
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

STOCS: Simultaneous Trajectory Optimization and Contact
Selection for Contact-Rich Manipulation

Zhang, Mengchao; Jha, Devesh K.; Raghunathan, Arvind; Hauser, Kris

TR2023-044 May 25, 2023

Abstract
Contact-implicit trajectory optimization is an effective method to plan complex trajectories
for various contact- rich systems including manipulation and locomotion. These methods
formulate contact as complementarity constraints and require solving a mathematical program
with complementarity constraints (MPCC). However, MPCC solve times increase steeply with
the number of variables and complementarity con- straints, which limits their applicability to
problems with low geometric complexity. This paper introduces the simultaneous trajectory
optimization and contact selection (STOCS) method that embeds the detection of salient
contact points and contact times inside trajectory optimization. Because the number of
active contact points is usually small, this approach minimize the number of MPCC variables
and constraints, which makes solving manipulation trajectories for objects with complex,
non-convex geometry computationally tractable. The proposed approach is validated on a
pivoting problem in simulation and on a 6 DoF manipulator arm.

ICRA 2023 Workshop on Embracing contacts. Making robots physically interact with our
world

c© 2023 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

STOCS: Simultaneous Trajectory Optimization and Contact Selection
for Contact-Rich Manipulation

Mengchao Zhang1, Devesh K. Jha3, Arvind U. Raghunathan3 and Kris Hauser2

Abstract— Contact-implicit trajectory optimization is an ef-
fective method to plan complex trajectories for various contact-
rich systems including manipulation and locomotion. These
methods formulate contact as complementarity constraints and
require solving a mathematical program with complementarity
constraints (MPCC). However, MPCC solve times increase
steeply with the number of variables and complementarity con-
straints, which limits their applicability to problems with low
geometric complexity. This paper introduces the simultaneous
trajectory optimization and contact selection (STOCS) method
that embeds the detection of salient contact points and contact
times inside trajectory optimization. Because the number of
active contact points is usually small, this approach minimize
the number of MPCC variables and constraints, which makes
solving manipulation trajectories for objects with complex,
non-convex geometry computationally tractable. The proposed
approach is validated on a pivoting problem in simulation and
on a 6 DoF manipulator arm.

I. INTRODUCTION

Trajectory optimization is a tool used throughout robotics
to generate robot motion, but the representation of making
and breaking contact remains a major research challenge. A
hybrid trajectory optimization approach divides a trajectory
into segments in which the set of contacts remains constant,
but it requires the contact mode sequence to be known in
advance [1] or explored by an auxiliary discrete search.
Contact-invariant trajectory optimization (CITO) [2], [3],
[4] is a more flexible approach that allows the optimizer to
choose the sequence of contact by formulating a complemen-
tarity constraint, which ensures that the contact forces can
be non-zero if and only if a point is in contact. Although this
mathematical programming with complementarity constraint
(MPCC) formulation is less restrictive than hybrid optimiza-
tion, it still requires a set of predefined allowable contact
points on the object. Moreover, running times rise sharply
as the number of allowable points grows, which restricts its
use to simple geometries.

In this paper, we propose simultaneous trajectory op-
timization and contact selection (STOCS), which is a
novel CITO algorithm for manipulation that allows multiple
changes of contact between the object and environment for

This work is partially supported by NSF Grant #IIS-1911087.
1 Mengchao Zhang is with the Department of Mechanical Science and

Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
61801. mz17@illinois.edu

2 Kris Hauser is with the Department of Computer Science, Uni-
versity of Illinois at Urbana-Champaign, Urbana, IL, USA 61801.
kkhauser@illinois.edu

3 Devesh K. Jha and Arvind U. Raghunathan are with Mitsubishi
Electric Research Laboratories (MERL), Cambridge, MA, USA 02139
{jha,raghunathan}@merl.com

Fig. 1: A robot executes the optimized trajectory solved using STOCS for
pivoting a non-convex object. [Best viewed in color.]

a given manipulation mode. STOCS enables the application
of MPCC on complex object and environment geometries
by embedding the detection of salient contact points and
contact times inside the trajectory optimization outer loop.
Force variables are introduced for all of these contacts. Each
instantiated MPCC iteration has relatively few constraints
and is optimized for a handful of inner iterations before new
contact points are identified. Force values are maintained
from iteration to iteration to warm start the next MPCC.

We apply STOCS to the problem of manipulating an object
in contact with both the robot and the environment, e.g.,
by sliding and pivoting (Fig. 1). The planned manipulation
could be used to reorient parts to allow grasping or assist
in assembly by manipulating objects to a desired pose. We
show that STOCS can successfully solve the manipulation
problem while greatly improving computational efficiency
beyond a naı̈ve MPCC solver.

II. SIMULTANEOUS TRAJECTORY OPTIMIZATION AND
CONTACT SELECTION

In this section, we describe how STOCS solves contact-
rich trajectory optimization problems, and a high-level illus-
tration for the workflow of STOCS is shown in Fig. 2.

A. Semi-infinite programming (SIP), infinite programming
(IP) for contact-rich trajectory optimization

To illustrate how STOCS works, we start from the SIP/IP
problem that STOCS is designed to solve, and explain where
the infinitely many optimization variables and constraints
come from. An SIP problem is an optimization problem in
finitely many variables x ∈ Rn on a feasible set described
by infinitely many constraints:

min
q∈Rn

f(q) (1a)

s.t. g(q, y) ≥ 0 ∀y ∈ Y (1b)

Fig. 2: Illustrating the workflow of STOCS. Given the start pose qstart,
goal pose qgoal, and a manipulator contact state cmnp, STOCS iterates
between using the Maximum Violation Oracle to instantiate contact points,
and solving a finite dimensional MPCC to decide a step direction until the
convergence criteria is met. STOCS does not need a predefined contact set
and can select the contact points simultaneously while solving trajectory
optimization. [Best viewed in color.]

where g(q, y) ∈ Rm is the constraint function, y denotes the
index parameter, and Y ∈ Rp is its domain.

For pose optimization with collision constraints, q de-
scribes the pose of the object, y is a point on the surface
of the object O, where Y ≡ ∂O denotes that surface of O,
and g(·, ·) is the distance from a point to the environment
[5], [6]. For trajectory optimization, constraints need to be
instantiated in space-time, which means y = (t, p) includes
both time t and contact point p on object’s surface. However,
to make the resulting optimization problem more stable, in
this work, we assume that once a contact point is instantiated,
it will be instantiated during the whole trajectory.

To include forces as part of the solution to ensure force and
moment balance, we define z : Y → Rr as an optimization
variable [7]. Given an infinite number of contact points,
infinitely many optimization variables will be instantiated,
which makes the optimization become an IP problem in
which the number of variables and the number of constraints
are both possibly infinite [8].

To ensure that forces are only exerted at points where
objects are in contact, z is required to satisfy a complemen-
tarity condition 0 ≤ z(y) ⊥ g(q, y) ≥ 0, which ensures
that the force is nonzero only if the distance between the
geometries is zero. Meanwhile, there may be some other in-
equality constraints h(q, y, z(y)) ≥ 0 that need to be satisfied
pointwise, such as friction cone constraints. The constraint
on the control input which makes sure the manipulator can
only push the object rather than pull the object is denoted
as c(q, u) ≥ 0. Next, some additional constraints can be
imposed on the integral of the field over the domain, such
as force and torque balance.

To summarize, the constraints that need to be satisfied for
each point on a trajectory are the following:

1. Bound Constraint:
qt ∈ Q, ut ∈ U , zt(y) ∈ Z ∀y ∈ Y (2)

2. Distance Complementarity Constraint:
0 ≤ zt(y) ⊥ g(qt, y) ≥ 0 ∀y ∈ Y (3)

3. Constraint on zt(y):
h(qt, y, zt(y)) ≥ 0 ∀y ∈ Y (4)

4. Constraint on Control:
c(qt, ut) ≥ 0 (5)

5. Integral Constraint:

sq,u(qt, ut) +

∫
y∈Y

sz(qt, y, zt(y))dy︸ ︷︷ ︸
=:s(qt,ut,zt;Y)

= 0 (6)

In order to extend this to the whole trajectory, additional
constraints that could make sure the relative tangential
velocity at a contact to be zero when the corresponding
friction force is inside the friction cone need to be introduced
((7e) below). Hence, we formulate the following infinite
programming with complementarity constraints trajectory
optimization (IPCC-TO) problem denoted as P (Y):

min
q,q̇,u,z

f(q, q̇, u, z) (7a)

s.t. q0 = qstart (7b)

(2), (3), (5), (6), q̇t ∈ Q̇ ∀t ∈ T (7c)
qt − qt+1 + dtq̇t = 0 ∀t ∈ T (7d)
0 ≤ v(qt, q̇t, y) ⊥ h(qt, y, zt(y)) ≥ 0

∀y ∈ Y, ∀t ∈ T (7e)

where f(q, q̇, u, z) :=
∑

t∈T [fq,q̇,u(qt, q̇t, ut) +∫
y∈Y

fz(qt, y, zt(y))dy], dt is the time step duration,
and T = {0, . . . , T − 1} with T the total number of
time steps in the trajectory. For the sake of brevity, we
use the notation q = [q0, · · · , qT], q̇ = [q̇0, · · · , q̇T−1],
u = [u0, · · · , uT−1], z = [z0, · · · , zT−1]. With a little abuse
of notation, we use zt = [zt(y) ∀y ∈ Y] where zt(·) is the
mapping and zt is a concatenation of all the instantiated
variable for all y ∈ Y .

B. Exchange method and oracle

The IPCC-TO problem not only has infinitely many con-
straints, but also introduces a continuous infinity of variables
in z. To solve it using numerical methods, we hope that z
only is non-zero at a finite number of points. We borrow this
concept, which is used in the exchange method to solve SIP
problems [9] to solve P (Y).

The solving process can be viewed as a bi-level opti-
mization. In the outer loop, index points are selected to be
added to the index set Ỹ , and then in the inner loop, the
optimization P (Ỹ) is solved. The outer loop will then decide
how much should move toward the solution of P (Ỹ).

Assume that there is an Oracle which gives us the active
points Ỹ ⊂ Y when the object experiences a trajectory q,
then we get a discretized version of the problem which only
creates constraints and variables corresponding to a finite
number of instantiated index points Ỹ . Force variables zt
are instantiated for each index point at each of the time step.
To replace integrals with sums, the true distribution z(y) is
represented by a set of Dirac impulses: zt(y) =

∑
i δ(y −

yi)zt,i. Hence, we formulate the finite dimensional MPCC
problem P (Ỹ) in the following form:

min
q,q̇,u,z

f̃(q, q̇, u, z) (8a)

s.t. (2), (3), (5), q̇t ∈ Q̇ ∀t ∈ T (8b)
(7b), (7d), (7e) (8c)

s̃(qt, ut, zt; Ỹ) = 0 ∀t ∈ T (8d)

where f̃(q, q̇, u, z) :=
∑T−1

t=0 [fq,q̇,u(qt, q̇t, ut) +∑
y∈Ỹ fz(qt, y, zt(y))], and s̃(qt, ut, zt; Ỹ) =

sq,u(qt, ut) +
∑

y∈Ỹ sz(qt, y, zt(y)) = 0.
To apply the exchange method to this IPCC-TO prob-

lem, we progressively instantiate index sets Ỹ and their
corresponding finite-dimensional MPCCs whose solutions
converge toward the true optimum [10]. Specifically, if we let
(x̃∗ = [q∗, q̇∗, u∗], z̃∗) be the optimal solution to P (Ỹ), then
as Ỹ grows denser, the iterates of (x̃∗, z̃∗) will eventually
approach an optimum of P (Y).

C. Merit function for the outer iteration

After solving P (Ỹ) for some iterations, we get a step
direction from the current iterate (x̃, z̃) toward (x̃∗, z̃∗).
The IPCC-TO outer loop moves from (x̃, z̃) toward (x̃∗,
z̃∗). However, due to nonlinearity, the full step may lead
to worse constraint violation. To avoid this problem, we
perform a line search over the following merit function
that balances reducing the objective and reducing the con-
straint error on the infinite dimensional problem P (Y) :
ϕ(x, z;µ) = f(x, z) + µ∥b(x, z)∥1, where b denotes the
vector of constraint violations of Problem (8). Also, in SIP
for collision geometries, a serious problem is that using
existing instantiated index parameters, a step may go too
far into areas where the minimum of the inequality g∗(q) ≡
miny∈Y g(q, y) violates the inequality, and the optimization
loses reliability. So we add the max-violation g∗−(x) to b,
in which we denote the negative component of a term as
·− ≡ min(·, 0).

D. Convergence criteria

We denote the index set Ỹ instantiated at the kth outer
iteration as Yk, the corresponding MPCC as Pk = P (Yk),
and the solved solution as (xk, zk).

The convergence condition is defined as
α∥[∆x,∆z]∥ ≤ ϵx · nxz and |zk|T |g(qk, Yk)| +
|v(qk, q̇k, Yk)|T |h(qk, Yk, zk)| ≤ ϵgap · ncc and
|s(xk, zk, Yk)| ≤ ϵs · T and

∑
t g

−∗
k (xk,t) < ϵp · T ,

where nxz is the dimension of the optimization variable
and ncc is the number of complementarity constraints,
ϵx is the step size tolerance, ϵgap is the complementarity
gap tolerance, ϵs is the balance tolerance, and ϵp is the
penetration tolerance. With a little abuse of notation,
g(xk, Yk) is the concatenation of the function value of
all the points in Yk, and similar for v(qk, q̇k, Yk) and
h(qk, Yk, zk).

The overall STOCS algorithm is listed in Alg. 1.

III. PIVOTING PROBLEM FORMULATION

In this section, we define the pivoting problem studied in
this paper, which is shown in Fig. 3. We make the following
assumptions in this work: a) Rigid body: The object O,
environment E , and manipulator are rigid, b) Quasi-static:
The object is always in a quasi-static equilibrium, c) Known
geometry: The geometry and the mass distribution of the
object, and the frictional parameters between the object

Algorithm 1 STOCS
Require: qstart, qgoal, cmnp

1: Y0 = [] ▷ Initialize empty constraint set
2: z0 ← ∅ ▷ Initialize empty force vector
3: x0 ← initialize trajectory(qstart,qgoal,cmnp)
4: for k = 1, . . . , Nmax do
5: ▷ Update constraint set and guessed forces zk
6: Add point in Yk−1 to Yk, and initialize their forces in zk

with the corresponding values in zk−1

7: Run the oracle to add more new points to Yk, and initialize
their corresponding forces in zk to 0

8: ▷ Solve for step direction
9: Set up inner optimization Pk = P (Yk)

10: Run S steps of an NLP solver on Pk, starting from
xk−1, zk−1

11: if Pk is infeasible then return INFEASIBLE
12: else
13: Set x∗, z∗ to its solution, and ∆x← x∗−xk−1, ∆z ←

z∗ − zk−1

14: Do backtracking line search with at most Nmax
LS steps

to find optimal step size α such that ϕ(xk−1 + α∆x, zk−1 +
α∆z;µ) ≤ ϕ(xk−1, zk−1;µ)

15: ▷ Update state and test for convergence
16: xk ← xk−1 + α∆x, zk ← zk−1 + α∆z
17: if Convergence condition is met then

return xk,zk
return NOT CONVERGED

and the environment µenv , and between the object and the
manipulator µmnp, are perfectly known, and d) Known
environment: The geometry of the environment is perfectly
known.

Geometry modeling: The object is represented as a
densely sampled point cloud on its surface, and the en-
vironment is represented as a signed distance field (SDF)
ϕ(x) : R2 → R. We choose the index domain Y = ∂O be
the surface point cloud and define g(q, y) = ϕ(Tq · y) with
Tq the object transform at configuration q.

Friction force modeling: The force variable of the ith

index point at time step t is zt,i = (zNt,i, z
+
t,i, z

−
t,i), which

is divided into the normal component zNt,i and frictional
components z+t,i and z−t,i along the tangential direction of
the contact surface [11]. Each of the components of zt,i is
required to be non-negative.

Force and torque balance: We establish an integral equal-
ity constraint on the object’s force and torque balance. Force
balance requires that the force exerted by the manipulator
and the environment on the object matches the gravity force
of the object. Torque balance requires that the torque applied
to the object with respect to its center of mass to be zero.

Maximum violation oracle: A maximum-violation or-

Fig. 3: Left: start and goal pose of a pivoting task. Right: free-body diagram
of the object-robot-environment contact during the pivoting. [Best viewed
in color.]

(a) Mustard bottle (b) Polygon

Fig. 4: Pivoting trajectories for 2 objects solved by STOCS. The object
pose and the force trajectory of the contact between the object and the
manipulator are plotted for each time step. [Best viewed in color.]

acle is implemented to help STOCS instantiate contact
points that are part of an optimal solution. The implemen-
tation here chooses the union of the closest points y =
argminy∈Y g(qt, y) between the object and the environment
at each time step t on a trajectory q = [q0, . . . , qT] as the
index set. So Yk = ∪T

t=0 argminy∈Y g(qt, y).
Manipulation contact mode: The manipulation contact

mode cmnp is selected to be a sticking point contact with
the object in this work. However, the formulation can be
easily generalized to sliding contact mode.

IV. EXPERIMENTAL RESULTS

STOCS is verified on a pivoting problem [12] with com-
plex non-convex geometries, and the planned trajectories are
executed on a physical robot.

A. Experiment Setup

We implement our method in Python using the PYROBO-
COP framework [13], which uses the IPOPT solver for inner
optimizations [14]. All experiments were run on a single core
of a 3.6 GHz AMD Ryzen 7 processor with 64 GB RAM.
Parameters used in the experiments include: a) Physical
properties: Object mass m = 0.1 kg, environment friction
coefficient µenv = 0.3, manipulator friction coefficient
µenv = 0.7. b) Algorithm parameters: Nmax = 100,
Nmax

LS = 20, ϵx = ϵgap = ϵs = ϵp = 1e−4, T = 20,
dt = 0.1 s, and S = min(30 + 10 ∗ k, 200).

B. Results of Numerical Optimization

We run STOCS on the pivoting task and all the runs
successfully find an optimal solution. The experiment results
are shown in Table. 1, and some solved trajectories are shown
in Fig. 4.

Also, STOCS is compared with vanilla MPCC on the same
tasks, and vanilla MPCC includes all points on the object’s
boundary as potential contacts. The comparison results are
summarized in Table. 1. Note that some instantiated opti-
mization problems’ size are too large and result in an out of
memory error for MPCC. We observe that STOCS can be
around one to two orders of magnitude faster than MPCC,
and can solve problems that MPCC cannot solve due to
limitation of computational resources. STOCS selects only a
small amount of points from the total number of points in the
objects’ representation on average, which greatly decreases
the dimension of the instantiated optimization problem and
reduces solve time.

Object # Point T dt (s) STOCS MPCC

Time (s) Outer
Iterations

Ave Active
Contact Pts Time (s)

Bolt 93

20 0.1

451.2 11 5.92 3002.0
Box 104 47.6 8 2.00 6672.8
Peg 104 223.5 13 3.23 8573.1

Mustard 247 402.2 13 4.85 OoM
Polygon 268 483.6 14 3.80 OoM

TABLE I: Numerical optimization results of STOCS and MPCC on the
pivoting manipulation task. Number of points in the objects’s representation
(# Point), total time steps (T) and time step length (dt), solve time (Time),
outer loop iteration number (Outer Iterations), and average active index
points for each iteration are reported in the table. OoM means out of
memory.

For simple objects such as the box, the low number of con-
tact modes along the trajectory produces few active contact
points, which makes solving fast. For complex objects such
as the bolt and the mustard bottle, many changes of contacts
along the trajectory results in many active contact points,
which makes solving slower. For objects whose balance is
hard to maintain, such as the polygon, the optimization takes
more iterations to converge. (Note that pivoting the polygon
with a single finger is even difficult for human.)

C. Hardware Experiments

For hardware experiments, we use a Mitsubishi Electric
Assista industrial position-controller arm with a F/T sensor
mounted at the wrist of the robot. We use the default stiffness
controller of the robot and implement the computed force
trajectory by converting desired force into relative position
movement using the stiffness parameter of the controller.
All the optimized trajectories were successfully executed
on the robot, and one trajectory recorded during the robot
experiment are shown in Fig 1.

V. CONCLUSION AND FUTURE WORK

This paper presented STOCS, a contact-rich trajectory
optimizer that embeds active contact detection into a contact-
invariant trajectory optimization. We demonstrated that
STOCS can solve pivoting trajectories for complex geome-
tries both in simulation and on a real robot. Experiments
show that STOCS is orders of magnitude faster than stan-
dard optimization approaches particularly when the object is
represented by a large number of points.

Future work should investigate further speed gains by
incorporating warm starting techniques for the inner MPCC
solves. Currently, the STOCS solver uses the interior point
method IPOPT [15], and warm starting interior point al-
gorithms is generally challenging. Switching to sequential
quadratic programming (e.g., [16]) will allow us to explore
better warm start techniques. We also intend to investigate
other strategies to initialize the trajectory optimizer, such as
extracting an object’s trajectory and active contact set from
a demonstration video. Finally, we would like to implement
time-active contact sets and active contact deletion, which
would reduce the number of variables and complementarity
constraints even further. This is conceptually compatible with
our current implementation, but involves a great deal more
bookkeeping.

REFERENCES

[1] G. Schultz and K. Mombaur, “Modeling and optimal control of human-
like running,” IEEE/ASME Transactions on mechatronics, vol. 15,
no. 5, pp. 783–792, 2009.

[2] I. Mordatch, Z. Popović, and E. Todorov, “Contact-invariant opti-
mization for hand manipulation,” in Proceedings of the ACM SIG-
GRAPH/Eurographics symposium on computer animation, 2012, pp.
137–144.

[3] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions
on Graphics (TOG), vol. 31, no. 4, pp. 1–8, 2012.

[4] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” Int. J. Rob. Res., vol. 33,
no. 1, pp. 69–81, 2014.

[5] M. Zhang and K. Hauser, “Non-penetration iterative closest points for
single-view multi-object 6d pose estimation,” in 2022 International
Conference on Robotics and Automation (ICRA). IEEE, 2022, pp.
1520–1526.

[6] K. Hauser, “Semi-infinite programming for trajectory optimization
with non-convex obstacles,” The International Journal of Robotics
Research, vol. 40, no. 10-11, pp. 1106–1122, 2021.

[7] M. Zhang and K. Hauser, “Semi-infinite programming with comple-
mentarity constraints for pose optimization with pervasive contact,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2021, pp. 6329–6335.

[8] E. J. Anderson and A. B. Philpott, Infinite Programming: Proceedings
of an International Symposium on Infinite Dimensional Linear Pro-
gramming Churchill College, Cambridge, United Kingdom, September
7–10, 1984. Springer Science & Business Media, 2012, vol. 259.

[9] M. López and G. Still, “Semi-infinite programming,” European Jour-
nal of Operational Research, vol. 180, no. 2, pp. 491–518, 2007.

[10] R. Reemtsen and S. Görner, “Numerical methods for semi-infinite
programming: a survey,” in Semi-Infinite Programming. Springer,
1998, pp. 195–275.

[11] D. E. Stewart and J. C. Trinkle, “An implicit time-stepping scheme for
rigid body dynamics with inelastic collisions and coulomb friction,”
International Journal for Numerical Methods in Engineering, vol. 39,
no. 15, pp. 2673–2691, 1996.

[12] Y. Shirai, D. K. Jha, A. U. Raghunathan, and D. Romeres, “Robust
pivoting: Exploiting frictional stability using bilevel optimization,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 992–998.

[13] A. U. Raghunathan, D. K. Jha, and D. Romeres, “Pyrobocop: Python-
based robotic control & optimization package for manipulation and
collision avoidance,” arXiv preprint arXiv:2106.03220, 2021.

[14] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

[15] I. Dikin, “Iterative solution of problems of linear and quadratic
programming,” in Doklady Akademii Nauk, vol. 174, no. 4. Russian
Academy of Sciences, 1967, pp. 747–748.

[16] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm
for large-scale constrained optimization,” SIAM review, vol. 47, no. 1,
pp. 99–131, 2005.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2023-044.pdf
	page 2
	page 3
	page 4
	page 5

