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Abstract
We propose a new device optimization framework based on Bayesian optimization for effi-
cient latent sampling of adversarial generative neural networks to expedite a complex inverse
design of tunable nanophotonic wavelength splitters. Our design, at broadband telecomm-
wavelengths, is electrically switchable via liquid crystal tuning.
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Abstract: We propose a new device optimization framework based on Bayesian opti-
mization for efficient latent sampling of adversarial generative neural networks to expe-
dite a complex inverse design of tunable nanophotonic wavelength splitters. Our design, at
broadband telecomm-wavelengths, is electrically switchable via liquid crystal tuning. ©
2022 The Author(s)

1. Introduction

In recent years, generative deep neural networks (DNN) such as generative adversarial network (GAN) and varia-
tional autoencoder (VAE) have been successfully applied to time-efficient inverse design of photonic devices [1,2].
Generative DNN models typically use random numbers as latent variables to generate multiple devices with the
expectation that some of them give very good performance [2, 3]. In this paper, we introduce Bayesian optimiza-
tion (BO) [4, 5] for efficient latent sampling of generative DNNs. In order to compensate for the mismatch from
the desired spectrum, we use BO for sampling target spectrum values besides the latent variables, unlike a typi-
cal BO-based latent space optimization [7, 8]. We demonstrate that the BO-assisted nACVAE can accelerate the
optimization trials, realizing an extinction ratio greater than 14.5 dB.

2. LC-Tunable Wavelength splitter

Our target device structure is based on a compact on-chip wavelength de-multiplexer which is electrically tunable
with a liquid crystal (LC) over nanophotonic circuits, such that the outputs are swapped when the LC is on [6].
Fig. 1 shows a cross-sectional view of the tunable photonic device. We use silicon nitride waveguide core on
insulator covered with LC. Using the adjoint method [9] provided by Lumerical, we first generate several good
device structures given different target responses of the dual-state wavelength splitter. We tried to maximize the
extinction ratio of the splitter at two wavelength λ1 and λ2, depending on the LC condition of either ON (e-axis
along out-of-plane direction) or OFF (e-axis perpendicular to the input waveguide). Fig. 2(a) shows an example
device topology optimized for λ̄ = (λ1 +λ2)/2 = 1517 nm and ∆λ = |λ1 −λ2|= 47 nm, and the resulting device
response is shown in Fig. 2(b).

3. DNN Model and Design Method

The goal of the inverse design in this device is to generate a useful device topology (denoted as T ), given a desired
transmission spectra (denoted as S), however, the users may not know or care about the entire spectral response.
The users’ demand would be in the form of partial information of the spectra (denoted as S′), such as transmission
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Fig. 1: Cross-sectional view of
LC tunable photonic devices. Fig. 2: (a) device topology (black: silicon nitride, pink: LC, dashed box: opti-

mization area) and (b) transmission spectra of an example device generated by
DNN, optimized for high ER at λ1 and λ2.
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Fig. 3: Nested ACVAE ar-
chitecture [6].
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Fig. 4: ER performance while exploring latent space of nested ACVAE by GP-BO
and conventional sampling.

levels at specific wavelengths S′ = [λ̄ ,∆λ ,ER]. The ‘Nested ACVAE’ [6] model assumes a step-by-step statistical
dependence from S′ to S and to T .

The DNN training dataset was prepared by starting from the center (λ̄ = 1550 nm and a fixed separation
∆λ = 45 nm), and use them as the initial condition for the neighboring grid points. This ensure smoothness in T
across varying S′ within a series of such cascades. The adjoint optimization produces many (∼100) intermediate
sub-optimal results en route to the final optimal design.

4. BO-assisted nested ACVAE and Results

The original nested ACVAE design method uses a random Gaussian sampling in latent variables. To accelerate the
exploration, we propose to use Bayesian optimization (BO), which has shown potential for global optimization
of blackbox functions in a sample-efficient manner [4]. BO requires designing two components: a probabilistic
map from the latent variables to the figure of merit, and an acquisition function that guides the selection of the
next optimizer candidate given the available data points. Classically, BO methods leverage Gaussian process (GP)
regression for the task of providing a probabilistic map, while it scales cubically with the number of available
data points and the dimension [5]. In this paper, we use GP-BO to optimize the latent variables of nACVAE,
specifically z1 and z2, instead of standard Gaussian sampling. Furthermore, we optimize the target values of (λ̄ ,
∆λ , ER) in addition to the latent variables so that we can compensate for the misalignment issue. We use an
expected improvement (EI) as an acquisition function for GP-BO.

We consider 4 dimensions for the latent space of z1 and z2, and 3 additional dimensions for target values for λ̄ ,
∆λ , and ER. The GP-BO explores spaces at more hopeful regions by analyzing the landscape and prediction uncer-
tainty. Fig. 4 shows the optimization trajectory. We first generated 20 random sample devices for training GP-BO,
and latent space exploration was caried out by GP-BO on the fly to validate the performance with 3-dimensional
finite-difference time-domain (FDTD) simulations. It is verified that the BO can significantly outperform the con-
ventional random sampling. To design one device using the adjoint method takes about 1.5 day using a computing
cluster. Even though it takes 4 hours to train the DNN model, to generate and validate the 410 devices takes about
9 hours. This shows that DNN has the potential to cover the whole target parameter space in a short time, without
using the adjoint method to design each device individually.

5. Summary

We demonstrated that BO-assisted DNN sampling technique can accelerate an inverse design of tunable nanopho-
tonic wavelength splitters. Specifically, the nested ACVAE model found in AutoBayes showed superior perfor-
mance when latent variables are sampled by GP-BO, achieving an extinction ratio of about 14.5 dB over wide
wavelengths in a small varidation iterations.
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