them.

Thus, novel technologies for adaptive robot control are
needed, where the path of robots is adjusted based on the
robotic perception of rich sensory input, typically visual or
tactile, similar to how humans work together on a collabo-
rative task while coordinating their actions. In addition, the
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possibility of safe interaction with collaborative robots allows
direct kinesthetic teaching of the operation that is to be
performed by the robot by directly holding the manipulator
by its end effector and demonstrating the desired trajectory.
Suppose one (or few) such demonstrated trajectories can
further be adjusted based on sensor input, depending on
the variable position of assembled parts and experienced
contact forces. In that case, the possibility arises for a fully
interactive, programming-less deployment of collaborative
robots for collaborative assembly that could be accessible by
regular workers in factories without any robotics expertise,
thus increasing the usefulness of robotics technology by
orders of magnitude. For a flexible human-robot collaborative
system, the robot should be able to adjust its motion based
on the human’s imprecise actions, and this adjustment should
be achieved without the laborious use of a motion planning
algorithm. Part of meeting these challenges also necessarily
involves some understanding and recognition of human in-
tent [1], [2]. Knowing how to recognize and classify human
intentions also informs the design of robot behavior, informs
aspects of the robot’s actions and plans, and contributes to
robot interaction that is legible, natural, safe, and comfortable
for effective collaboration. While this paper does not attempt
to study implicit recognition of human intent, we facilitate
collaboration with explicit communication of intentions for
collaborative assembly.

This paper presents a method for implementing collabora-
tive human-robot assembly by combining robotic perception
and imitation learning. In particular, we present a system
where a human and robot collaboratively perform subtasks to
assemble parts. In particular, we use a vision system to guide
the robotic system to estimate the location (pose) of the goal
state of an assembly operation (see Figure 1). Furthermore,
human demonstrations are provided to learn motor skills for
the robot to perform assembly, which can generalize to the
varying goal locations that the vision system can estimate.
We use dynamic movement primitives (DMPs) to learn full
6 DoF trajectories for learning motion profiles for the robot
from demonstrations [3]. The human expert provides the
task-related constraints to the robot so that the robot learns
successful motor skills without the need for exploration to
find suitable motor skills for the desired tasks.

The proposed collaborative assembly system is demon-
strated on a robotic system which is shown in Figure 1. The
proposed system is tested for different assembly scenarios
where the location of the assembly objects could be changed
by a human during actual assembly. Effectively, this results
in synchronization between the human and the robot via the



Fig. 1: The overall method presented in this paper for performing collaborative assembly. During training a human provides a direct teaching to the robot
to perform insertion using the proposed kinesthetic controller which makes use of the F/T sensor at the wrist of the robot. During execution, the assembly
environment is initialized where a bar is grasped by the stationary gripper and a threaded bolt is grasped by the manipulator arm. The robot then performs
insertion by using the learned DMP from the demonstration and thus makes the whole system easy to build (as there is no programming involved). This
reduces the effort on programming robots using complex motion planning and collision avoidance methods.

position of the parts placed by the human. In particular, the
proposed work has the following contributions:

• We present a learning-based human-robot collaborative
system for performing assembly.

• We present the design and usage of a force/torque
(F/T) sensor-based kinesthetic teaching controller that
simplifies interaction with the 6 DoF manipulator arm
for providing demonstrations.

• We test the proposed system for generalization on
different goal and initial locations.

As we have shown in Figure 1, the proposed kinesthetic
controller is used to provide demonstration for the insertion
task which is performed by the robot. This allows the
robot to perform single-shot learning for generating motion
trajectories which can be parameterized by the initial and
goal pose. During execution, a new motion trajectory is
generated using the learned DMP and the target pose estimate
provided by the proposed vision module. The robot then
performs insertion while the human finishes off the assembly.

II. RELATED WORK

Robotic assembly is a very successful application of
control and automation technology, and many manufacturing
industries rely heavily on it for various products, especially
in large-scale mass production. Such traditional robotic tech-
nology relies on exact placement of all parts by means of
jigs and fixtures to eliminate all uncertainty so that precisely
predetermined paths of the robots can be executed over and
over again without any modification. Even in the absence
of uncertainty, the system integration effort typically far
exceeds the cost of the actual robotic hardware. In this
paper, we present a collaborative assembly system which
can be designed using learning from demonstration (LfD)
using a vision module to detect and locate parts for assembly.
Previous efforts to create collaborative human-robot systems
for assembly tasks could be found in [4], [5], [6].

To allow modifications to the path of a robot in response to
sensor inputs, technologies for interpretation of such inputs

have been researched over many years. For assembly appli-
cations, where the assembled parts come in close contact
with one another, it has been particularly necessary to react
properly to contact forces, typically mounted by means of a
force/torque (F/T) sensor mounted on the wrist of the robot.
Various compliant control methods have been proposed and
are often provided as standard control modes on industrial
robot arms [7]. Although methods such as impedance and
admittance control can be very effective in dealing with
minor misalignment, especially if the parts are chamfered,
they typically cannot deal with large misalignment, e.g. of
magnitude comparable with the dimensions of the assem-
bled parts. Recent work on learning control has sought to
leverage advances in deep reinforcement learning to learn
adaptive non-linear control laws that can deal with such large
misalignments [8], [9], [10].

Nevertheless, if the position of assembled parts is allowed
to vary in much wider ranges, for example the surface of
a workbench, which human workers would often use in
its entirety, force sensing alone would not be sufficient for
successful assembly. In such cases, the position of the assem-
bled parts can be identified by means of various computer
vision methods. Although classical computer vision methods
could use geometric models of the parts, (such as CAD
files), to determine their position in an image [11], such
estimation can be brittle. A recently proposed very effective
alternative is to use machine learning technology to learn
the appearance of objects by generating synthetic data, and
estimate the full 3D pose from this appearance by means
of a deep neural network [12]. Advances in depth camera
imaging have further increased the accuracy of registration of
point clouds to geometric shapes [13]. However, all of these
approaches require geometric information. Yet another class
of methods rely on registration techniques between pairs of
images (or point clouds), to recover the relative transform
in 2D (respectively 3D) [14]. Because such algorithms do
not rely on geometric models, they might be applicable to a
wider range of assembly problems.



Another technology relevant to collaborative assembly is
learning from demonstration (LfD), in particular by means
of novel teaching methods such as kinesthetic teaching that
were too dangerous to use with traditional industrial robot
arms. LfD technology ([15]) has been researched actively
as a very appealing alternative to traditional laborious robot
programming, as well as planning technology whose de-
ployment can also be laborious and expensive, if the entire
geometry of the scene has to be recreated in digital form.
In particular, Dynamic Movement Primitives (DMPs, [3])
have been widely used as a parametric form of a path
demonstrated by a user that can be adapted to a new starting
and goal position, while retaining the general shape of the
path. The demonstration can be provided by means of any
method for teleoperation of the robot, and for the case of
collaborative robots, hand holding, or kinesthetic teaching,
could be a very natural and easy-to-use option. One popular
way to implement a kinesthetic teaching controller (KTC)
has been to make the robot behave like a virtual tool [16].
Usability studies have shown that human operators indeed
find such a virtual-tool simulating KTC easy and natural to
use [17].

III. PRELIMINARY MATERIAL

In this section, we present some background material for
the completeness of the proposed work. For brevity, we omit
many related concepts. For more details of these concepts,
interested readers are refered to [18], [19], [20].

A. Dynamic Movement Primitives (DMPs)

DMPs were first introduced by Schaal et al. [18]. To re-
move explicit time dependency, they use a canonical system
to keep track of the progress through the learned behavior:

τ ṡ = −αss (1)

where s = 1 at the start of DMP execution (and αs > 0)
and τ > 0 specifies the rate of progress through the DMP.

To capture attraction behavior, DMPs use a spring-damper
system (the transformation system) with an added nonlinear
forcing term. Writing the DMP equations as a system of
coupled first-order ODEs yields:

τ ż = αz(βz(g − y)− z) + f(s) (2)
τ ẏ = z (3)

where g denotes the goal pose. The forcing term is defined
as a radial-basis function:

f(s) =

∑N
i=1 wiψi(s)∑N
i=1 ψi(s)

(4)

ψi(s) = exp (−hi(s− ci)
2) (5)

where hi and ci denote the width and center of the
Gaussian basis functions, respectively. The forcing term is
learned from the demonstration by solving a locally weighted

regression to fit the demonstration data given by the ex-
pert. Note that the formulation above describes the regular
cartesian DMPs. However, we use the full 6 DoF DMPs
for generating motion of the manipulator arm during our
experiments where the angular movement is modeled using
quaternion formulation for the DMPs [21].

IV. PROPOSED SYSTEM

In this section, we present the collaborative human-robot
system for assembly. We explain the design and implemen-
tation of different components.

A. Design of Admittance Kinesthetic Controller (KTC)

The proposed system makes use of learning from demon-
stration (LfD) for designing motion trajectories for the in-
sertion task performed by the robot. In order to be able
to efficiently design motion trajectories for the manipulator
using LfD, we need to be able to provide demonstrations
efficiently. This means that it should be intuitive as well
as easy to move the robot while providing demonstrations.
While using a joystick may provide us an easy-to-use inter-
face for industrial robots, it becomes non-intuitive to control
the full 6 DoF pose of the end-effector for a task. Kinesthetic
teaching, where a user can directly move the end-effector
while applying suitable forces is a good alternative. However,
designing a kinesthetic teaching controller (KTC) could be
challenging for bulky, industrial robots. Another challenge
is that most of the industrial robots come with position-
controlled movement and they do not have torque sensors
at the joints. Consequently, we present the design of an
admittance-based KTC for moving the robot which makes
use of a F/T sensor at the wrist of the robot.

To achieve this, we use the F/T sensor attached at the
wrist of the manipulator (see Figure 1). The robot movement
can be controlled based on the forces experienced by the
robot which can be measured by the F/T sensor. We design a
number of different such kinesthetic controllers with different
degrees of complexities. A general-purpose flow diagram of
the design of the kinesthetic controller for the robot is shown
in Figure 2. As shown in Figure 2, the performance and
sensitivity of the controller can be fine-tuned by tuning the
stiffness matrix (Ks) and accommodation matrix (Ka) as
shown in Figure 2. The proposed KTC controller can be used
for providing demonstration in both contact-free environment
as well as contact-rich tasks. Furthermore, it also allows us
to select the degrees of freedom which we would like to
move during any demonstration.

Since the robot we use is a position controlled robot, the
KTC computes a new commanded position for the robot
based on the wrench measured using the F/T sensor at the
wrist of the robot. The commanded position is computed
using the following law:

xc[k + 1] = xr[k] + ∆xsf [k] + ∆xaf [k], (6)

where ∆xsf [k] = K−1
s f [k] and ∆xaf [k] = Kaf [k]. The stiff-

ness and accommodation matrices (Ks and Ka respectively)
are tuned in order to get the desired behavior for the robot.
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Fig. 2: The general-purpose flow diagram for the design of the kinesthetic teaching controller using force readings from the Force-Torque sensor mounted
at the interface between the wrist of the robot and the actual end effector. Ks denotes the stiffness matrix for the stiffness control of the robot and Ka

denotes the accommodation matrix.

In this paper, we use diagonal stiffness and accommodation
matrices (which makes design of the controller simple).

B. Hole Localization Using Vision

We propose to use hole-detection-based insertion using
vision for our approach, based on our previous work [22].
Using traditional computer vision approaches [23], [24] to
detect hole location is not robust with an unknown pose of
the part. We selected a supervised learning approach to detect
all accessible hole locations on the part from visual sensory
data obtained from an RGB-D sensor (Intel Realsense D435)
camera. We implement the Mask-RCNN [25] deep learning
architecture to learn masks for hole locations with instance-
level segmentation.

Figure 3 shows the vision pipeline for hole localization
with the network architecture. The network architecture is
built on a backbone convolutional neural network architec-
ture for feature extraction. The backbone network could be
any convolutional neural network for image analysis. We
use a feature pyramid network (FPN) based on ResNet-
50, which takes advantage of convolutional neural networks’
inherent hierarchical and multi-scale nature to derive useful
features at many different scales. Mask-RCNN lies on region
proposals which are generated via a region proposal network.
It follows the Faster-RCNN model of a feature extractor
followed by this region proposal network, followed by an
operation known as ROI-Pooling to produce standard-sized
outputs suitable for input to a classifier. However, Mask-
RCNN replaces the somewhat imprecise ROI-Pooling pro-
cess used in Faster-RCNN with ROI-Align, which allows for
accurate instance segmentation masks. It also adds a network
head, a small fully convolutional neural network, to produce
the desired instance segmentations. Finally, mask and class
predictions are decoupled; the mask network head predicts
the mask independently from the network head predicting the
class. Typically, this entails using a multitask loss function
L = Lcls+Lbbox+Lmask. In our scenario, we post-process
the mask network head output that independently predicts
the mask for learning hole localization in images. Finally,
we perform geometric correction with curve fitting that has

the best fit to the depth points obtained from the mask by
trying to find the best visual fit of a circle.

For training the network, we performed transfer learning
from the MS COCO dataset [26] pre-trained weights in a
supervised manner. We captured hundred images of size
640×480 at different poses, and annotated the data to indicate
hole pixels with the labelme [27] annotation tool to train
the network. We identify the resulting segmentation masks
for hole locations with the network prediction. The detected
segmentation mask of the hole locations are utilized with
depth estimation to compute the corresponding registered
point cloud data points. The output from the approach is
the estimate of the hole locations from the visual sensory
data for performing the insertion. Figure 4 shows some
qualitative results of hole detection on the objects used in
this particular study. This method is used to locate the goal
location when the bar is grasped by the stationary gripper
during the collaborative assembly.

C. Trajectory Generation Using Dynamic Movement Primi-
tives (DMPs)

One of the key requirements of a collaborative assembly
system is that the robot action should be able to adapt
to uncertainty in human actions, since human actions are
usually far from repeatable. Thus, the robot should be able
to adjust its movement depending on the result of human
actions. Furthermore, it is desirable that the collaborative
assembly system should avoid laborious motion planning
to allow this adjustment. Thus, we make use of dynamic
movement primitives to generate motion trajectories for the
robot during the collaborative assembly process.

The kinesthetic controller that we had described in Sec-
tion IV-A is used to provide a demonstration for the full
6 DoF movement of the robot (see Figure 1). The demon-
stration is used to generate trajectories for insertion of the
threaded bolt using the location of the hole provided by
our hole localization module described in Section IV-B. The
DMPs described in Section III are provided with the tuple
of initial pose and goal pose for the end-effector and a
new motion trajectory is computed using the learned DMP



Fig. 3: The deep learning pipeline for hole pose localization. Our vision architecture is based on the Mask-RCNN model to learn masks for hole locations.
Note that ROI stands for region of interest.

Fig. 4: Sampling of vision pipeline qualitative results for hole pose local-
ization during part handover operation by the human operator. As seen in
these pictures, the proposed hole localization method is able to detect and
track the holes as the assembly part is moved in the view of the camera.

from the demonstration. This computed motion trajectory is
implemented to perform the insertion task by the robot for
the assembly task. We ignore any unexpected contact or any
change in pose of the peg that might happen during the task
execution.

V. EXPERIMENTS

In this section, we present all the experiments we per-
formed to verify our proposed kinesthetic controller, pose
estimator, and the system for performing collaborative as-
sembly. The experiments are performed to understand and
answer the following questions:

1) How does the proposed Kinesthetic Teaching Con-
troller compare against the default built-in kinesthetic
controller that does not use the F/T sensor?

2) How well is the proposed collaborative system able to
generalize for assembly?

In the rest of this section, we will try to answer the above
two questions.

A. Task Description
The task that we consider in this paper is that of collab-

orative assembly where a robot is supposed to collaborate
with a human to perform a task. More specifically, the task
is to assemble a desired ”T”-shaped product using multiple
parts. The different parts and the final desired product could
be seen in Figure 6. The objective is to create the ”T”-shaped
object using two bars with multiple holes, a threaded bolt,
and a nut.

Since the task requires four different parts during assem-
bly, we propose to use four dexterous hands for performing
the assembly. Two of these hands are human hands, and the
other two hands consist of a stationary gripper (see Figure 5)
and a 6 DoF manipulator arm mounted with a two-fingered
gripper (see Figure 5). Since the full assembly task is a long-
horizon, multi-step process, we need a way to indicate or
infer beginning and end of the different steps of the multi-
step assembly. While inferring the beginning and end of
steps during the assembly is desirable, discussion of such
a perception system is out of the scope of the current paper.
In this work, we make use of foot pedal that is used to
indicate the beginning and end of a step. All the system
components are shown in Figure 5. We use a Mitsubishi
Electric Factory Automation (MELFA) RV-5AS-D Assista
6-DoF arm (see Figure 5) for the experiments. The robot
has pose repeatability of ±0.03mm. The robot is equipped
with the Mitsubishi Electric F/T sensor 1F-FS001-W200 (see
Figure 5).

In this assembly, a human first picks up a bar with holes
and places it in the stationary gripper (see the initialization
step in Figure 1). Then, the task of the robot is to grasp
a threaded bolt and insert it in one of the holes of the bar
depending on the desired assembled product. The the human
inserts the second bar into the peg (still held by the robot) and
then tightens the nut on the bolt to finish the assembly (see
Figure 1 to see all these steps during execution). During this
multi-step assembly, a human makes use of the foot pedal
to signal to the robot the end of one step and the beginning
of the next one (see Figure 5).

B. Experimental Results
In this section, we present results to evaluate the efficiency

of the proposed controller. In the first set of experiments,



Fig. 5: In this figure, we show the assembly consisting of a stationary
gripper, a collaborative 6 DoF manipulator arm, an RGBD camera and a
foot pedal (shown in the inset in the right-lower corner) which is used to
indicate the end of various steps during the collaborative assembly task. We
localize the pegs with another camera (not visible in the image).

Fig. 6: The parts used are shown in the left side figure, and the goal is to
assemble the T-shaped object shown in the right side of the image. To show
generalization, we use one of the three holes marked in the image at any
novel position of the bar in the stationary gripper.

we perform evaluation of the proposed kinesthetic controller
and then perform experiments to evaluate the efficiency of
the proposed collaborative system.

1) Evaluation of the Proposed Kinesthetic Controller:
In this section, we present the effectiveness of the proposed
KTC for two different tasks. Since the KTC makes use of
the F/T sensor, it can be used for demonstration of contact-
rich tasks without running into the risk of breaking either the
robot or the parts used in the task. We test the effectiveness
of the KTC for a writing task. In Figure 7, we show the
use of the proposed KTC controller for a writing task.
We can observe that we can get very smooth trajectories
during writing (see the inset in Figure 7 for the result of
writing task). Using a suitable choice of the accommodation
controller (which could be linear or non-linear and is a design
choice), we can make the KTC as reactive as is required for
the writing task. However, it might lead to instability as the
robot may move with noise of the sensor. Thus, the KTC
controller is designed as a trade-off between the sensitivity

Fig. 7: The proposed kinesthetic controller can be used for demonstrating
contact-rich as well as contact-free tasks. For example, in this picture we
show the task of writing on a whiteboard using the proposed kinesthetic
controller. The picture in the bottom-right inset shows the final word written
using the KTC.

and stability for the desired task. While it is possible to find
the optimal set of parameters for the accommodation as well
as stiffness using data-driven optimization methods (such as
Reinforcement Learning), such a discussion is out of the
scope of this paper.

To show the effectiveness of the proposed KTC for pro-
viding demonstrations for performing insertion, we present
the force trajectory measured by the F/T sensor at the wrist
of the robot. A sample force and moment trajectory for
the robot during a demonstration by a user is shown in
Figure 8. As could be seen in the Figure, the maximum force
norm measured by the F/T sensor is about 12 N. The force
trajectory shown in Figure 8 is an order of magnitude less
than what an user has to apply while moving the robot using
the default Kinesthetic controller that makes use of current
sensors at the joints to move the robot (note that since the
default kinesthetic controller does not use the F/T sensor for
movement, we can not measure the exact force trajectory).

Furthermore, we collected demonstrations using the native
(default) KTC and compared the timing and jerk of the
demonstration trajectories against the proposed KTC. All
these demonstrations were started at the same pose of the
robot and were terminated after demonstrating a successful
insertion task. The timing results are listed in Table I where
it can be seen that the proposed KTC can smoothly move the
robot and thus takes much less time compared to the default
KTC (that does not make use of the F/T sensor at the wrist).
To compute the jerk of the demonstration trajectories, we
perform finite difference of the trajectories thrice and find the
norm of jerk trajectories. The mean and standard deviation
of the norm of the jerk trajectory are tabulated in Table II.
We also compute the mean and standard deviation of the



Fig. 8: The force trajectory measured by the F/T sensor at the wrist-
gripper interface as a user is demonstrating a trajectory using the proposed
kinesthetic controller. Despite the large moving mass of the robot, the
maximum force applied by a user during the teaching motion is only ∼
12 N. By comparison, the force required in the native cobot teach mode
was in excess of 50 N (limited by instrumentation over-range) due to the
need to back-drive the robot servomotors through their reduction gearboxes

TABLE I: Demonstration Timing

Controller Avg. Time over 5 demonstrations
Native KTC 24.66± 3.25 [s]

Proposed KTC 17.17± 0.756 [s]

maximum jerk for the demonstrated trajectories over the 5
trajectories. As could be seen in Table II, the trajectories
demonstrated using the proposed KTC has lower jerk when
compared to the default KTC for the robot.

2) Generalization of the Collaborative Assembly System:
In the next set of experiments, we evaluate the generalization
of the proposed collaborative system. A human user first
demonstrates a single successful insertion of the peg into
one of the three holes at a single location of the bar which
is held in the stationary gripper (see Figure 5 and Figure 6 for
location of the holes). This single demonstration is used for
learning a DMP for insertion attempts during test assembly
settings. Figure 9 shows the angular range for the placement
of the bar in the stationary gripper for which the vision
algorithm is able to detect each of the three holes in the
bar. To evaluate the success of the assembly, a human places
the bar in the stationary gripper at the beginning of a new
experiment and any of the three holes is selected for the
collaborative assembly. The robot then uses the demonstrated
trajectory and the position of the hole returned by the
vision module to compute an insertion trajectory to perform
insertion of the peg into the hole. The combination of the
DMP generated motion based on the single demonstration,
plus the vision algorithm’s accuracy is sufficient so that the
the DMP-based insertion was 100% successful for all 20
trials of the test run. In each of these test runs, a hole was
randomly selected for insertion (out of the three possible

TABLE II: Demonstration Trajectory Quality

Controller Jerk Norm Maximum Jerk During Demo
Native KTC 10.55± 1.11 10.84± 0.73

Proposed KTC 6.71± 0.157 6.99± 0.00

options shown in Figure 6). It is noted that the bar was
always placed in the region where the bar is in the view
of the camera and thus the holes could be detected. During
a few insertion attempts, the peg comes in contact with the
bar during insertion, but since the robot works in stiffness
control mode, it is successfully able to perform the insertion.

Fig. 9: In this figure, we show the range of the placement of the bar in
the stationary gripper for which the vision algorithm is able to detect the
location of all the four holes.

VI. CONCLUSIONS

Next-generation robotic systems are supposed to have an
increased presence in our society where robots will have
skills for perception and interacting with their environment.
These robots will be used to design truly collaborative
environments where robots and humans can collaborate to
perform complex tasks for increased performance and effi-
ciency. However, in order to design such a system, the robot
should be able to adapt to the uncertainty in human actions.
Furthermore, it is desirable that such a system could make
use of human domain knowledge for performing the task and
avoid laborious use of motion planning algorithms. In this
paper, we presented a human-robot collaborative assembly
task using DMP for motion generation, pose estimation,
and force control. The proposed human-robot collaborative
assembly system is designed so that the robot’s movement
can be adapted based on human actions using vision and
LfD.

We presented an assembly task using four different parts
which are put together using two human hands, one station-
ary gripper, and one 6 DoF manipulator arm mounted with a
two-fingered gripper and an F/T sensor. We show design and
testing of an admittance-based kinesthetic controller which
makes use of the F/T sensor mounted at the wrist of the robot



to move the end-effector while providing demonstrations. We
show the advantage of the proposed controller for moving the
robot compared with the stock kinesthetic controller for the
manipulator in providing demonstrations in contact-free as
well as contact-rich scenarios. This kinesthetic controller is
used to provide demonstrations for performing a common
and useful task - the insertion of a threaded peg into a target
hole during a collaborative assembly procedure. This is used
to design the LfD system allowing the collaborative system
to learn from human domain knowledge for the task. We
showed the design and implementation of a deep learning
model for hole localization which is used for performing
autonomous assembly during the collaborative assembly. We
show the generalization of the proposed LfD system by
providing novel goal locations for insertion to the robot
during testing. We show that our LfD system is able to
localize the target hole locations over a reasonably large
target area.

In the future, we will work towards inferring the beginning
and end of the different steps in the multi-step assembly
task using vision-based techniques or using other sensing
modalities. Similarly, to make the proposed assembly robust
to unexpected contacts during assembly, we will make use
of pose estimation using vision or tactile sensors as well as
more advanced force control [9], [28], [29], which can be
used to adapt the motion trajectory to any such event during
assembly. We would also like to integrate some nonprehen-
sile manipulation capabilities so that the the system becomes
modular [30].
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