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Abstract
Electric machine design optimization tasks typically require a large number of time-consuming
simulations using finite-element analysis (FEA) to iteratively evaluate the design candidates.
Various surrogate modeling techniques have been investigated in order to speed up the design
optimization process. In recent years, machine learning based surrogate models are explored,
due to their advantages including extraordinary capability in learning highly nonlinear func-
tions. However, typical neural network based machine learning models require a large amount
of training data and long training time. In this paper, we propose a multi-objective opti-
mization (MOO) scheme for electric machine design, using a physics-assisted neural network
(PANN) as surrogate model. In the PANN method, a semi-analytical subdomain physics
model is used to estimate the performance of the electric machine, and this calculated result
is used as the input of a neural network, in addition to other design parameters. We show that
PANN can achieve the same accuracy with significantly less training data, as compared with
neural networks relying solely on data. The hybrid model also shows improved accuracy with
the subdomain based physics model alone. We apply the PANN surrogate model to speed up
the electric machine MOO by replacing the iterative FEA based optimization process. The
Pareto front solutions obtained by the proposed method are further validated with FEA with
good accuracy.
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Abstract—Electric machine design optimization tasks typically
require a large number of time-consuming simulations using
finite-element analysis (FEA) to iteratively evaluate the design
candidates. Various surrogate modeling techniques have been
investigated in order to speed up the design optimization process.
In recent years, machine learning based surrogate models are
explored, due to their advantages including extraordinary ca-
pability in learning highly nonlinear functions. However, typical
neural network based machine learning models require a large
amount of training data and long training time. In this paper, we
propose a multi-objective optimization (MOO) scheme for electric
machine design, using a physics-assisted neural network (PANN)
as surrogate model. In the PANN method, a semi-analytical
subdomain physics model is used to estimate the performance of
the electric machine, and this calculated result is used as the input
of a neural network, in addition to other design parameters. We
show that PANN can achieve the same accuracy with significantly
less training data, as compared with neural networks relying
solely on data. The hybrid model also shows improved accuracy
with the subdomain based physics model alone. We apply the
PANN surrogate model to speed up the electric machine MOO
by replacing the iterative FEA based optimization process. The
Pareto front solutions obtained by the proposed method are
further validated with FEA with good accuracy.

Index Terms—permanent magnet motor, design optimization,
analytical model, machine learning, neural network

I. INTRODUCTION

Motor design [1] task can often be described as multi-
objective optimization (MOO) problems due to the trade-
off between different design requirements. Motor design pa-
rameters are updated using heuristic optimization algorithms
during the process, while each design candidate is evalu-
ated with time-consuming numerical simulations, with finite-
element method dominantly used. A large number of iterations
is necessary to explore the large design space of electric
machines.

Various methods have been proposed to speed up the time-
consuming process. Numerous surrogate modeling techniques
have been proposed and evaluated to assist the motor design

optimization problem, which aim to approximate the motor
performance with computationally-cheaper surrogate models.
Magnetic equivalent circuit [2], polynomial response surfaces
[3] and kriging method [4] are some examples of popular
surrogate modeling techniques. The number of finite-element
simulations required can be greatly reduced with surrogate
modeling approach, and the optimization task can be com-
pleted with less time as a result. However, some of the
motor performances are highly nonlinear and challenging to
be estimated accurately with conventional surrogate modeling
techniques. In recent years, machine learning techniques based
on artificial neural networks (NNs) have found great success
in various applications from computer vision to scientific
computing. One of their advantages is the powerful capability
in estimating highly nonlinear functions. Therefore, machine
learning models have been explored for electric machine
design optimization problems as well [5]–[7]. A vector of
geometrical parameters or the cross-section image of a motor
design is fed into the machine learning model as input, which
gives prediction to desired performance metrics as output
almost instantaneously. Machine learning and deep learning
techniques such as convolutional neural networks (CNNs) have
been applied for the prediction of various motor performances,
such as torque generation [5] and nonlinear flux maps [8]–[10],
and showed superior accuracy. However, one main drawback
with these purely data-driven models is the large amount
of training data required to achieve the desired accuracy. In
practice, these data are often not readily available.

To address this problem, we propose motor design op-
timization scheme with a hybrid surrogate method, which
combines physical model with neural network. We implement
the method and apply it to the prediction of torque waveform
and torque ripple of a surface-mount permanent magnet motor.
The accurate estimation of the torque ripple is challenging for
surrogate models, as the torque waveform is highly nonlinear
and very sensitive to the slight changes in motor design



parameters. Physics-based analytical models also suffer in the
accuracy of torque waveform, due to the simplifications in
motor geometry and material properties needed. We show
that our physics-assited neural network (PANN) model can
achieve good prediction accuracy in torque ripple with a
smaller training dataset as compared with purely data-driven
NN, which will be called NN for simplicity in the following
of the paper. The achieved accuracy also easily outperforms
analytical physical models.

After establishing the surrogate model, we apply it for the
multi-objective optimization of a surface-mount permanent
magnet motor, aiming to maximize the average torque while
minimizing the torque ripple. We show that the overall design
time can be reduced compared with conventional optimization
using iterative finite-element analysis (FEA). The actual per-
formance of the obtained Pareto front designs using PANN
model, as validated by FEA, also outperforms most designs
obtained with purely data-driven NN surrogate model.

The rest of the paper is arranged as follows. In Section II,
we describe the settings of multi-objective optimization task
for a surface-mount permanent magnet motor. In Section III,
we give detailed description for each step of the proposed
motor design optimization work flow, including the physical
model based on semi-analytical subdomain method, the pro-
posed physics-assisted neural network model, and the multi-
objective optimization process. In Section IV, we implement
the proposed method, present and discuss the results, including
the accuracy of the surrogate models, and the effectiveness
of the multi-objective optimization process. In Section V, we
conclude the paper.

II. PROBLEM SETTING

In this work, we investigate the design optimization of
a surface-mounted permanent magnet (SPM) motor with 10
poles and 12 slots. A schematic drawing of the design template
is shown in Fig. 1, with a total of 9 geometrical parameters
subject to optimization. All other dimensions, such as the outer
diameter of the stator and axial length of the motor, are fixed.
The air gap between rotor and stator is fixed as 0.5 mm. The
number of winding turns and the coil current is set to be 10
turns and 15 Arms, respectively.

FEA simulations are conducted in order to construct the
dataset for machine learning purposes. Firstly, design candi-
dates are generated by randomly varying individual 9 design
parameters. Then infeasible designs are removed, based on the
following geometrical constraints:

x5 ≥ x6. (1)
(x1 − 0.5− x7) sin(π/10) > x8. (2)

The first constraint (1) works to avoid the concave shape
of the tooth shoe. The second constraint (2) works to avoid
overlapping of neighboring magnets. For feasible designs,
magnetic simulations are conducted to calculate the generated
torque at each rotor position. A total of 21 rotor angular
positions are simulated over 1/6 electric cycle for each design,
and the on-load torque waveform is obtained.

Fig. 1. A schematic for the design parameters for SPM motor

TABLE I
LIST OF DESIGN PARAMETERS.

x1 Rotor inner radius
x2 Tooth width
x3 Back yoke width
x4 Slot opening
x5 Tooth shoe height 1
x6 Tooth shoe height 2
x7 Magnet height at the center
x8 Magnet width
x9 Magnet curvature radius

In order to apply to neural networks, the torque waveform
obtained by FEA are transformed to the Fourier series as
follows:

τ(θ) = τ0+τ1 cos 6θ+τ2 sin 6θ+τ3 cos 12θ+τ4 sin 12θ, (3)

where θ is the electric angle, τ0 is the average torque and τ1,
τ2, τ3, and τ4 are the amplitude of 6th and 12th harmonics of
the waveform.

Since we consider 10 poles and 12 slots SPM motor in this
study, the cogging torque caused by the interaction between
rotor magnets and stator slots has the 12th harmonic and its
multiplier frequencies. On the other hand, at on-load condition,
the torque ripple is generated by the interaction between
magnet flux and coil current, and has the 6th and its multiplier
harmonics. Hence, we need to pay attention to the average
torque and the 6n-th harmonics of the torque waveform. Here
we focus only on the 6th and 12th harmonics, because the
magnitude of the 18th and higher harmonics is relatively small
and can be ignored in calculating the peak-to-peak value of
torque waveform. Eventually we obtain 5 labels τ0, τ1, · · · , τ4
and each of them is used as the output of the neural networks.

A total of 8900 motor designs are generated and simulated.
After that, they are divided into 7180 training data candidates
and 1720 test data. Training data are randomly picked up
from the training data candidates, where the number of chosen
training data is varied from 100 to 7120 in order to investigate
the training data size dependence of the proposed method, as
shown in the results section.

III. THE PROPOSED OPTIMIZATION METHOD

In this section, we first describe the semi-analytical subdo-
main model used to estimate the SPM motor torque waveform



Fig. 2. The simplified subdomains of a SPM motor.

and assist the machine learning surrogate model; we then lay
out the model structures for the proposed PANN model and
compare it with conventional NN model; finally we formulate
the MOO problem and describe the optimization process.

A. Semi-analytical subdomain model

For motor design, various analytical models have been
proposed for the rapid calculation of magnetic fields and
electromagnetic performances of the motor. In this work, we
use a semi-analytical subdomain method based model for
the torque waveform calculation of the SPM motor [11]–
[15], which will be used as an initial estimate of the motor
performance for the machine learning study.

The subdomain method solves for the governing equation of
magnetic vector potential in the framework of magnetostatic
approximation of Maxwell’s equations. A few simplifications
are made in order to obtain analytical solutions. First, the end
effect in the axial direction is neglected and the problem is
described in 2D. Then the 2D motor geometry is slightly sim-
plified and divided into several sectors, so-called subdomain,
so that each subdomain becomes a rectangular shapes in the
polar (r-θ) coordinate, as shown in Fig. 2. The governing
equation of the magnetic field is

∆A = −µ0J − µ0∇×M , (4)

where A, J and M is the magnetic vector potential, current
density and the magnetization, respectively. J and M has
non-zero value only in the coil and magnet subdomains,
respectively. In the two-dimensional case, A has only one
element along z direction and the general solution of (4) for
each sector can be analytically derived.

For the magnet domains (Region I), the general solution is
written as:
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where the integer n represents the harmonic order of the
Fourier series, and Wn represents the contribution from the
PM magnetization.

For the air gap (Region II), the solution is expressed as:
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where r2 and r3 represents the inner and outer radius of the
air gap, respectively.

Similarly, for the slot-opening (Region III) and the coil
(Region IV ) domains, the solutions are in the following forms:
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where r3, r4, and r5 represents the inner and outer radius of
each region (III , IV ), i represents the i-th slot-opening/coil,
α and β represents the starting angular position of the slot-
opening and coil domains, kIIIv = vπ/a and kIVv = vπ/b,
and a and b is the angular width of the slot-opening and coil,
respectively.

Magnetic flux density is computed by the rotation of the
vector potential, as follows.

Br =
1

r

∂Az

∂θ
, Bθ = −∂Az

∂r
. (9)

Coefficients in equations (5), (6), and (7) can then be
determined by considering the boundary conditions. According
to Maxwell’s equation, the magnetic field on the boundary
between subdomain i and j follows:

Bi
⊥ = Bj

⊥, Hi
∥ = Hj

∥ , (10)

where Bi
⊥ and Bj

⊥ is the magnetic flux density component
perpendicular to the boundary, Hi

∥ and Hj
∥ is the magnetic field

component parallel to the boundary, respectively. By solving
all the boundary conditions for all the set of neighboring sub-
domains, the magnetic vector potential in the whole calculation
domain is fully determined.

The torque generted from the rotor is computed based on
Maxwell’s stress tensor, as

τ =
r2gls

µ0

∫ 2π

0

Br(rg, θ)Bθ(rg, θ)dθ, (11)

where rg and ls is the air-gap radius and the motor axial length,
respectively. More details of subdomain method are described
in the prior works [11]–[15].



In setting up the problem, in addition to the slight defor-
mations of subdomains, we have also assumed that the iron
permeability is infinity. That makes the boundary condition
between the air and the iron much simpler, as H∥ = 0.
However, this assumption causes error in the torque calculation
because the actual permeability of the iron, in particular
at the tooth shoe, can be much lower and varies with the
rotational angle of the rotor, depending on the nonlinear B-
H relationship of the core material. While it is in principle
possible to consider finite-permeability in different core do-
mains under the subdomain framework [15], the modeling
process will unavoidably get more complicated, and iterative
solvers are needed to calculate nonlinear effect; in addition,
the error caused by geometrical modifications in defining
the subdomains still remains. We therefore keep the infinite
permeability assumption, and apply the calculation results
from the subdomain method to the physics-assisted neural
network model in the next step.

B. Physics-Assisted Neural Network Model

For machine learning based surrogate models, feed-forward
neural networks are constructed. The surrogate modeling pro-
cess is shown in Fig. 3. In a conventional NN-based surrogate
model, the design parameters defined in Fig. 1 are directly
treated as input to the NN, and the motor performance of
our interest, namely the torque waveform Fourier coefficients
τ0, τ1, · · · , τ4 defined in (3), is output, as shown in Fig. 3 (a).
The NN has an input layer, a hidden layer, and an output
layer: The input layer has 9 nodes corresponding to each
input parameter, the output layer has one node for one of the
coefficients, and the hidden layer has 100 nodes. The Sigmoid
function is used for the activation function.

In our proposed PANN model, on the other hand, as
illustrated in Fig. 3 (b), the coefficient τk is initially estimated
from the torque waveform obtained by the subdomain model
described in the previous subsection, and this initial estimation
is also used as input for the NN, in addition to the original
design parameters. More specifically, for each motor design
defined by the input parameters, the torque output is computed
analytically with the subdomain model for each rotor position
over a full electric cycle, the obtained time-domain torque
waveform is transformed to the Fourier series as described
in equation (3). The 5 desired Fourier series components
calculated from the analytical model are added to the input
of the PANN model for the subsequent training and testing
process. As a result of this modification, the input layer
dimension of the PANN model is increased from 9 to 10.

The same set of training data is used to train both NN and
PANN models, and their prediction accuracies are evaluated
using the same set of test data. The prediction accuracy of
the trained model is evaluated by the root-mean-square error
(RMSE) over the test dataset, which is defined as

RMSEtest =

√√√√ 1

ntest

ntest∑
i=1

(yi − ŷi)2, (12)

Fig. 3. The flowcharts of the process for (a) NN (b) PANN.

where ntest is the number of test data, ŷi and yi are the pre-
diction of the surrogate model and the ground truth obtained
by FEA for the i-th test data, respectively.

Training data of different sizes are prepared from the
dataset, and used to train both NN and PANN models, in order
to evaluate their performances with different training data size.

C. Multi-Objective Optimization Process

Multi-objective optimization (MOO) is then performed
based on genetic algorithm (GA), where the trained surrogate
models are used to estimate motor performances instead of
FEA simulations for each iteration. In this study, we set two
objective functions for the design optimization of SPM motor
to maximize the average torque and minimize the peak-to-peak
torque ripple:

Minimize f1 = −τ0, (13)
Minimize f2 = τmax − τmin, (14)

where τ0 is the average torque generation over one electric
cycle, τmax and τmin are the maximum and minimum value
of the torque waveform, respectively. These two are typical
and common requirements for a lot of motor applications in
the industry.

Due to the trade-off between average torque and torque
ripple, no single solution can be obtained to minimize both
objective functions; instead, a set of Pareto solutions are
obtained. NSGA-II [16] is used to perform the MOO task. The
number of generations and the population size per generation
is set to be 20 and 100, respectively.

To estimate the two objective functions, five NNs or
five PANNs are trained individually, corresponding to the
five Fourier series coefficients of the torque waveform
τ0, τ1, · · · , τ4 in (3), as shown in Fig. 4. The torque waveform
is reconstructed from these coefficients, and then the objective
function f2, peak-to-peak amplitude of the torque ripple, is
estimated.

For our study, both surrogate models with NN and PANN
are used for the MOO task to obtain the Pareto frontier, and
the actual performances of the obtained Pareto solutions are
further evaluated with FEA simulations in order to evaluate
the accuracy and effectiveness of the proposed optimization
process.



Fig. 4. The flowchart of objective function estimation using surrogate models.

IV. RESULTS AND DISCUSSIONS

After establishing the design optimization workflow, we
implement the method, and present the results in this section.

A. Surrogate Model Accuracy

We first train and test the accuracy of the two types of
surrogate models: NN and PANN. Since the training process
of machine learning models depends on the initial state of the
network, 10 independent tests are carried out with the same set
of training and test data, and the mean and standard deviation
of the RMSE over the 10 tests are calculated.

The prediction accuracy on test data for the objective
functions f1 and f2 with the trained surrogate models, obtained
with the same training data size of 500, is shown in Fig. 5 (a)
and (b), respectively, together with the result of the subdomain
method based analytical model. In Fig. 5 (a) for f1, both NN
and PANN models show much smaller RMSEs than that of
the subdomain model. On the other hand, in Fig. 5 (b) for f2,
the PANN model gives the smallest mean value of RMSE, as
well as reduced deviation as compared with NN model.

From the results, we can see that when the physical model
accuracy is low compared with purely data-driven NN predic-
tion, it will not bring any benefits in improving the accuracy of
PANN model, as in the case of Fig. 5 (a). On the other hand,
when the physical model has comparable accuracy as the NN
prediction, it will help improve the prediction accuracy of the
proposed PANN model, as shown in Fig. 5 (b).

Fig. 5 (c) and (d) shows the relationship between training
data size and prediction accuracy for the objective functions f1
and f2, respectively. In Fig. 5 (d), the RMSE values of f2 with
the proposed method are smaller than those of the NN when
the number of training data is 500 or less and the accuracy of
NN model is insufficient compared to the subdomain model.
When the training data is sufficiently large (1000 or more),
NN models are enough accurate and no significant difference
between NN and PANN is observed. On the other hand, in Fig.
5 (c), the differences between NN and PANN are minimal for
all training data sizes, since NN models have enough accuracy
even with small training data. From these results, we conclude
that the proposed method is especially effective when the
training data is small and , and the objective function involves
complicated nonlinear phenomena such as torque ripple.

B. Multi-objective Optimization

MOO tests with the three surrogate models, namely subdo-
main, NN and PANN, are conducted to minimize the objective
functions f1 and f2. Both NN and PANN are trained with 500
training data, to show the ability of PANN to assist the learning
process on relatively smaller dataset. Optimization results,
including the Pareto solutions from the surrogate models, and
their actual performances as validated by FEA, are shown in
Fig. 6.

The Pareto solutions obtained by using subdomain method
is shown in Fig. 6 (a). Both objective functions estimated by
the surrogate model (with green + markers) and validated by
FEA (with green ◁ markers) are plotted on the same graph,
together with the Pareto solutions obtained by fully FEA-
based GA (black dashed line), which is assumed to be the
“ground truth”. In this graph, the performances of the motor
designs estimated by the surrogate model have relatively large
discrepancies from FEA validations, and the Pareto solutions
identified by the MOO with subdomain surrogate are generally
worse than those obtained from FEA based MOO.

Fig. 6 (b) shows the MOO result with NN surrogate model.
Compared to the case with subdomain method, the motor
performances estimated by NN surrogate model are closer
to the “ground truth” Pareto frontier. However, there are
still large errors between surrogate estimations (with blue
× markers) and FEA validations (with blue □ markers) in
some of obtained Pareto solutions, especially for torque ripple
performances.

Fig. 6 (c) shows the Pareto solutions obtained by using the
proposed PANN model. The surrogate model estimations are
close to the “ground truth” Pareto frontier, as similar to the
case of NN surrogate based optimization. The errors between
PANN surrogate estimations (with red + markers) and FEA
validations (with red ⃝ markers) are much smaller than those
with NN surrogate model. Direct comparison between the
obtained Pareto solutions with NN and with PANN, both
validated by FEA, are shown in Fig. 6 (d). It is obvious that
the motor performances of almost all solutions with PANN
lie close to the “ground truth” Pareto frontier, while the actual
performance of some solutions obtained with NN based MOO
are far from the “ground truth” Pareto frontier.

The errors between surrogate estimation and FEA validation
for the obtained Pareto solutions are further quantified and
summarized in Table II. For the objective function f1, average
torque, the errors of solutions obtained with both NN and
PANN are in order of 10−2 or less, which is much smaller
than that with subdomain model, and negligibe compared with
the actual average torque values of Pareto solutions, which
range between 2.6 and 3.1 N·m. On the other hand, for the
objective function f2, torque ripple, the accuracy of solutions
obtained from PANN is significantly improved compared with
that from NN, as well as subdomain model. In particular, the
maximum errors of solutions from NN and subdomain model
are almost 4 times larger than that of solutions from PANN.
This fact implies that physics assistance can avoid large errors



Fig. 5. The RMS errors of (a) f1 and (b) f2, with subdomain-bassed analytical model, and surrogate models with NN and PANN, both trained with 500
training data. RMSE of (c) f1 and (d) f2, as a function of training data size for the two surrogate models. Error bars show standard deviation based on 10
independent tests.

in the NN based surrogate model estimation, which leads to
much improved accuracy in the Pareto frontier prediction in
MOO tasks. From these results, we conclude that the proposed
PANN method is most effective when the NN model and sub-
domain model have comparable accuracy. On the other hand,
if subdomain model has insufficient accuracy, PANN model
does not provide significantly accurate prediction compared
with NN model.

Generally speaking, the purpose of applying data-driven sur-
rogate models is to shorten the computational time for design
optimization, while the time-consuming tasks of training data
preparation is conducted before starting the optimization. The
proposed method with PANN surrogate model can further
reduce the data preparation time, while keeping both com-
putational speed and prediction accuracy advantages in the
design optimization process. We consider this benefit of the
proposed method to be much larger if more time-consuming
computations are required for the training data preparation,
for example, for design tasks with 3D FEA or high-frequency
iron loss calculations, or dealing with high-dimensional input
parameter space where much larger dataset is needed.

V. CONCLUSION

In this paper, we presented a PANN surrogate model as
a hybrid of physics-based analytical model and data-driven
machine learning, and applied it for the multi-objective opti-
mization of electric motors for reduced calculation time. We
showed that the proposed method can achieve good accuracy
for SPM motor torque ripple prediction, compared with purely
data-driven NN, especially when training data size is small.

TABLE II
COMPARISON OF PREDICTION ERROR OF PARETO SOLUTIONS WITH NN

AND PANN, VALIDATED WITH FEA SIMULATIONS.

Subdomain NN PANN

Number of Pareto solutions 22 18 18

f1: Average torque
Max error [N·m] 0.596 0.028 0.016
Min error [N·m] 0.009 0.000 0.000
RMS error [N·m] 0.391 0.014 0.008

f2: Torque ripple
Max error [N·m] 0.150 0.165 0.040
Min error [N·m] 0.004 0.006 0.006
RMS error [N·m] 0.071 0.072 0.028

We established a MOO design process with the PANN model,
which is shown to be effective in identifying motor design
candidates without FEA, and accurate in predicting Pareto
frontier solutions.
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