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Abstract
Multi-objective optimization is frequently employed in electric motor design, where iterative
numerical simulations are required to evaluate a large number of design candidates. A trial-
and-error design methodology like this is very time-consuming. In this paper, we propose
learning-based surrogate models that use trained deep neural networks (NNs) to accomplish
the rapid evaluation of motor designs. A motor design candidate can be described with
either a list of geometrical parameters of the motor design, or a colored image of the motor
cross-section. Different deep learning models can be constructed with either parameter-based
input or image-based inputs. Our analysis reveals that deep convolutional neural networks
(CNNs) utilizing image-based inputs exhibit a higher degree of predictive accuracy for more
intricate responses, such as cogging torque, in comparison to models employing parameter-
based inputs, albeit at the cost of increased training time.
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Multi-objective optimization is frequently employed in electric motor design, where iterative numerical simulations are required
to evaluate a large number of design candidates. A trial-and-error design methodology like this is very time-consuming. In this
paper, we propose learning-based surrogate models that use trained deep neural networks (NNs) to accomplish the rapid evaluation
of motor designs. A motor design candidate can be described with either a list of geometrical parameters of the motor design, or
a colored image of the motor cross-section. Different deep learning models can be constructed with either parameter-based input
or image-based inputs. Our analysis reveals that deep convolutional neural networks (CNNs) utilizing image-based inputs exhibit
a higher degree of predictive accuracy for more intricate responses, such as cogging torque, in comparison to models employing
parameter-based inputs, albeit at the cost of increased training time.
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I. INTRODUCTION

MULTI-OBJECTIVE OPTIMIZATION (MOO) is often
used by motor designers to identify the best designs

considering different objectives such as higher torque genera-
tion, lower torque ripple and lower material cost. Evolutionary
algorithms such as genetic algorithm are often utilized to itera-
tively update the design parameters in the process, while finite-
element simulations are conducted to evaluate the performance
of each design candidate within the optimization loop [1]. The
present methodology is limited by its time-consuming nature,
with the primary bottleneck residing in the simulation phase.

Our intention is to make use of the robust machine learning
and deep learning models, which have witnessed a lot of
success in various fields, to facilitate such procedures and
improve the effectiveness of motor designs[2], [3], [4], [5]. We
investigate two different ways of describing the geometries of
motor design candidates, namely parameter-based and image-
based methods, and construct various machine learning and
deep learning surrogate models suitable for each input method,
and compare their performances in predicting multiple motor
responses. We show that feed-forward neural networks com-
bined with parameter-based input are easier to train, while deep
convolutional neural networks (CNNs) with image-based input
can achieve higher prediction accuracy for more complicated
responses.

II. DATASET GENERATION

A surface permanent magnet (SPM) motor design problem
is investigated in this paper. We first generate a dataset of SPM
motors with 10 poles and 12 slots, whose topology is shown
in Fig. 1. The dataset comprises 8916 different motor designs
created by sweeping 9 independent geometrical parameters
(among 18 parameters in total) as shown in Fig. 1. A quarter
of the cross-section can be used to fully describe the motor
design due to rotational symmetry. Therefore, we can use
either a vector of parameters or an RGB image of the cross-
section to describe one motor design, and feed them to machine

Fig. 1. Generated data structure of SPM motors, which consists of 9
independent parameters and 3 responses.

learning model for training and testing. The motor designs
are simulated in JMAG, a commercial finite-element analysis
(FEA) software, to compute the responses, which include the
Fourier components of induced voltage, the harmonic distortion
of the induced voltage and the Fourier components of the
cogging torque.

III. PARAMETER- AND IMAGE-BASED MACHINE
LEARNING MODELS

We first develop machine learning models using a vector of
9 geometrical parameters as input. A standard fully-connected
neural network (FCNN) with one input layer, one output layer,
and one hidden layer serves as our foundation, as depicted
in Fig. 2(a).Nine independent design parameters are supplied
from the input layer to the hidden layer via connections
between neurons. Then the data flow is coupled to a single
node in the output layer to get a prediction for the individual
responses after a tanh(·) activation. This simple model con-
figuration is comprised of a degree of freedom large enough
considering the small input and output dimensions. The root-
mean-square-error (RMSE) between the predicted responses
and the ground truth is calculated and minimized iteratively
during the training process.
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Fig. 2. Model structure with parameter-based input (a) and the prediction vs
ground truth plot (b).

The trained model is applied to new test data for prediction,
and the response plot is shown in Fig. 2(b). Overall the predic-
tion accuracy is excellent, while cogging torque prediction is
significantly worse. The difference can be understood by study-
ing the features of dataset with statistical methods. We calculate
the data correlation between all the response and parameter
pairs. The correlation matrix is shown in Fig. 3. The absolute
value of the data correlation is between 0 (not dependent) and
1 (linearly dependent), and the sign of the data correlation
indicate if the two variables are positively or negatively related.
From the figure, we can quantitatively analyze the dependence
of the responses on the design parameters. Cogging torque,
in particular, has a relatively weak dependence on the design
parameters, which makes it more challenging to predict with
machine learning models.

Fig. 3. The correlation matrix of the dataset between parameters and responses

In order to further improve the prediction accuracy, we build
models which are more capable of learning highly-nonlinear
functions. We first describe each motor design with an RGB
image, as shown in Fig. 1, which contains more information
of the motor design compared to the parameter-based method.
Deep networks built on CNNs have proven to be effective in
extracting features in such images. We build an image-based
model with customized ResNet [6] as illustrated in Fig. 4(a): an
ImageBlock is first used to process the image channels where
the weight of the pixel value is adjusted. Then, the data is
passed through the convolutional layers with ResNet blocks

TABLE I
ROOT-MEAN-SQUARE-ERROR OF THE RESPONSE PREDICTION

Response Parameter-based Model Image-based Model
induced voltage 0.0248± 0.0031 0.0596± 0.0062

harmonic distortion 0.1149± 0.0131 0.0994± 0.0063

cogging torque 0.5455± 0.0528 0.2392± 0.0100

The responses are normalized to Gaussian distribution p̃ = (p−µp)/σp before
computing the RMSE, where µp, σp are the mean and standard deviation of
responses in the training dataset. All models are trained 6 times to calculate
the statistics of RMSE.

which consist of two convolutional layers plus an identity
mapping. Finally, we reshape the output to vectors and apply
three additional fully-connected neural networks where the
output will be the responses. The response plot showing the
comparison between predicted responses and the ground-truth
is visualized in 4(b). The quantitative comparison of the RMSE
for the two types of models is shown in Table I.

Overall, the image-based model dramatically improves the
prediction accuracy for harmonic distortion and cogging
torque, which is ascribed to the enhanced nonlinearity from
CNNs. However, it also marginally reduces the accuracy of
induced voltage. The reason is that the image resolution
is nevertheless constrained by the number of pixels, which
prevents extremely high precision due to a certain information
loss.
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Fig. 4. Model structure with image-based input (a) and the prediction vs
ground truth plot (b).

IV. CONCLUDING REMARKS

In conclusion, we investigated learning-based surrogate
models for the rapid prediction of motor performances. We
constructed machine learning models with either geomet-
rical parameters or cross-section images as input. Though
parameter-based models are much simpler and faster to per-
form prediction, image-based models have the advantage of
better accuracy in predicting highly nonlinear responses. The
trained surrogate models can greatly speed up the subsequent
design optimization process by replacing the computationally
expensive finite-element simulations.
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