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Abstract
This paper presents a chance-constrained formu- lation for robust trajectory optimization dur-
ing manipulation. In particular, we present a chance-constrained optimization for Stochastic
Discrete-time Linear Complementarity Systems (SDLCS). To solve the optimization problem,
we formulate Mixed-Integer Quadratic Programming with Chance Con- straints (MIQPCC).
In our formulation, we explicitly consider joint chance constraints for complementarity as
well as states to capture the stochastic evolution of dynamics. We evaluate robustness of our
optimized trajectories in simulation on several systems. The proposed approach outperforms
some recent approaches for robust trajectory optimization for SDLCS.
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Chance-Constrained Optimization in Contact-rich Systems

Yuki Shirai†, Devesh K. Jha‡, Arvind U. Raghunathan‡, Diego Romeres‡

Abstract— This paper presents a chance-constrained formu-
lation for robust trajectory optimization during manipulation.
In particular, we present a chance-constrained optimization
for Stochastic Discrete-time Linear Complementarity Systems
(SDLCS). To solve the optimization problem, we formulate
Mixed-Integer Quadratic Programming with Chance Con-
straints (MIQPCC). In our formulation, we explicitly consider
joint chance constraints for complementarity as well as states
to capture the stochastic evolution of dynamics. We evaluate
robustness of our optimized trajectories in simulation on several
systems. The proposed approach outperforms some recent
approaches for robust trajectory optimization for SDLCS.

I. INTRODUCTION

Contacts are central to manipulation problems. Conse-
quently, contact modeling has been an active area of research
in robotics since the last several decades [1], [2], [3], [4],
[5]. One of the most popular approaches to model contact
dynamics is using Linear Complementarity Problem (LCP).
LCP models are widely used for modeling contact dynam-
ics in academia as well as in several physics simulation
engines such as Bullet, ODE, etc. Trajectory optimization
(TO) of LCP-based contact models has been used for ma-
nipulation [6], [7] and legged locomotion [8]. Lyapunov
stability of linear systems with complementarity systems has
also been studied [9], [10], [11]. However, most of these
works assume deterministic contact models to perform TO.
In reality, frictional interaction systems suffer from several
uncertainties which lead to stochastic dynamics and thus, it
is important to consider uncertainty during TO. Modeling
uncertainty in LCP-based contact models leads to Stochastic
Discrete-time Linear Complementarity System (SDLCS).

We consider the SDLCS that has uncertainty in parameters
and additive noises in dynamics and complementarity con-
straints. One should notice that uncertainty leads to stochas-
tic evolution of system states in SDLCS. Thus, a robust
optimization formulation should consider the uncertainty in
state evolution. In some recent works that consider stochastic
complementarity constraints, an expected residual minimiza-
tion (ERM)-based [12] penalty is used to solve the robust
optimization problem [13]. A major shortcoming of such an
approach is that it fails to capture the stochastic evolution
of system dynamics due to the stochastic complementarity
constraint. In [14], the authors augment the formulation
in [13] with chance constraints. However, this formulation
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has certain fundamental shortcomings which prevent con-
straint satisfaction guarantees. We present a formulation that
circumvents these shortcomings by using a mixed integer
formulation. Using some relaxation of the original joint
chance complementarity constraint problem for the SDLCS,
the resulting problem can be solved using mixed integer
programming.

In this paper, we present a formulation of robust tra-
jectory optimization for SDLCS. Since worst-case robust
optimization is quite conservative and does not explicitly
discuss stochastic evolution of states [15], this work con-
siders probabilistic optimization with stochastic evolution of
states. Robustness to uncertainty is provided by enforcing
probabilistic satisfaction of state constraints. Under certain
simplifications, we show that the chance-constrained problem
can be reformulated as a Mixed Integer Quadratic Program
with Chance Constraints.

Contributions. This paper has the following contributions:
1) We present a novel formulation for chance-constrained

optimization of SDLCS.
2) We compare our proposed approach with several pre-

viously proposed techniques and demonstrate that our
method outperforms the recent techniques in [13], [14].

II. RELATED WORK

In this section, we review some of the work which is
most close to the work presented in this paper. Our work
is closely related to TO techniques for contact-rich systems.
Contact-implicit TO techniques are becoming very popular
for performing TO for contact-rich systems, and several tech-
niques have been proposed for manipulation as well as legged
locomotion [6], [8], [16]. All the above techniques assume
perfect model knowledge and do not consider uncertainty.

There has been some recent work on robust TO in
Stochastic Nonlinear Complementarity System (SNCS) [13],
[14], [17]. In [13], the authors have utilized the formulation
of ERM for robust TO. ERM, first introduced in [12] for
Stochastic Linear Complementarity Problem (SLCP), aims
at minimizing the expected error in satisfying the SLCP.
In [13], authors use ERM as an additional penalty term
in their TO problem. However, such a formulation does
not consider the stochastic state evolution of the system
during optimization. A chance-constrained formulation for
SNCS is presented in [14]. This method augments the ERM-
augmented objective in [13] with additional chance con-
straints on satisfying the complementarity constraints. The
formulation ignores the stochastic evolution of system state
during optimization, and thus borrows the limitations of [13].
Furthermore, this formulation is incapable of enforcing a



constraint violation probability smaller than 0.5 for any
degree of uncertainty. Consequently, this method is very
fragile for trajectories with the horizon, N > 1 as the
chance of violating the constraints for such trajectories is
0.5N ≥ 1 [18]. Our formulation addresses these weaknesses
under certain simplifying assumptions for SDLCS.

Another line of work which is relevant to understand
some of our proposed work is related to chance-constrained
optimization (CCO). This has been extensively studied in
robotics as well as optimization literature[19], [20], [21].
In [19], authors have proposed stochastic optimization for-
mulation for open-loop collision avoidance problems using
chance constraints under Gaussian noise. [21] uses statistical
moments of the distribution to handle non-Gaussian chance
constraints. An important point to note here is that in all
CC formulation for dynamic optimization, one needs to
consider the CDF function for the joint probability distri-
bution of all variables. However, such distribution is gen-
erally extremely challenging to compute. Thus, in general,
the joint chance constraint is decomposed into individual
chance constraints using Boole’s inequality (see [19], [21]),
which results in very conservative approximation of the
individual constraints. Our formulation utilizes Boole’s in-
equality to convert the original computationally intractable
joint chance constraints into conservative but tractable inde-
pendent chance constraints.

III. PROBLEM PRELIMINARY

For the completeness of the paper, we provide a brief intro-
duction to linear complementarity problem and its stochastic
form. This is followed by a problem formulation for robust
trajectory optimization for linear dynamical systems with
stochastic complementarity solution. We also point several
key differences of our approach from previous attempts for
robust trajectory optimization for stochastic complementarity
system.

A. Discrete-time Linear Complementarity System (DLCS)

A DLCS is a discrete-time linear dynamical system with
complementarity constraints [11] given by:

xk+1 = Axk +Buk + Cλk+1 + gk (1a)
0 ≤ λk+1 ⊥ Dxk + Euk + Fλk+1 + hk ≥ 0 (1b)

where k is the time-step index, xk ∈ Rnx is the state,
uk ∈ Rnu is the control input, and λk ∈ Rnc is the algebraic
variable (e.g., contact forces). In addition, A ∈ Rnx×nx ,
B ∈ Rnx×nu , C ∈ Rnx×nc , gk ∈ Rnx , D ∈ Rnc×nx ,
E ∈ Rnc×nu , F ∈ Rnc×nc , and hk ∈ Rnc . The i-th element
of vector pk (pk can be xk, uk, λk) is represented as pk,i. The
i-th diagonal element of matrix Pk is represented as Pk,ii.
The notation 0 ≤ a ⊥ b ≥ 0 denotes the complementarity
constraints a ≥ 0, b ≥ 0, ab = 0.

Given a xk, uk, an unique solution λk+1 to (1b) exists if F
is P-matrix [22]. If F does not satisfy the P-matrix property,
it is possible that λk+1 satisfying (1b) is non-unique or non-
existent.

B. Contact-Implicit Trajectory Optimization

A contact-implicit trajectory optimization for the DLCS
can be formulated as:

min
x,u,λ

N−1∑
k=0

J(xk, uk, λk) (2a)

s. t. xk+1 = Axk +Buk + Cλk+1 + gk, (2b)
0 ≤ λk+1 ⊥ Dxk + Euk + Fλk+1 + hk ≥ 0, (2c)
x0 = xs, xN = xg, xk ∈ X , uk ∈ U , λk ≤ λu (2d)

where xs, xg represent the initial and the terminal values,
respectively, X ⊆ Rnx and U ⊆ Rnu are convex polytopes
consisting of a finite number of linear inequality constraints,
λu is the upper bound of λk, and N is the time horizon.

While (2) is widely used in various robotic applications,
it can be fragile under uncertainty, which is often the case
in model-based manipulation. Hence, we consider a novel
formulation of (2) so that the generated trajectory from the
optimization would be robust under uncertainty.

C. Stochastic Discrete-time Linear Complementarity Sys-
tems (SDLCS)

We consider the following SDLCS, i.e. DLCS with uncer-
tainty:

xk+1 = Axk +Buk + Cλk+1 + gk + wk (3a)
0 ≤ λk+1 ⊥ yk+1 ≥ 0 (3b)

where yk+1 = Dxk + Euk + Fλk+1 + hk + vk. wk ∈
Rnx , vk ∈ Rnc are zero-mean Gaussian noise with a known
covariance. We consider the case where the coefficient matrix
C in (3a) and F in (3b) are stochastic matrices to discuss
a more realistic stochastic effect due to complementarity
constraints. This corresponds to the case when one might
have uncertainty arising from parameter identification lead-
ing to a SDLCS. An alternative to this is to allow the
complementarity variable λk+1 to be stochastic. However,
such treatment is out of the scope of the current work.
Our treatment of SDLCS leads to stochastic evolution of
system states xk, while we treat λk+1 as deterministic. The
assumption of determinacy in λk+1 is similar to several
previous works [12], [13], [14], [23].

The authors in [13] use ERM to solve TO of SDLCS and
use the following cost function:

N−1∑
k=0

(
J (xk, uk, λk+1) + βE

[
∥ψ (λk+1, yk+1)∥2

])
(4)

where ψ is an Nonlinear Complementarity Problem (NCP)
function, β is a weighting scalar. We compare the robustness
of our formulation with (4) in Sec V.

IV. ROBUST TRAJECTORY OPTIMIZATION FOR SDLCS

In this section, we describe our formulation for robust TO
of SDLCS. We consider:

min
x,u,λ

E

[
N−1∑
k=0

J(xk, uk, λk)

]
(5a)



s. t. xk+1 = Axk +Buk + Cλk+1 + gk + wk, (5b)
Pr (0 ≤ λk+1 ⊥ yk+1 ≥ 0, xk ∈ X ,∀k) ≥ 1−∆,

(5c)
x0 ∼ N (xs,Σs) , uk ∈ U , λk ≤ λu (5d)

where Pr denotes the probability of an event and ∆ ∈
(0, 0.5] is the user-defined maximum violation probability,
where the probability of violating constraints is bounded by
∆. xs,Σs are the mean and covariance matrix of the state
at k = 0. X and U are convex polytopes, consisting of a
finite number of linear inequality constraints. In Sec IV-A,
we describe how we convert (5c) to a tractable optimization
problem.

For clarity of presentation, we explain the reasoning
behind our formulation shown in (5). Since the underly-
ing SDLCS is uncertain, we consider a chance-constrained
formulation for optimization to capture stochastic evolution
of states (see discussion in Sec I) where we impose multi-
ple constraints simultaneously. This is represented as joint
chance constraints for the complementarity constraints as
well as the states, which is succinctly written in Equa-
tion (5c)). Note that we represent the chance constraints
on all the variables jointly (as is common in stochastic
optimization for dynamic systems) using the cdf for the state
as well as complementarity variables. We show in the rest
of this section how the joint constraints can be decomposed
into individual chance constraints using Boole’s inequality. It
is also important to note that unlike (5), the method in [13],
[14], [24] fails to capture the stochastic evolution of states
in their formulation.

In this work, we make the following assumptions for (5):
1) Noise terms wk, vk follow Gaussian distribution.
2) The complementarity variable λk+1 is deterministic.
3) Each element of vectors Cλk+1 and Fλk+1 are inde-

pendent Gaussian variables.
We explain the rationale for above assumptions in Sec IV-B.

A. Joint Linear Chance Constraints

We consider joint chance constraint such that multiple
constraints are satisfied simultaneously with a prespecified
probability. More specifically, we consider the joint chance
constraint (5c) so that the complementarity constraints and
state bound constraints over the whole time horizon of the
optimized trajectory are satisfied with probability 1−∆. We
denote the complementarity relationship in (3b) succinctly
as (λk+1,i, yk+1,i) ∈ S for i = 1, . . . , nc. Hence, in this
optimization problem (5), we have the following joint chance
constraints:

Pr (0 ≤ λk+1 ⊥ yk+1 ≥ 0, xk ∈ X ,∀k) ≥ 1−∆ ⇐⇒

Pr

(
N∧

k=0

(
nc∧
i=1

(λk+1,i, yk+1,i) ∈ S

)∧(
L∧

l=1

a⊤l xk ≤ bl

))
≥ 1−∆

(6)

where
∧

is the logical AND operator. L represents the
number of chance constraints involving x at k, except for

the complementarity constraints. al ∈ Rnx is the constant
vector and bl is a scalar.

Obtaining a cumulative distribution function (cdf) of (6)
is challenging because the joint probability of states and
complementarity variables is considered. The only way to
decompose joint chance constraints is Boole’s inequality
[18] that converts the original computationally intractable
joint chance constraints into conservative but tractable in-
dependent constraints. Hence, similar to previous works,
we employ Boole’s inequality [18] to get the conservative
approximation of (6) as follows:

Pr

(
N∧

k=0

(
nc∧
i=1

(λk+1,i, yk+1,i) ∈ S

))
≥ 1−∆1,

Pr

(
N∧

k=0

(
L∧

l=1

a⊤l xk ≤ bl

))
≥ 1−∆2,∆1 = ∆2 =

∆

2

(7)

Using Boole’s inequality again, we can further obtain the
conservative chance constraints given by:

Pr ((λk+1,i, yk+1,i) ∈ S) ≥ 1− ∆1

Nnc
, (8a)

Pr
(
a⊤l xk ≤ bl

)
≥ 1− ∆2

NL
,∆1 = ∆2 =

∆

2
(8b)

We discuss how to handle (8a) in Sec IV-B. We formulate
(8b) as its equivalent deterministic form:

Pr
(
a⊤l xk ≤ bl

)
≥ 1− ∆2

NL
⇐⇒ (9a)

a⊤l x̄k ≤ bl −
√
a⊤l Σxk

alΦ
−1(1− ∆2

NL
) (9b)

where x̄k,Σxk
are the mean and covariance matrix of xk,

respectively. Φ−1 is an inverse of the cdf of the standard
normal distribution.

B. Chance Complementarity Constraints (CCC) for SDLCS

We make the assumptions as specified in Sec IV. While a
more general formulation could allow the complementarity
variable λk+1 to be stochastic, we do not consider it here.
However, we believe that allowing C and F to be stochastic
can achieve a similar effect in SDLCS. Furthermore, in cases
where the distribution of λk+1 is known, our proposed for-
mulation can be easily extended to incorporate stochasticity
in λk+1. However, for brevity, we skip these details. The
Gaussian assumption on uncertainty is made primarily to
allow equivalent reformulation of the chance constraints to
deterministic inequalities.

While [14] proposed a promising CCC, their formulation
possesses empty solutions when ∆ ≤ 0.5 (see [14]). This
can result in a very fragile trajectory since the total violation
probability over N steps would be always more than 1 if
N ≥ 1 (using Boole’s inequality). This is because they use
a Non-Linear Programming (NLP) formulation which needs
to impose all CCC constraints simultaneously which compete
with each other.
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Fig. 1: Deterministic and stochastic complementarity constraints. We have
the complementarity constraints 0 ≤ λk+1,i ⊥ yk+1,i ≥ 0 where yk+1,i

has uncertainty and accepts the violation of ϵ.

In our formulation, we decompose stochastic complemen-
tarity constraints into two modes (see Fig. 1) as follows:

Pr ((λk+1,i, yk+1,i) ∈ S) ≥ 1− θ (10a)

⇐⇒ Pr

(
(λk+1,i ≥ 0, yk+1,i = 0)∨
(λk+1,i = 0, yk+1,i ≥ 0)

)
≥ 1− θ (10b)

⇐⇒

{
λk+1,i ≥ 0,Pr (yk+1,i = 0) ≥ 1− θ

or λk+1,i = 0,Pr (yk+1,i ≥ 0) ≥ 1− θ
(10c)

where θ = ∆1

Nnc
. Note that now yk+1 ∼ N

(
ȳk+1,Σyk+1

)
.

To realize lower violation probabilities, we first propose the
following CCC using MIP as:

zk,i,0 ≥ 0,=⇒ λk+1,i ≥ 0,Pr (yk+1,i = 0) ≥ 1− θ, (11a)
zk,i,1 ≥ 0,=⇒ λk+1,i = 0,Pr (yk+1,i ≥ 0) ≥ 1− θ (11b)

where zk,i,0, zk,i,1 represent the integer variables to repre-
sent the two modes which satisfies zk,i,0+zk,i,1 = 1 for i-th
complementarity constraint at instant k.

However, Pr (yk+1,i = 0) is zero (as probability measure
for singleton sets is zero) so that we cannot directly use
(11). To alleviate this issue while avoiding negative values
for λ, we propose the following CCC using a relaxation for
complementarity constraints (see Fig. 1):

zk,i,0 ≥ 0,=⇒ λk+1,i ≥ 0,Pr (0 ≤ yk+1,i ≤ ϵ) ≥ 1− θ,
(12a)

zk,i,1 ≥ 0,=⇒ λk+1,i = 0,Pr (yk+1,i ≥ ϵ) ≥ 1− θ
(12b)

where ϵ > 0 is the acceptable violation in the complemen-
tarity constraints.

We have two-sided linear chance constraints in (12a). We
decompose (12a) as two one-sided chance constraints so that
we can use the same reformulation in (9). Note that each
one-sided chance constraints, obtained from the two-sided
chance constraint, are formulated with a maximum violation
probability of θ

2 .
Since we have integer constraints, MIP can impose indi-

vidual constraints for each mode. Thus, we do not need to
impose all constraints simultaneously like the NLP formula-
tion in [14]. This provides a lower bound for θ as function
of ϵ, ȳk+1,i, and Σyk+1,ii, which is presented as a lemma.

Lemma IV.1. Suppose the CCC are formulated as (12) and
ϵ, ȳk+1,i, and Σyk+1,ii are specified. Then (i) (12a) is feasible
for all θ > 2(1−Φ( ϵ

2Σyk+1,ii
)) and (ii) (12b) is feasible for

all θ > 1− Φ
(
(ȳk+1,i − ϵ)/Σyk+1ii

)
.

Proof. Consider case (i): From (9b) and (12a), the two-
side chance constraints in (12a) are converted to their de-
terministic forms:Σyk+1,iiΦ

−1 (1− θ/2) ≤ ȳk+1,i ≤ ϵ −
Σyk+1,iiΦ

−1 (1− θ/2). To have a nonempty solution, ϵ −
2Σyk+1,iiΦ

−1 (1− θ/2) > 0. Simplifying this equation, we
obtain the bound specified in (i). Consider case (ii): From
(9b) and (12b), the one-side chance constraints in (12b) are
converted as: ȳk+1,i ≥ ϵ+Σyk+1,iiΦ

−1 (1− θ). Simplifying
this equation, we obtain the bound specified in (ii).

Remark 1: From Lemma IV.1, it is easy to show that
θ < 1

2 if ϵ
2Σyk+1,ii

> Φ−1( 34 ) for case (i), and if

(ȳk+1,i− ϵ)/Σyk+1ii > Φ−1( 12 ) for case (ii). In contrast, the
formulation in [14] cannot enforce the chance constraints for
any θ < 0.5.

We use the following equations for uncertainty propaga-
tion in the SDLCS:

x̄k+1 = Ax̄k +Buk + Cλk+1 + gk + w̄k, (13a)

Σxk+1
= AΣxk

A⊤ +ΣCλk+1
+W (13b)

where W represents the noise covariance matrix and
Cλk+1 represents a mean of Cλk+1. ΣCλk+1

=

E
[(
Cλk+1 − Cλk+1

) (
Cλk+1 − Cλk+1

)⊤]
, which is a di-

agonal matrix because of the independence of random vari-
ables. Note that λk+1 is a decision variable. Consequently,
we introduce another simplification by considering the worst-
case uncertainty for λk+1 during uncertainty propagation.
This conservative simplification offers computational advan-
tages during the resulting optimization.

C. Mixed-Integer Quadratic Programming with Chance
Constraints (MIQPCC)

In this section, we present our MIQPCC formulation to
solve (5). To impose our proposed CCC, one can solve
either MIP or NLP. Our MIP-based method solves disjunctive
inequalities while NLP needs to impose all CCC simultane-
ously, which yields an empty solution for ∆ ≤ 0.5.

Our proposed MIQPCC is formulated as follows:

min
x,u,λ,z

N−1∑
k=0

x̄⊤k Qx̄k + u⊤k Ruk (14a)

s. t. x̄k+1 = Ax̄k +Buk + Cλk+1 + gk + w̄k, (14b)

Σxk+1
= AΣxk

A⊤ +Σw,Cλk+1
+W, (14c)

x0 ∼ N (xs,Σs) , uk ∈ U , λk ≤ λu, (14d)

a⊤l x̄k ≤ bl − ακ, (14e)
zk,i,0 + zk,i,1 = 1, (14f)

0 ≤ λk+1,i ≤Mzk,i,0, (14g)
ζψzi,k,0 + (ϵ+ ηψ)zk,i,1 ≤ ȳk+1,i (14h)
ȳk+1,i ≤ (ϵ− ζψ)zk,i,0 +Mzk,i,1, (14i)

where Q = Q⊤ ≥ 0, R = R⊤ > 0, α = Φ−1(1− ∆
2NL ), ζ =

Φ−1(1− ∆
4Nnc

), η = Φ−1(1− ∆
2Nnc

), κ =
√
a⊤l Σxk

al, ψ =√
Σyk+1,ii

. zk,i,0, zk,i,1 are the binary decision variables for
the i-th complementarity constraint at k to represent mode



1, 2, respectively. Using these binary variables, we employ
big-M formulation to deal with disjunctive inequalities in our
CCC. The parameter M is a valid upper bound for λk, yk.

V. NUMERICAL SIMULATIONS

We validate our proposed methods for three benchmark
DLCS as illustrated in Fig. 2. Through the experiments, we
try to answer the following questions:

1) Can our proposed optimization generate robust open-
loop trajectories?

2) Can our proposed formulation satisfy the probabilistic
constraints imposed during optimization?

3) How does the proposed method compare against the
previous methods for robust optimization in SDLCS?

A. Implementation Details

We implemented our method in Python using Gurobi [25]
to solve the proposed MIQP. We implemented the MPCC
with PYROBOCOP [6] to solve the ERM-based method
in [13] and the CCC method in [14]. The examples are
implemented on a computer with Intel i7-8565U processor.

To verify the robustness of open-loop trajectories obtained
from our proposed optimization, we use Monte Carlo simu-
lations. We propagate the dynamics by finding the roots of
the complementarity system with sampled parameters given
the control sequence obtained from optimization. We run
each case for 1000 trials with different sampled parameters
to estimate the probability of failure. Note that unlike the
continuous-domain dynamics, we cannot rollout the dynam-
ics for SDLCS with the given control sequences since we
do not have the access to λk+1. We add the noise sampled
from the distribution which was used during optimization.

For simplicity, we show the continuous-time dynamics. We
then discretize continuous-time dynamics into discrete-time
dynamics using the explicit Euler method with sample time
dt = 0.033. For notation simplicity, we denote x0,Σ0 as
mean and covariance matrix at k = 0 for states of systems,
respectively.

B. Example Details

1) Cartpole with Softwalls: The continuous-time dynam-
ics with complementarity constraints for the cartpole with
softwalls is as follows:

ẋ1 = x3, ẋ2 = x4, ẋ3 = g
mp

mc
x2 +

1

mc
u1, (15a)

ẋ4 =
g (mc +mp)

lmc
x2 +

1

lmc
u1 +

λ1
lmp

− λ2
lmp

, (15b)

0 ≤ λ1 ⊥ lx2 − x1 +
1

k1
λ1 + d ≥ 0, (15c)

0 ≤ λ2 ⊥ x1 − lx2 +
1

k2
λ2 + d ≥ 0 (15d)

where x1 is the cart position, x2 is the pole angle, the x3
and x4 are their derivatives. u1 is the control and λ1, λ2 are
the reaction forces at from the wall 1, 2, respectively. We
consider the additive noise w, the zero-mean i.i.d. Gaussian
noise which standard deviation is 2 × 10−4, to x1,k, x2,k.
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Fig. 2: Problems described in Sec V. (a) cartpole with softwalls, (b) sliding
box with friction, (c) dual manipulators.

k1 = 10, k2 = 10 are the stiffness of walls 1 and 2,
respectively. In this example, we assume that the uncertainty
also arises from the 1

k1
, 1
k2

which standard deviations are
10−5. g = 9.81 is the gravitational acceleration, mp =
0.1,mc = 1.0 are the mass of the pole, cart, respectively.
l = 0.5 is the length of the pole and d = 0.15 is the distance
from the origin of the coordinate to the walls.

The optimization setup is as follows. N = 20,M =
100, Q = diag(0, 0, 0, 0), R = 0.01, ϵ = 0.002, x0 =
[−0.15, 0, 0, 0]⊤,Σ0 = diag(0, 0, 0, 0). We also have the
following chance constraints: Pr(x1,k ≤ 0.05) ≥ 1 −
∆
4N ,Pr(x2,k ≤ 0.15) ≥ 1 − ∆

4N ,∀k = 0, . . . , N − 1,
Pr(−0.02 ≤ x1,N ≤ 0.02) ≥ 1 − ∆

4N ,Pr(−0.04 ≤ x2,N ≤
0.04) ≥ 1− ∆

4N .

2) Sliding Box with Friction: The continuous-time quasi-
static dynamics with complementarity constraints for sliding
box with Coulomb friction is as follows:

ẋ1 = x2, αẋ1 = u+ λ+ − λ−, (16a)
0 ≤ γ ⊥ µmg − λ+ − λ− ≥ 0, (16b)
0 ≤ λ+ ⊥ γ + u+ λ+ − λ− ≥ 0, (16c)
0 ≤ λ− ⊥ γ − u− λ+ + λ− ≥ 0 (16d)

x1 is the box position and x2 is the box velocity. u is the
control and λ+, λ− are the positive and negative component
of the friction force, respectively. γ is the slack variable.
α = 4 is the damping constant, m = 1 is the mass of the box,
and µ = 0.1 is the coefficient of friction. We consider the
additive i.i.d. Gaussian noise w as x1,k+1 = x1,k +x2,kdt+
w. The standard deviations of w is 4 × 10−4. g = 9.81 is
the gravitational acceleration. We assume that the uncertainty
also arises from the µ which standard deviations are 10−5.

The optimization setup is as follows. N = 20,M =
100, Q = diag(0, 0, 0, 0), R = 0.01, ϵ = 0.01, x0 =
[1,−1]⊤,Σ0 = diag(0, 0). We also have the following
chance constraints: Pr(x1,k ≥ 0.885) ≥ 1 − ∆

2N ,∀k =
0, . . . , N−1, Pr(0.89 ≤ x1,N ≤ 0.91) ≥ 1− ∆

2N ,Pr(−0.1 ≤
x2,N ≤ 0.1) ≥ 1− ∆

2N .

3) Dual Manipulators: We consider the example where
the box is manipulated by two manipulators with Coulomb
friction and the contact forces from the manipulators. The



continuous-time quasi-static dynamics is as follows:

ẋ1 = x2, αẋ1 = λ1 − λ2 + λ+ − λ−,

ẋ3 = x4, ẋ4 = u1, ẋ5 = x6, ẋ6 = u2,

0 ≤ λ1 ⊥ x1 − x3 +
1

k
λ1 ≥ 0,

0 ≤ λ2 ⊥ x5 − x1 +
1

k
λ2 ≥ 0,

0 ≤ γ ⊥ µmg − λ+ − λ− ≥ 0,

0 ≤ λ+ ⊥ γ + λ1 − λ2 + λ+ − λ− ≥ 0,

0 ≤ λ− ⊥ γ − λ1 + λ2 − λ+ + λ− ≥ 0

(17)

x1, x3, x5 are the positions of the box, the left arm, the
right arm, respectively and x2, x4, x6 are their derivatives.
u1, u2 represent the controls of the left and the right arm,
respectively. λ+, λ− are the positive and negative component
of the friction force, respectively. γ is the slack variable.
λ1, λ2 are the contact forces from the left arm and the right
arm, respectively. We set g = 9.81, m = 1, k = 100,
µ = 0.1. We discretize the dynamics (17) with dt = 0.033
and add the zero-mean i.i.d. Gaussian noise w which standard
deviation is 0.0002 such as x1,k+1 = x1,k+x2,kdt+w. The
standard derivation of µ and 1

k are 0.0001.
The optimization setup in this example is as follows.

N = 20,M = 50, Q = diag(0, 0, 0, 0, 0, 0), R =
diag(1, 1), ϵ = 0.0042, x0 = [0.1,−1.1, 0, 0, 0.1, 0]⊤,Σ0 =
diag(0, 0, 0, 0, 0, 0). We have the following chance con-
straints: Pr(x1,k ≥ −0.17) ≥ 1 − ∆

2N ,∀k = 0, . . . , N − 1,
Pr(−0.01 ≤ x1,N ≤ 0.01) ≥ 1− ∆

2N .

C. Robustness of Open-Loop Trajectories

The optimized control and state trajectories for the three
systems using our proposed method are shown in Fig. 3-
Fig. 5. Overall, these figures show that the planner generates
state trajectories that are farther away from the bound spec-
ified in the chance constraints as the violation probability
decreases. For instance, Fig. 3 shows that the trajectories are
farther away from x = 0.05 as ∆ decreases. In addition,
the trajectory with ∆ = 0.02 reaches its maximum value
earlier than other trajectories to account for the evolution
of the uncertainty. We observe the same behavior for the
other example too. In addition, these figures illustrate that
the control costs increase as ∆ decreases. This illustrates
the trade-off relation between safety and cost.

At this point, we would like to discuss the magnitude
of uncertainty we consider in these problems. Compared to
some other stochastic optimal control works [19], [20], the
uncertainty in these problems is relatively smaller. There
are several reasons why we need to have a smaller un-
certainty. Note that as we have explained in Sec III, our
approach satisfies joint constraints on multiple constraints
together. First, our formulation has chance complementarity
constraints in addition to chance constraints on states, which
are commonly used. Our formulation has more number of
chance constraints, and consequently, the lower uncertainty
is required because of the conservative approximation of
Boole’s inequality to resolve joint chance constraints into

Fig. 3: State and control trajectories with different ∆ for the cartpole
example. First, the cart moves in the negative direction to utilize the contact
force λ2 because the control input is bounded. Once the cart obtains enough
λ2, the cart is accelerated to the positive direction. We can observe the
effect of our proposed chance constraints in particular around t ∈ [0, 0.1]
and t ∈ [0.4, 0.5]. When t ∈ [0, 0.1], the mode changes from the ”contact
on the wall 2” to the ”no contact” and the cart tries to be far from wall 2
to satisfy the CCC. When t ∈ [0.4, 0.5], the trajectories are farther away
from x1 = 0.05 and x2 = 0.15 as ∆ decreases.

Fig. 4: State and control trajectories with different ∆ for a sliding box
with friction. First, the box is accelerated in the positive direction. Then,
the control decreases with time to regulate the box around the origin by
employing the friction forces. We can observe the effect of our proposed
chance constraints in particular around t ∈ [0.2, 0.3] where the trajectories
are farther away from x1 = 0.88 as ∆ decreases.

individual constraints as explained in Sec IV-A, Sec IV-B.
Second, we need to have a small ϵ to avoid large violation
of complementarity constraints, which requires small uncer-
tainty. Finally, we would like to emphasize that allowing
larger uncertainties requires either better resolution of joint
chance constraints or covariance steering approaches [20],
which is out of scope for the current study.

D. Monte Carlo Simulation Results

Table I-Table III show our Monte Carlo simulation results
given the control sequences with different ∆ from the
optimization compared to the ERM method in [13] and the
CCC method in [14]. We run the ERM method in [13]
with different weighting β and the CCC [14] with violation
probability ∆z = 0.5. β was chosen so that the magnitude
of the ERM cost is a similar order of other costs. For a fair
comparison, we regard that the constraints are violated if the
chance constraints are not satisfied in our method. We regard
that the constraints are violated in the ERM in [13] and the
CCC methods in [14] if the terminal chance constraints used
in our proposed method are not satisfied.

Table I shows that the empirically obtained violation
probabilities are lower than the specified violation proba-



Fig. 5: Time history of x1 with different maximum violation probabilities
∆ for dual manipulation. First, the box is pushed by the right arm in the
negative direction. Next, the left arm regulates the box to the origin. In
particular, around t ∈ 0.2 − 0.3 s, the trajectories are farther away from
x1 = −0.17 as ∆ decreases.

TABLE I: Comparison of our specified ∆ in optimization, specified β in
ERM in [13], and the CCC in [14] with ∆z = 0.5, and obtained ∆ from
the simulation of ”cartpole with softwalls” over 1000 samples.

∆ = 0.5 ∆ = 0.2 ∆ = 0.1 ∆ = 0.02
Obtained ∆ 0.190 0.147 0.085 0.020

β = 103 β = 104 β = 105 ∆z = 0.5
Obtained ∆ 0.75 1.0 1.0 0.91

bilities used in our proposed optimization. In contrast, the
control sequences based on the ERM method in [13] show
100% violation probabilities with β = 104, 105, which are
much worse than the obtained violation probabilities using
our proposed method. With β = 103, we got a relatively
good violation probability. The CCC in [14] could also
show the relatively good violation probability compared to
the ERM-based method with β = 104, 105 but shows the
worse violation probability compared to our method with
∆ = 0.5 and the ERM with β = 103. Thus, we confirm
that our proposed approach satisfies chance constraints in
the simulator in this example.

Table II shows that empirically obtained violation prob-
abilities are lower than the specified violation probabilities
used in our proposed optimization like the cartpole example,
except for the cases with ∆ = 0.01, 0.002. There are
several factors that contribute to the violation of the chance
constraints. Unlike the cartpole example, F is not a P matrix
so we can get the multiple solutions in λ, which can lead to
non-Gaussian distributions. Also, even though ϵ is small, it
is not zero so the actual trajectory in the simulator cannot
be exactly the same as the trajectory from the optimization
even with no noise. While we can ignore these effects with
relatively large ∆, we cannot ignore these effects anymore
with the small ∆. Although the planner could not satisfy
the chance constraints for all ∆ in this example, our method
achieves much lower violation probabilities compared to the
ERM in [13] and the CCC in [14]. Table III shows that we
have the same discussion for the dual manipulators example
as for the pushing a box example.

Fig. 6 and Fig. 7 show that our proposed planner could

TABLE II: Comparison of our specified ∆ in optimization, specified β in
ERM in [13], and the CCC in [14] with ∆z = 0.5, and obtained ∆ from
the simulation of ”a sliding box with friction” over 1000 samples.

∆ = 0.5 ∆ = 0.1 ∆ = 0.01 ∆ = 0.002
Obtained ∆ 0.080 0.051 0.027 0.010

β = 103 β = 104 β = 105 ∆z = 0.5
Obtained ∆ 1.0 1.0 1.0 0.91

TABLE III: Comparison of our specified ∆ in optimization, specified β in
ERM, and the CCC with ∆z = 0.5, and obtained ∆ from the simulation
of ”dual manipulation” over 1000 samples.

∆ = 0.5 ∆ = 0.4 ∆ = 0.3 ∆ = 0.2
Obtained ∆ 0.419 0.317 0.257 0.217

β = 103 β = 104 β = 105 ∆z = 0.5
Obtained ∆ 1.0 1.0 1.0 1.0

successfully drive the system to the goal state. We also
observe that with decreasing ∆, the system trajectories move
further away from state set boundaries to satisfy tighter
chance constraints. For Fig. 8, while the majority of the
sampled trajectories converge to the specified terminal con-
straints, some of them clearly converged to other states. This
result also shows that the true distribution of the uncertainty
for the dynamics systems with LCS is not Gaussian.

VI. DISCUSSION AND CONCLUSION

The hybrid dynamics of frictional interaction as well as
uncertainty associated with frictional parameters make the
efficient design of model-based controllers for manipulation
challenging. In this paper, we presented a robust TO tech-
nique for contact-rich systems. We presented a formulation
for chance constrained optimization for SDLCS which is
solved using MIQPCC. We compared our proposed approach
against other recent techniques for robust optimization for
stochastic complementarity systems. We showed that our
formulation leads to more robust trajectories compared to
these techniques.

In the future, we would like to relax certain assumptions
in this work. We would like to propose solutions for general
non-linear stochastic complementarity systems in the pres-
ence of non-Gaussian noise. In the current work, using joint
chance constraints on all the variables results in conservative
solutions. To consider these problems, the study of nonlinear
uncertainty propagation in SNCS is required. Also, we need
to solve mixed-integer non-linear programming. We would
also like investigate how we can relax the conservative
solutions obtained by our proposed approach using better
measures for risk. We would also like to incorporate real-time
sensor input [26] to develop algorithms for stochastic model
predictive control of complex manipulation problems [17].
Another interesting line of work would to be to include a
Reinforcement learning algorithm to get model updates [27]
during learning.
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