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Abstract— Physics-informed machine learning (PIML) is a
set of methods and tools that systematically integrate machine
learning (ML) algorithms with physical constraints and abstract
mathematical models developed in scientific and engineering
domains. As opposed to purely data-driven methods, PIML
models can be trained from additional information obtained by
enforcing physical laws such as energy and mass conservation.
More broadly, PIML models can include abstract properties
and conditions such as stability, convexity, or invariance. The
basic premise of PIML is that the integration of ML and
physics can yield more effective, physically consistent, and
data-efficient models. This paper aims to provide a tutorial-
like overview of the recent advances in PIML for dynamical
system modeling and control. Specifically, the paper covers an
overview of the theory, fundamental concepts and methods, tools,
and applications on topics of: 1) physics-informed learning for
system identification; 2) physics-informed learning for control;
3) analysis and verification of PIML models; and 4) physics-
informed digital twins. The paper is concluded with a perspective
on open challenges and future research opportunities.

I. INTRODUCTION

Modern engineering systems generate large amounts of data
either via sensors in the physical world or via simulation of
virtual environments. The increased storage and computational
power of the underlying hardware and communication infras-
tructure paved the way for the use of data-driven algorithms.
Machine learning (ML) methods leverage a large amount of
data to achieve remarkable success, especially in areas such
as games, speech recognition, or image processing. These
recorded successes especially occur in the areas where there
is an abundance of data and where the underlying processes
have hard-to-discover governing laws and are driven by non-
obvious fundamental principles. In such cases, ML shows
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strong capabilities in learning non-obvious relations that
allow to achieve the desired tasks if a sufficient amount
of representative data is available.

Due to such successes, a number of investigations
have started involving the application of ML to other
domains, including physical systems, such as automotive [1],
aerospace [2], process control [3], energy systems [4],
and robotics [5]. However, these traditional engineering
applications are governed by fundamental principles and
physical constraints that have been studied for centuries and
are thus better understood or well-known. Some examples
include conservation laws of mass or energy, fundamental
laws of motion or electromagnetism, ranges of constants
such as efficiencies and physical dimensions or gravitational
constants. For physical systems, there may be expectations
that ML models will satisfy such principles and constraints.
While the prediction accuracy of ML methods may be
as good in the computer science domains, the lack of
satisfaction of fundamental principles and underlying physics
and safety constraints represent a significant limitation to
actual deployment of ML models in real-world applications.

Properly enforcing physical laws and constraints in ML may
result in several benefits, affecting training, performance, and
trust of the ML result such as: (i) reduced data requirement
of the ML model due to learning in lower dimensional,
manifolds; (ii) higher precision and improved generalization
since the underlying physical principles will be satisfied and
the errors related to violating them will be avoided; (iii)
increased interpretability and trust by the application engi-
neers by upholding the known domain principles. However,
most of the standard ML approaches cannot leverage physical
principles and constraints, resulting in a limited real-world
impact of ML in the safety-critical domains [6].

The cautious adoption of modern ML methods in real-
world engineering domains is a direct result of the research
priorities in the historical developments within the computer
science domains. More specifically, ML methods have been
primarily developed in domains related to human aspects
and behaviors, such as vision or language recognition, where
the safety requirements are less strict. Furthermore, those
domains consist of underlying physical principles that are
still partially unexplained or extremely complex to describe
and hence hard to be embedded directly in the ML algorithms.

In recent years, researchers from both computer science
and engineering domains have recognized the potential of



bridging this gap by developing new methods that combine
algorithms and tools from machine learning with well-known
engineering models and principles. This quest to extend
machine learning to account for the physical principles and
constraints of the underlying process gave rise to the so-called
Physics Informed Machine Learning (PIML), also referred
to as Scientific Machine Learning (SciML). Related surveys
in this area include PIML methods for partial differential
equations (PDEs) [7] or generic dynamical systems [8, 9].
However, to the author’s best knowledge, there is no tutorial
overview of the PIML methods for the control of dynamical
systems. This paper aims to bridge this gap. The rest of
the paper is structured as follows, section II. reviews the
landscape of PIML methods for modeling and control of
dynamical systems, including PIML methods for system
identification, control design, and formal verification. Section
III. briefly summarizes current challenges and opportunities.
While section IV. concludes the paper.

II. LANDSCAPE OF PHYSICS-INFORMED MACHINE
LEARNING METHODS FOR MODELING AND CONTROL

In this paper, we define PIML as follows.

Definition II.1. PIML is a set of methods and tools that
systematically integrate recent advancements in machine
learning algorithms with mathematical models developed
in various scientific and engineering domains. As opposed
to pure data-driven methods that assume no existence of
prior domain knowledge, PIML models can be trained from
additional information obtained by enforcing constraints such
as symmetries, causal relationships, or conservation laws.
More broadly, PIML models can include abstract properties
and conditions such as stability, convexity, or invariance from
domains such as dynamical systems and control theory.

A. Physics-informed learning for system identification

One of the first applications of PIML in control is to learn
dynamical models for a physical system given some prior
knowledge and time series data. Conventional dynamical
system and control theories usually use white-box modeling
to develop models from physical principles and system
specifications, which often require extraordinary effort and
expertise. On the other hand, purely data-driven approaches
employ black-box modeling, which learns models purely
from data without making any prior physical assumptions,
relying on ML techniques such as neural networks (NNs) and
regression trees (RT). While gray-box modeling and physics-
informed machine learning (PIML) both aim to bridge the gap
between the white-box and black-box modeling paradigms
by integrating physical laws into models, they take different
approaches. Gray-box modeling starts from the same physical
principles used in white-box modeling that are subsequently
simplified to obtain a reduced-order model structure, which
can be used to fit data to identify its parameters. Therefore the
gray-box approach still requires significant expert knowledge
and often ignores nonlinear phenomena, causing accuracy
loss. On the other hand, PIML starts from the black-box
modeling end and embeds prior knowledge of the system’s

physics into ML methods to yield models that are more
interpretable, robust, accurate, and physically consistent for
generalization tasks while maintaining the relative ease of
use of black-box ML methods. This section reviews the main
PIML approaches for incorporating physics into the data-
driven modeling of dynamical systems. Namely, physics-
informed model architecture, physics-informed loss function
design, or a combination of the two [7, 10].

Definition II.2. Model architecture represents an intercon-
nected set of computational nodes that form the resulting
computational graph defining the mathematical expression
defining the ML model. Architectures of ML models are often
defined as composite functional forms or block diagrams.

1) Structural priors in discrete-time models: Discrete-time
dynamical models are represented by a general class of state-
space models (SSM) given as

xk+1 = fSSM (xk,uk) (1)

with xk ∈ Rnx and uk ∈ Rnu being system states and control
inputs, respectively. Most of the structural PIML approaches
are concerned with designing the functional form of (1) to
offer increased expressivity compared to classical linear SSM
while satisfying desired properties.

Recent examples include neural SSM [11, 12], deep
Koopman models [13, 14], Hammerstein-Wiener neural
models [15, 16], graph neural network-based (GNN) time-
stepper models [17, 18], or SINDY-type methods based on
sparse regression of candidate basis functions [19, 20]. Further
examples include architectures such as Non-Autonomous
Input-Output Stable Nets (NAIS-Nets) with guaranteed asymp-
totic stability of its forward pass dynamics based on stable
matrix factorization of the state dynamics, joint learning
of the Koopman model representation and state observer
while ensuring observability [21], or so-called Gumbel Graph
Networks (GGN) for modeling network dynamics [22]. While
authors in [23] introduced physically consistent NN inspired
by resistance-capacitance (RC) networks applied to modeling
building thermal dynamics.

2) Structural priors in continuous-time models:
Continuous-time models are, in general, represented by a
set of ordinary differential equations (ODE) given as

dx
dt

= fODE (x,u) (2)

with x ∈ Rnx and u ∈ Rnu being system states and control
inputs, respectively. Neural ODEs [24] have been proposed
as black-box counterparts to white-box ODEs for data-driven
modeling of dynamical systems. In NODEs, the right-hand
side (RHS) of the differential equation (2) is approximated by
deep neural network NN(x,θ) with trainable parameters θ .
However, purely black-box NODEs may require prohibitively
large training data and may struggle with generalization and
physical laws. Researchers have been looking at ways to
design the structure of the RHS in (2) to balance conflicting
criteria such as the expressivity of black-box models and the
physical consistency of white-box models.



Examples include incorporated stability-promoting priors in
NODEs via spectral element method [25], multiple-shooting
integration schemes [26, 27], neural delay differential euqua-
tions [28], or extensions supporting uncertainty quantification
(UQ) such as Bayesian NODEs [29], stochastic NODEs [30],
or jump stochastic NODEs capable of handling discrete
events [31]. Most recently, universal differential equations
(UDE) [32] have been proposed as an extension to NODEs to
allow for a systematic combination of white-box components
and black-box components. Specific examples of PIML
structured continuous models include the use of UDEs for
modeling networked dynamical systems [33], or continuous
graph neural networks (CGNNs) [34] also called graph
neural ordinary differential equations (GDEs) [35]. Related
approaches include energy-based model architectures such as
Hamiltonian [36, 37] or Lagrangian [38, 39] neural networks,
and their various extensions such as graph Hamiltonian neural
networks (HNN) [40], Hamiltonian dynamics with dissipative
forces [41], HNN with explicit constraints [42], or non-
canonical Hamiltonian systems [43]. Such approaches have
also been extended to learn dynamics of rigid body systems
with contacts and collisions [44] or to learn Lagrangian
dynamics from high-dimensional video data [45]. Others have
proposed jointly learning Neural Lyapunov functions together
with the forward dynamics model [46]. The main advantage
of these energy-based approaches is that they can satisfy
conservation laws or enforce properties such as stability or
dissipativity by design.

3) Matrix factorizations: Linear algebra components are
ubiquitous in machine learning, including weights in neural
networks, operators such as Koopman or Perron-Frobenius,
or Jacobian matrices of differential equations. Many matrix
factorization methods exist for designing desired properties
such as sparsity, symmetry, positive definiteness, eigenvalue
placement, or invertibility. Naturally, researchers have ex-
ploited various matrix factorizations in weights of deep neural
networks [47], with examples including Perron-Frobenius
[48], orthogonal [49, 50], spectral [51], symplectic [37,
52], anti-symmetric [53], Gershgorin disc [54], and Schur
Decomposition [55] weights. Let’s consider spectral factor-
ization [51] as an example. In this approach, the weight
matrix W is parametrized by the components of singular
value decomposition (SVD) method as follows,

Σ = diag(λmax − (λmax −λmin) ·σ(s)) (3a)
W = UΣV (3b)

Where Σ is a matrix of singular values, λmin and λmax
represent lower and upper bounds for singular values, σ

is a sigmoid activation function, s is a vector of trainable
singular value parameters, and U and V are trainable orthog-
onal matrices that can be either designed via Householder
reflectors [51] or via soft constraint penalties [56]. Authors
in [57] used the matrix factorizations to enforce dissipativity
in neural SSM for modeling building thermal dynamics.

4) PIML loss functions: This approach incorporates
physics through learning biases by imposing appropriate

Fig. 1: Methodology of the universal differential equation for
learning components of networked dynamical systems [33].

penalties during learning [7]. In its general form, the com-
posite physics-informed loss function L is defined as

L =
n

∑
i
ℓi

data +
m

∑
j
ℓ j

physics (4)

where ℓi
data represents n number of data-driven objective terms,

ℓ j
physics define m number of physics-based regularization terms.

Examples include using soft penalties on eigenvalues or
singular values of the neural network weights [58, 59] to
promote stability, promoting boundedness, and smoothness
[56], using penalties to regularize black-box GNN components
[60], regularizing error and stiffness estimates in NODEs
for improved accuracy and speed [61], and penalizing the
violations of the Lyapunov stability conditions as additional
loss term in training NODEs [62]. Others have proposed
Jacobian regularization [63] for promoting stability, or using
surrogate loss functions for faster training of NODEs [64].

5) Case Study: Incorporating physics in the model via
structural priors: This case study is adopted from [33]
and demonstrates the use of universal differential equations
(UDE) [32] for data-driven modeling of networked dynamical
systems. The method illustrated in Fig. 1. Specifically, the
UDE model used in [33] is given as follows,

dxi

dt
= NN1 (xi;θ1)+

N

∑
j ̸=i

Ai, jNN2 (xi,x j;θ2) (5)

The system dynamics is defined by the interaction of N
number of nodes represented by state vectors xi(t) ∈ Rnx

where i ∈ NN
1 represents node index. Here NN1(xi,θ1) :

Rnx → Rnx and NN2(xi,θ2) : R2nx → Rnx are neural networks
modeling node and interaction dynamics, respectively. The
trainable adjacency matrix A ∈ RN×N defines the connectivity
between nodes, i.e., Ai, j = 1 means node i is connected to
node j. The equation 5 compactly represented as F(x;Θ)
with lumped trainable parameters Θ = {θ1,θ2,A}, can be
solved with standard numerical ODE solvers,

x(tend) = ODESolve(F (x;Θ) ,x0, t0, tend) . (6)

In general, the gradients of F(x;Θ) can be computed in two
ways via the adjoint sensitivity method as used in NODE or
via automatic differentiation of the computational graph of
the unrolled ODE solver. The loss function is formulated as



Fig. 2: Prediction performance of the UDE model 5 (orange)
on never-before-seen networked system (blue).

regularized mean squared error (MSE) between predictions
and measurements, given as,

L (Θ,A) =
1
m
||X̂−X||22 +α||A||1, (7)

where X and X̂ are measured and predicted state trajectories,
respectively. Scalar m represents a number of samples. The
second term represents ℓ1 penalty for promoting sparsity in
the adjacency matrix A.

The authors in [33] demonstrate the utility of this UDE
modeling approach in a case study with coupled nonlinear
oscillators. The benefit of the UDE model in the form (5) is
improved generalization and interoperability, as opposed to
purely black-box NODE [24]. This is because the structure
of (5) is closer to the governing physics of a general class of
networked systems. To demonstrate their utility, the authors
deploy the trained models on networked systems with never-
before-seen topology. Fig. 2 compares the phase portraits
and time series of the never-before-seen system against the
predictions generated by the UDE model 5 trained on data
from a networked system with different topology. What is
being demonstrated are the generalization capabilities of the
UDE model 5 to qualitatively reproduce physically plausible
transient behavior, including the reconstruction of limit cycle
attractors outside of the distribution of the training data.

B. Physics-informed learning for control

PIML models have been widely used in model-based
control methods, such as model predictive control (MPC)
or model-based reinforcement learning (RL). This is typi-
cally done by combining physics-based priors with various
regression methods to improve the control performance.
Subsequently, with the spread of learning methods embedded
with uncertainty quantification (UQ) measures, robust and
stochastic model-based controllers have been developed to
exploit the uncertainty information provided by these PIML
models. Including UQ methods makes the controller cautious
and is of great significance where only a limited amount of
data is available. More recently, the use of PIML has been
extended to different areas such as learning control Lyapunov
functions, tuning model-based controllers, designing dual
control strategies, developing safe control frameworks, and

learning explicit control policies. PIML has also found appli-
cations in differentiable programming-based methods, which
allows the designer to embed physical models and constraints
while training a controller using automatic differentiation-
based (AD) solvers, e.g., with physics-informed priors in
actor-critics and model-based RL methods.

1) PIML dynamics models for MPC: Data-driven models
have been widely used in MPC; see [65] for a comprehensive
review of these methods up to 2020. With recent advances,
many approaches have been proposed for incorporating PIML
and physical priors into MPC. These methods employ learned
PIML dynamic models (Section II-A) in the MPC optimiza-
tion formulation, therefore implicitly leveraging physical
priors through the models. Authors in [66] used structured
neural SSM in MPC to control the nonlinear behavior of a
robotic hand in cutting tasks. In [67] a physics-informed NN
is used with MPC in order to control a robotic arm. Others
have demonstrated the utility of using the sparse identification
of nonlinear dynamics (SINDY) method for learning models
for MPC, in the so-called SINDY-MPC framework [68]. The
use of ML models in MPC with guarantees can be traced back
to [69, 70]. The authors propose a robust control method that
uses two models: the first is a simple physics-based linear
model that accounts for the safety of the system used to
ensure constraint satisfaction, while the second is an ML
model used to maximize the performance of the controller. A
different approach is presented in [71, 72], where a Gaussian
process (GP) is used to learn the error dynamics to improve
the physics-based model and hence the controller performance.
Another MPC algorithm that uses kernel-based methods is
presented in [73]. While the work in [74] demonstrates the
utility of even a simple physics-informed ARMAX model
for building control tasks using MPC.

2) Learning Lyapunov and Barrier functions: (Control)
Lyapunov functions are crucial tools for determining the
stability properties of dynamical systems, quantifying the
domain of attraction and the robustness to perturbation,
designing controllers, or designing terminal ingredients
for MPC. However, methods for synthesizing Lyapunov
functions in closed-form for nonlinear dynamical systems,
even with known models, are generally not available. Early
approaches for learning Lyapunov functions with NNs date
back to the 90s [75]. Recently, different authors [46, 76]
introduced neural Lyapunov functions, representing neural
architectures that satisfy Lyapunov function properties by
design. Subsequently, authors in [76] have used these neural
Lyapunov functions as verification tools for safe learning-
based controllers, while [77] used neural Lyapunov function
for online tuning of MPC parameters, and in [78] neural
Lyapunov function was trained in conjunction with neural
control policy. Another example is [79], where NNs are
employed to learn compositional Lyapunov functions. This
work takes inspiration from recent methods that solve high-
dimensional PDEs using NNs by exploiting suitable structural
properties. As Lyapunov functions can also be represented
by PDEs, PIML methods for learning PDEs can also be
used to learn Lyapunov functions. Control barrier functions



(CBF) recently became a very popular computationally
efficient method for safe learning-based control. However,
similarly to Lyapunov functions, CBFs are in general, hard to
design analytically for general nonlinear dynamical systems.
To alleviate this problem, different authors have proposed
learning CBFs from data. In [80], use NNs to approximate
the signed distance functions and subsequently use second-
order cone programming to synthesize the control policy.
Authors in [81] utilize imitation learning to learn CBFs
from expert demonstrations of safe trajectories. While others
present architectures for constructing neural barrier functions
[82] for multi-agent control, and robust neural Lyapunov-
barrier [83] functions for safe nonlinear control.

3) Differentiable Control: These methods leverage au-
tomatic differentiation (AD) for computing gradients of
the physics model or optimal control problem that can
be used as part of the learning algorithm. An example
is to use AD for computing the backward gradients of
the underlying MPC optimization problem. In principle,
this can be done in two ways, by differentiating the KKT
conditions constructed analytically [84] or by unrolling the
computational graph of the MPC problem [85, 86]. The
advantage of the methods based on differentiable program-
ming (DP) [87] is that they allow for end-to-end training
of different components of the optimal control problem.
Thanks to its versatility, this method has been used to learn
system dynamical models [88], weighting factors of the
objective functions [84], neural control policies [89]–[91],
or safety filters based on differentiable projections [92], and
differentiable control barrier function [93, 94]. Most recent
applications of differentiable control include autonomous
vehicles [95], robotics [96, 97], building control [98, 99],
traffic flow [100], epidemic processes [101], or visuomotor
control via differentiable rendering [102]. Naturally, physical
priors can be incorporated into the MPC formulation through
the system model, which will be taken into account when the
optimization problem is differentiated. Most recently, several
differentiable optimization and control libraries have emerged
in the open-source domain [103]–[106] The DP approach
has also been used to develop differentiable physics models
to control partial differential equations (PDEs) [107, 108].

4) PIML for safe data-driven control: Another use of
PIML models in combination with control-like algorithms
is in safety frameworks. Given a safety-critical system, i.e.,
a dynamical system subject to state and input constraints,
a safety framework can certify whether a proposed control
input is safe to apply or not. Whenever a proposed input
is unsafe, the safety framework can propose an alternative
safe control input, which usually is as close as possible to
the proposed one. For instance, [109]–[111] present safety
frameworks that use an MPC like structure to determine
the input that satisfies input and state constraints and is as
close as possible to the proposed potentially unsafe input.
Safety frameworks are also known under other names such
as active set reachability [112], Safety Handling Exploration
with Risk Perception Algorithm (SHERPA) [113], and model
predictive safety filter [114]. Other approaches use control

barrier functions [115, 116] and reachability analysis [24, 117]
to ensure safety. A unified approach that brings predictive
safety filters and control barrier functions, called predictive
control barrier functions, has been recently presented [118]

Safety frameworks have also been proposed for learning-
based control, where machine learning (ML) is used to learn
either the system model or the control law. [119] uses an
MILP formulation to train NN-based controllers to satisfy
input constraints, safety constraints, and stability conditions.
[120] uses differentiable projections to enforce Lyapunov
stability conditions while minimizing a performance objective-
based loss function (e.g., LQR) during training of a NN-based
control law. Cautious control methods employ the uncertainty
of the learned model to ensure safety constraints and become
less conservative when the model is updated [72].

5) Physics-informed RL: PIML has been used in RL to
improve its accuracy and physical consistency. Model-based
reinforcement learning methods rely on a model of the
environment and its dynamics with which the agent interacts.
The models can be generated via high-fidelity physics-based
simulations or learned from data. Deep-RL methods employ
NNs to generate data-driven models. Approaches similar to
those presented in the MPC section can be used to ensure
physically consistent models. For example, [121] uses a
physically consistent NN [23] to learn a dynamical model
of a building, which is then used with a deep RL agent. In
[122], a model-based policy search method, called PILCO, is
developed where prior physics knowledge can be introduced
in a GP model. Physics-informed RL schemes informed
by the underlying dynamics have been employed to tackle
aircraft conflict resolution problems [123] and power system
optimization problems [124, 125]. Recent works in [126,
127] provide a systematic framework for using RL to tune
the parameters of optimization-based MPC policies. This RL-
MPC framework combines the advantages of both approaches,
namely the flexibility of RL with constraints satisfaction and
stability of MPC. It has recently found applications in building
energy system control [128].

6) Case study: Physics-informed safety filters for data-
driven control: The work [109] shows how to deploy RL
algorithms on safety-critical systems, i.e., systems subject
to state and input constraints, without violating constraints.
The proposed approach makes use of predictive safety filters,
namely, an optimization-based algorithm that receives the
proposed control input and decides, based on the current
system state, if it can be safely applied to the real system
or if it has to be modified otherwise. Given a dynamical
system of the form (1), the predictive safety filter solves each
time-step the following optimization problem,

min
x,u

∥uL −uk∥

s.t. xk+1 = f (xk,uk),

xk ∈ X, uk ∈ U, xN ∈ S t , x0 = x(t),

(8)

where uL is the input proposed by a potentially unsafe
controller, e.g., an RL algorithm and S t is a terminal invariant
set for the dynamical system f (xk,uk). The predictive safety



filter minimizes the difference between the proposed input
and a safe input in order to be as less invasive as possible. The
input uk is then applied. While the aforementioned approach
relies on a perfect knowledge of the system dynamics, in
practice a perfect model is never available. The predictive
safety filter can deal with the uncertain system by exploiting
robust and stochastic model predictive control techniques. A
parametric model xk+1 = f (xk,uk,θ) is considered where θ

is an unknown parameter vector that is either bounded or
has a known prior distribution p(θ) with mean E[θ ]. In the
aforementioned paper, the safety filter is applied to the swing-
up of an inverted pendulum and the control of a quad-copter.
In both cases, unsafe controllers are employed and the safety
filter demonstrates how it is possible to satisfy constraints.

C. Analysis and verification of ML models

In addition to system identification and control design,
PIML has been incorporated into the analysis and verification
of dynamical systems. Firstly, consider a learning structure,
(e.g., NN, GP) on which PIML methods typically rely on.
Properties of these structures, such as input-to-state stability,
input-output bounds, and estimation of Lipschitz constants,
are important to determine how these structures behave in
a closed-loop setting. Secondly, learned system dynamics
would ideally have inherent physical properties, e.g., passivity,
stability, and invariance, from the physical systems they are
approximating. Guarantees that such physical properties hold
can be beneficial for future control design in addition to
ensuring a better representation of the physical system itself.
Finally, learning-based control policies may lack guarantees
of closed-loop stability or invariance. Verification methods,
including sampling-based and reachability, can be used to
guarantee such desirable properties of the closed-loop system.
In the following, we survey the literature with respect to
analysis and verification methods developed for PIML.

1) Analysis and verification of learned system dynamics:
These are methods for analyzing and verifying properties of
learned models of dynamical systems in the open-loop setting.
They can be categorized by the class of system properties
addressed as follows.

a) Stability: The stability and attractors of recurrent
neural networks (RNNs) have been studied in continuous time
in [129]. Authors in [130, 131] study Lyapunov spectra and
Lyapunov exponents of RNNs. Authors in [132] empirically
study stability of deep neural architectures in the context of
solving forward-backward stochastic differential equations.
[47] analyzes the dissipativity of autonomous neural dynamics.
[133] proposes a method for synthesis of Lyapunov NNs
while providing formal guarantees-using satisfiability modulo
theories (SMT). [79] defines deep neural network (DNN)
structure to approximate compositional Lyapunov functions
for a system where the approximation error is dependent on
the number of neurons in the network. [134] uses mixed-
integer programming in a sampling-based Lyapunov function
verification method for piece-wise linear NN approximations
of nonlinear autonomous systems for estimating their region
of attraction. [135] uses Koopman operator theory and sample-

based methods to learn a neural network-based Lyapunov
function and region of attraction of a given open-loop system.
[136] uses GP-based approximate dynamic programming
with a sample-based method to learn a Lyapunov function
and region of attraction of an open loop system. [137]
analyzes the Input-to-State (ISS) stability of long short-term
memory (LSTM) networks by recasting them in the state
space form. The authors in [138, 139] use contraction analysis
to design an implicit model structure that allows for a convex
parameterization of stable RNN models. [140] uses non-
Euclidean contraction theory to establish well-posedness,
contraction, and l∞-Lipschitz properties of implicit NNs.

b) Lipschitz properties: [141] shows that determining
the Lipschitz constant of a NN is an NP-hard problem
and proposes algorithms to estimate the Lipschitz constant.
Methods for data-driven Lipschitz estimation for controller
design and safe policy iteration in ADP are proposed in [142,
143]. In [144], the authors propose a method for training
deep feedforward NNs with bounded Lipschitz constants.
[145] poses the Lipschitz constant estimation problem for
deep neural networks as a semidefinite program (SDP). [146]
shows how to train continuous-time RNNs with constrained
Lipschitz constants to guarantee stability. [147] develops
neural Lipschitz observers with guaranteed performance.

c) Robustness and other safety properties: The authors
in [148] use the data Jacobian matrix to analyze the behavior
of deep neural networks by means of their singular values.
[149] develops an analyzer for deep convolutional networks
with ReLU activations based on an over-approximation that
can guarantee robustness. [150] proposes a method of verifi-
cation for binarized NNs using existing boolean satisfiability
solvers, which is tested for adversarial robustness to l∞
perturbations. [151] uses mixed-integer linear programming
(MILP) formulations to analyze robustness of NNs.

2) Analysis and verification of learned control policies:
These methods analyze and verify properties of learned con-
trol policies in the closed-loop setting. They are categorized
by the considered class of properties as follows.

a) Stability: [69] provides deterministic stability guar-
antees for learning-based MPC (LBMPC) based on linear state
space models. The authors in [152] propose sampling-based
probabilistic performance guarantees for approximate MPC
policies based on the Hoeffding inequality [153]. [154] uses
semidefinite programming to certify stability for model-based
RL policies. [155] uses Lyapunov stability verification to
certify model-based RL policies. [156] uses GP to estimate the
region of attraction of a closed-loop system. Recently, [157]
uses sample-based δ -covers of system domains to ensure
input-to-state stability to a set of a closed-loop system when
an NN is used as a state estimator or a closed-loop control
law. [158] develops a neural contraction metric, i.e., an NN
approximation of a contraction metric, which, coupled with
a learning-based controller, ensures exponential convergence
to a target trajectory. [159] guarantees stability by combining
the worst-case approximation error of the NN controller
with its Lipschitz constant, utilizing an MILP framework.
[160] proposes a framework for the stability verification of



MILP representable control policies. [161] simultaneously
learns an NN controller and Lyapunov function, guided by
MILP stability verification, which either verifies stability or
gives counter-examples that can help improve the candidate
controller and the Lyapunov function. [162] learns an MPC
policy and a “dual policy,” which enables them to keep a
check on the approximated MPC’s optimality online during
the control process to filter out suboptimal control inputs and
invoke a backup controller with a bounded probability.

b) Invariance and other safety properties: [163] uses
constrained zonotopes and reachability analysis to determine
reachable sets for safety verification of NN controllers. [81]
uses sampled trajectories of a closed-loop system to learn
the control barrier function, which can be parameterized by
an NN and can ensure invariance of the safe set. [119] uses
an MILP formulation to perform an output range analysis of
a trained NN controller to guarantee constraint satisfaction
and asymptotic stability of the NN controller.

3) Case study: Verification of a NN controller for a DC-
DC power converter: The following section provides a case
study on the verification of a NN controller for a DC-DC
power converter. To carry out this verification, we employ
the EVANQP framework, developed by [160], which utilizes
MILPs as its underlying verification technique. By utilizing
this framework, we not only demonstrate the closed-loop
stability of the NN policy, but we can also validate the
satisfaction of constraints in closed-loop operation. The
example is adopted from [160, Section V].

The use of neural network (NN) policies in power con-
verter applications is primarily motivated by the desire to
achieve comparable performance to that of an optimal MPC
policy while requiring lower computational complexity and
memory. Optimal MPC policies are often too computationally
demanding to be run in real-time on low-cost microprocessor
hardware, making NN policies an attractive alternative.
Despite the successful deployment of an NN policy on real
hardware by [164], their approach lacks guarantees of stability
and constraint satisfaction. In the following, we address these
shortcomings. We will focus on the approach described in
[160] where the baseline policy ψ1(·) represented by a robust
MPC is approximated by a NN policy ψ2(·). Specifically, we
consider the robust Tube MPC approach proposed by [165],
which is robust against additive input disturbances in the set
W = {w ∈ Rm | ∥w∥∞ ≤ γ̂}. By verifying that the NN policy
has a worst-case approximation error,

γ = max
x∈X

∥ψ1(x)−ψ2(x)∥∞, (9)

over a bounded polytopic set X that is smaller than γ̂ , we
can prove that the NN policy ψ2(·) is asymptotically stable
in closed-loop and satisfies constraints on the feasible region
of the robust MPC policy ψ1(·) [160, Theorem 1]. Notably,
this is achieved by reformulating (9) as a MILP, with the
NN policy and the optimal solution map of the robust MPC
scheme as MILP constraints. A wide range of candidate
policies including ReLU NNs, optimal solution maps of
parametric QPs, and MPC policies can be exactly represented

using MILP constraints. We refer to such functions as MILP-
representable, as they can be expressed exactly using linear
equality and inequality constraints with both continuous and
binary decision variables. The MILP-representable functions
are piecewise linear in nature, enabling their exact represen-
tation using MILP constraints.

The model of the DC-DC converter is linearized and
discretized, giving us the following two-state x = (iL,vO)
(current and voltage), and one-input (duty cycle) linear system

x+ = Ax+Bu =

[
0.971 −0.010
1.732 0.970

]
x+

[
0.149
0.181

]
u.

For the robust MPC we assume the uncertain dynamics

x+ = Ax+Bu+Bw,

with disturbance set W = {w ∈ R | |w| ≤ 0.1}. We formulate
the robust MPC controller

min
z,v

N−1

∑
i=0

(∥∥zi − xeq
∥∥2

Q +
∥∥vi −ueq

∥∥2
R

)
+
∥∥zN − xeq

∥∥2
P

s.t. ∀i = 0, . . . ,N −1,
zi+1 = Azi +Bvi,

zi ∈ X⊖E , vi ∈ U⊖KE

zN ∈ XN , x(0) ∈ z0 ⊕E ,

with steady-state xeq =
[
0.05 5

]T , and ueq = 0.3379, state
constraints X =

{
x ∈ R2

∣∣ 0 ≤ x1 ≤ 0.2,0 ≤ x2 ≤ 7
}

, input
constraints U = {u ∈ R | 0 ≤ u ≤ 1}, terminal set XN , E
the minimum robust invariant set with respect to a linear
feedback gain K. The control law is then given by ψ1(x) =
K(x− z⋆0(x))+ v⋆0(x). To approximate the robust Tube MPC,
we employ a neural network (NN) with 2 hidden layers and
50 neurons each. A saturation layer is added at the end to
ensure that the input is clipped between -1 and 1. We use
5000 samples of the Tube MPC uniformly distributed in
the feasible region for training the NN, following standard
techniques. The NN controller learns an approximation of the
MPC policy by minimizing a least-squares loss function. The
resulting NN controller and the original Tube MPC can be
visualized in Figure 3. We employ the EVANQP framework
to describe the MPC formulation and NN controller and
solve the resulting Mixed-Integer Linear Program (MILP) to
determine the worst-case approximation error. Our analysis
yields a value of γ = 0.073. As we designed our controller to
be robust for input perturbations with a maximum magnitude
of 0.1, our results demonstrate that the NN controller satisfies
constraints and converges asymptotically to the steady-state.

D. Learning from physics-informed digital twin simulations

Advancements in computing and the wide availability
of modeling toolkits have yielded high-fidelity simulation
software (an essential component of so-called “digital
twins” [166]) across a range of domains. Simulation has
become a critical tool for researchers to perform experiments
in a scalable, safe, and repeatable manner. Data generated
from digital twins can complement, or offer a powerful
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Fig. 3: Original, approximate/simplified robust control policy
(top), and approximation error to the original robust MPC
control policy (bottom). Taken from [160].

alternative to field experiments, which are typically time-
consuming, and often require extensive guardrails to ensure
expensive equipment/personnel are not subject to harm or
are difficult to repeat. Some high-fidelity simulators include
Modelica (cyber-physical systems [167], building energy
systems [168]), CESM (climate models [169]), STK (space-
craft [170]), OpenFOAM (fluid flow [171]), and ChainQueen
(soft robotics [172]), to name a few.

In the prior section on physics-informed system identifi-
cation, data was assumed to have been obtained from the
system under consideration, and an incomplete mathematical
representation of the system dynamics is available from
domain knowledge (or ‘physics’). In this subsection, the
‘physics’ is integrated within the data via the data-generating
source: the high-fidelity simulator. However, because the
simulators comprise software modules that require high
modeling complexity and are typically strongly interconnected
to one another, directly considering analytical forms of these
simulators is unwieldy and impractical. It is generally easier
to construct machine learning tools that can directly use data
generated by the simulators.

1) Controller design using simulation data: To ensure
that a high-fidelity simulator can be effectively utilized for
controller design tasks, it must first be calibrated with real-
world data generated by the system of interest. This calibration
step is important for ensuring the underlying assumptions and
parameter values have been adequately selected to best mimic
the true system. However, the complex representation of most
high-fidelity simulators implies that the model calibration
step can be challenging to solve [173, 174], especially
compared to alternative black-box modeling approaches (e.g.,
deep neural networks) that do not require prior physical
knowledge. A natural question arising from this comparison
is: Why not directly work with standard machine learning
algorithms and forego the high-fidelity simulator altogether?
In the context of real-world engineering systems, the answer
almost always boils down to a lack of accurate system data.
For example, deep learning methodologies have become

mainstream solutions in a variety of important applications,
such as natural language processing and image classification;
however, they often require massive amounts of high-quality
labeled training data to surpass human performance. A key
advantage of high-fidelity simulators is that they can be
calibrated using substantially less training data, which is
a direct consequence of the constraints imposed by the
underlying first-principles models [175]. Once calibrated, the
simulator can then be treated as a data-generation source that
can be more confidently extrapolated outside of observed
training instances. This data generation feature is useful
for building control-relevant (or reduced-order) models [176,
177], which are critical components of modern model-based
control algorithms, such as MPC, that can handle constrained
nonlinear systems with strong multivariate interactions.

No matter the selected structure, a controller will still
depend on design (or tuning) parameters that can strongly
affect closed-loop performance and safety. Historically, these
tuning parameters have been selected using a combination of
heuristics and/or trial-and-error experimentation on the true
system. To reduce the required testing and validation time,
it has been recently proposed to perform controller tuning
using the high-fidelity simulator. However, the tuning process
is not straightforward due to the computationally expensive
nature of high-fidelity simulators. As such, there has also
been significant interest in the development of efficient data-
driven automated calibration (or auto-tuning) strategies. In
particular, Bayesian optimization (BO) has emerged as a
powerful approach for handling these types of auto-tuning
problems due to its ability to handle expensive black-box
functions corrupted by random noise [178]–[180]. Several
recent works have demonstrated the promise of BO for
auto-tuning of MPC [181]–[184] and other complex control
structures [185, 186]. Many interesting extensions of BO have
also been pursued in the context of auto-tuning, including
multi-objective [187] and robust [188, 189] formulations.

2) Improving generalization of learners via simulations:
A unique opportunity afforded to us by the use of physics-
informed simulation tools comes from the ability to generate
useful data for analysis and design. This generation phase is
typically not assumed in most current PIML research, where
the more standard assumption is that data and domain knowl-
edge pertaining to the ‘target’ system under consideration is
available. Contrarily, digital twins comprise parameterized
components whose physical parameters or physics-informed
structure can be modified in software to generate data from
multiple ‘source’ systems that are similar to the target system
but not necessarily identical. The implication in modeling and
control is that we can use leverage this multi-source dataset
to evaluate performance on a range of similar dynamical
systems and embed this data into the design pipeline for a
target system from which only a few data points are available.
Two classes of ML algorithms are naturally suited to learning
from multi-source data: (i) meta-learning (also referred to as
few-shot learning) and (ii) transfer learning.

a) Meta-learning: In meta-learning, two objective func-
tions are typically used in the training phase: an outer-loop



loss function for learning commonalities among the multi-
source systems and an inner-loop loss function for quickly
adapting to a new system with minimal data [190]. At
inference, the outer-loop parameters are used to initialize
the network, and a few inner-loop iterations are deemed
sufficient for adaptation to the target system. Importantly, the
learner structure does not change for the inference task, and
the meta-learning algorithm learns to optimize the learning
process itself; that is, for a classification problem, the meta-
learner may not infer a classification output, but instead
may infer a set of hyper-parameters for a classifier network
such as loss function parameters or parameters relating to
the neural architecture itself [191]. GP models have been
used recently in order to meta-learn predictive models for
MPC [192] by using dynamic trajectory data from similar
systems, and neural networks have been used to meta-learn
adaptive control policies in [193] for robotics. Some meta-
learning algorithms do not require re-training or bilevel
optimization for adaptation. Instead, they adapt based on
contextualization; that is, with the same inputs, the inference
changes due to contextual inputs additionally provided to
the network. These context-based meta-learners, such as
neural processes and deep kernel networks, have also been
investigated recently for parameter learning [194, 195] using
physics-informed simulators of building energy systems.

b) Transfer and multi-fidelity learning: Conversely,
transfer learning relies on learning good representations from
the multi-source dataset. At inference, the final network
architecture is different from the network that was pre-trained,
with the head of the network being inherited from the trained
network, while the penultimate layers are altered to fit the
learning task on the target system. Furthermore, the task
performed by both the network architectures, e.g., classifica-
tion, are identical. So far, the utility of transfer learning in
modeling and control has mainly been demonstrated in energy
systems [196, 197] where control policies or neural network-
based surrogate thermal dynamics models are constructed
by using simulations of buildings situated in various climate
zones and exhibiting a wide range of architectures.

A generalized version of the transfer learning problem also
arises in controller auto-tuning. Although auto-tuning strate-
gies applied to the high-fidelity simulator can compensate for
the error between the control-relevant model and the simulator,
they implicitly assume the error between the simulator and
the true system is negligible, which is not always the case
in practice. One way to address this additional source of
error is through the framework of multi-fidelity optimization
wherein we assume access to a family of information sources
controlled by a collection of “fidelity” parameters that can
be generally continuous or discrete. In the simplest case,
we would have one binary fidelity parameter that denotes
two distinct but correlated levels, i.e., the simulator and
the true system. Due to the general structure of the BO
framework, several multi-fidelity BO methods have been
developed in the literature [198]–[201], with some being
applied directly to the controller auto-tuning problem [194,
202]. The main advantage of these types of multi-fidelity

optimization methods is their ability to efficiently reconcile
discrepancies between the high-fidelity simulator and the true
system, which can allow for a significant reduction in the
amount of testing required on the true system of interest.

3) Sim2Real in Reinforcement Learning: Model-free con-
trollers, e.g. a class of (deep) reinforcement learning algo-
rithms can potentially obtain near-optimal control policies
without the need for a mathematical model. This is typically
done by the control agent interacting with its environment
(or plant) and learning to associate the states to advantageous
control actions. The exploration-exploitation trade-off gov-
erns this interaction: in order for the agent to gather new
knowledge, it needs to explore unknown effects of its actions
by choosing them, e.g., randomly at times. This feature has
three drawbacks for controlling real-world systems. For one,
for large state-space systems, the agent may never see all
possible states and/or all possible state-action combinations,
especially those that may occur infrequently. Second, the
amount of data needed for convergence may be large, and
consequently the learning times prohibitively long. Third,
the agent may choose actions that violate safety constraints,
which may not be permissible in certain plants.

To overcome this issue the sim2real paradigm has been
introduced, i.e., the notion that the agent is (pre-)trained
in a physically accurate simulator before the deployment
on the real system. This way, the agent can be provided
with the equivalent of decades of experience and a large
variety of potential states. The sim2real paradigm has been
successfully explored by developing a variety of simulators
for robotics [203, 204] and general purpose physics [205,
206], and demonstrating applications mainly in robotics [207]–
[210] and automotive [1]. Of course, the physics fidelity
of the simulators can determine the success and quality
of the subsequent deployment, and also its applicability
for sim2real. If it is computationally too expensive to run
extensive simulation models, they are not suitable to be used
in pre-training learning controllers. Here, PIML approaches
can be very advantageous in providing physically accurate,
yet computationally efficient environments, which can greatly
improve the quality of the learning process.

E. Case Study: Violation-aware Bayesian optimization for
energy consumption minimization of HVAC with constraints

We consider the problem of safely tuning set-points of an
HVAC system as introduced in [211], also referred to as a
vapor compression system (VCS). A VCS typically consists
of a compressor, a condenser, an expansion valve, and an
evaporator. Physics-based models of these systems can be
formulated as large sets of nonlinear differential-algebraic
equations (DAE) to simulate VCS dynamics. To inject realistic
refrigerant dynamics and fluid flow, these models contain
software blocks that exhibit significant numerical complexity.
This motivates directly using data from VCS digital twin
simulations to estimate energy consumption under different
operating conditions, to assign set-points to the VCS actuators
using data-driven, black-box optimization methods such as
Bayesian optimization [178]. A high-fidelity digital twin of



Fig. 4: Best feasible solution’s power, discharge temperature,
cumulative violation cost and the three set-points’ evolution.
Components of the figure have been taken from [211]
and [212].

the VCS was constructed using Modelica [213]; see Fig. 4.
Physics-based models of the compressor, expansion valve,
accumulator, and both heat exchangers were interconnected.
The final DAE model comprises 12114 equations; further
modeling details can be found in [214].

Recklessly changing VCS actuator set-points can drive the
system into operating modes that reduce the reliability or
lifespan of the system. To avoid these harmful effects, one
can add several constraints during the tuning process. One
such constraint is the compressor discharge temperature; as
high temperatures can result in the breakdown of refrigerant
oils and increase wear and tear, shortening the product’s
lifespan. Furthermore, high temperatures are connected to
high pressures, which may cause mechanical fatigue in
refrigerant pipes. An advantage is that small constraint
violations over a short period of time are acceptable. Authors
in [211] proposed a violation-aware Bayesian optimization
(VABO) to minimize energy use in the VCS while trading
off constraint violations. The feedback loop is closed from
compressor frequency to room temperature, leaving the set
of three tunable set points as the expansion valve position
and the indoor/outdoor fan speeds. The effects of these set
points on power and discharge temperature are not easy to
model, and no simple closed-form representation exists.

Authors in [211] report that the energy use induced by
VABO decreases slightly faster than generic constrained
BO [215] (cBO) and significantly faster than safe BO [216].
At the same time, the method manages the violation cost well
under the violation cost budget. cBO incurs large discharge
temperatures at many iterations because it makes large
adjustments to the expansion valve position while maintaining
the indoor fan speed at a low value, a combination that is
not penalized during exploration. VABO reduces the energy
by about 9% compared to the most power-efficient initial
safe set-points. Authors also observed that large discharge

temperature violations are entirely possible without violation
awareness, as demonstrated by cBO. Safe BO tends to waste
a lot of evaluations to enlarge the safe set, which leads to
slow convergence; conversely, VABO implicitly encodes the
safe set exploration into the acquisition function and only
enlarges the safe set when necessary for optimization, while
keeping the violation risk small.

III. CHALLENGES AND OPPORTUNITIES OF PIML FOR
CONTROL

This section reflects on open challenges and opportunities
of PIML methods from various perspectives, including data
and prior knowledge requirements, computational demands,
safety and performance guarantees, availability of software
tools and learning materials, as well as new promising
application domains. Opportunities of PIML methods in
control include:

1) Modeling of human behaviors in interactive human-
autonomous systems (e.g., autonomous vehicle in mixed
traffic). Autonomous system physics is known, but
human reaction needs to be learned from real data
to model human-in-the-loop systems at scale.

2) Modeling of high dimensional and distributed physics
in multi-physics systems. An example includes com-
bustion processes where physics is impossible to model
compactly by first principles, but there may be good
surrogate models that retain core physical properties.

3) Generation of structured PIML controllers for multi-
component systems with awareness of interconnections
of the sub-components. This would lead to improved
interpretability and allow for the localization of failures.

4) Constructing surrogate PIML models for the hard-to-
optimize physics-based optimization problems or cost
functions. This could significantly speed up the solution
of hard optimization problems using cheaper surrogates.

5) Synthesis of explicit model predictive control policies
for large-scale systems leading to a significant reduction
in online computational requirements. Thus allowing for
the execution of complex control policies in applications
with limited communication bandwidths and small
sampling rates or enabling deployment on edge devices.

6) Providing safety and performance guarantees for a
broad class of learning-based control methods. Par-
ticularly applicable to applications with time-varying
dynamics that require online adaptive processes to cope
with constant changes in a safe manner.

7) Dealing with sim2real gap and allowing for automated
tuning of PIML controllers from simulation and exper-
imental data.

8) Integration of multi-modal inputs into modern control
systems. Examples include a combination of video and
audio signals with physical measurements processed
for downstream decision-making by advanced controls.

Open challenges for PIML methods in control include:
1) How to quantify the uncertainty and modeling errors

for PIML-based models?



2) How to quantify minimal data requirements for training
PIML models and controllers?

3) How to effectively select representative training data
for sampling-based PIML approaches?

4) How to automate the training and hyperparameter
tuning process of PIML models?

5) How to avoid training failures of PIML models getting
stuck in local optima. Can we obtain convergence
guarantees for certain classes of PIML models?

6) How to guarantee stability and safety of a real-world
system in closed-loop with PIML-based controllers in
the presence of noise and plant-model mismatch?

7) How can verification methods for PIML be scaled up
for large-scale or networked systems?

8) How to reduce the computational requirements of high-
fidelity digital twins without sacrificing accuracy?

IV. CONCLUSIONS

In the last two decades, the use of machine learning (ML)
methods revolutionized a range of industries, from retail,
advertisement, entertainment, healthcare, finance, digital arts,
and social networks, to surveillance. Although highly diverse,
these applications have some common denominators, which
is that their ML systems are primarily designed for pattern
recognition from multi-modal data sources. However, as we
move towards real-world engineering systems with humans-in-
the-loop, such as autonomous vehicles, collaborative robotics,
process control of chemical plants, or power grid, the primary
focus is steered toward optimization and control of these
dynamical systems with guarantees of safe operation. In
recent years, physics-informed machine learning (PIML) has
emerged as a class of methods that systematically combine
data-driven ML with physics-based modeling and numerical
solvers from engineering.

This tutorial paper provides an overview of the most
recent PIML methods applied to the modeling and control of
dynamical systems. Specifically, PIML techniques for system
identification include structural priors in the architecture of
the ML model, matrix factorizations, and physics-informed
loss functions. PIML approaches to control cover learning dy-
namics models for model predictive control (MPC), learning
Lyapunov and barrier functions, differentiable-programming-
based control, safe data-driven control, and physics-informed
reinforcement learning (RL). Obtaining safety and perfor-
mance guarantees of PIML models and control policies
requires rigorous tools verifying properties such as stability,
robustness, Lipschitz properties, invariance, and other safety
considerations such as constraint satisfaction. The paper also
presents methods combining ML with high-fidelity digital
twin models suitable for controller design and tuning via
meta and transfer learning and dealing with sim2real gap in
RL. Each major category of PIML methods is accompanied
by a representative tutorial case study.

The use of PIML methods in control presents us with new
exciting opportunities that include applications in systems
with human-in-the-loop, multi-scale and multi-physics sys-
tems, and providing benefits such as improved interpretability

and modularity, scalability to large-scale complex systems,
safety guarantees for adaptive data-driven systems, or inte-
gration of multi-modal input data in the control systems.

However, several open questions remain that need to be
addressed before the adoption of these methods in real-world
applications. These include uncertainty quantification (UQ),
data requirements and efficient sampling strategies, automated
training, hyperparameter optimization, convergence guaran-
tees, scalability of the verification methods, and computational
requirements of high-fidelity physics simulators.
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