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Abstract
Holographic-type communication, i.e., three- dimensional (3D) content delivery, will be a
crucial application for modern wireless and mobile networks. In this paper, we propose a novel
soft delivery scheme to realize efficient 3D content delivery. Specifically, the proposed scheme
sends a single 2D image over error-prone wireless channels using discrete cosine transform
followed by near-analog modulation. At the receiver, a 2D-to-3D decoder based on graph
neural networks (GNN) reconstructs the corresponding 3D point cloud and mesh from the
received 2D image. We verify that the proposed soft 2D-to-3D delivery scheme can reconstruct
clean 3D data gracefully from the soft-delivered 2D image even in the presence of fading
and noise distortion. In addition, the proposed scheme can generate higher-quality 3D data
compared with direct 3D content delivery schemes.
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Abstract—Holographic-type communication, i.e., three-
dimensional (3D) content delivery, will be a crucial application
for modern wireless and mobile networks. In this paper, we
propose a novel soft delivery scheme to realize efficient 3D
content delivery. Specifically, the proposed scheme sends a single
2D image over error-prone wireless channels using discrete
cosine transform followed by near-analog modulation. At the
receiver, a 2D-to-3D decoder based on graph neural networks
(GNN) reconstructs the corresponding 3D point cloud and
mesh from the received 2D image. We verify that the proposed
soft 2D-to-3D delivery scheme can reconstruct clean 3D data
gracefully from the soft-delivered 2D image even in the presence
of fading and noise distortion. In addition, the proposed scheme
can generate higher-quality 3D data compared with direct 3D
content delivery schemes.

Index Terms—3D mesh, deep graph neural network (GNN)

I. INTRODUCTION

Recent advances in wide-band wireless technology, such
as the fifth-generation (5G) networks, have inspired many
emerging applications. Holographic-type communication [1],
[2], i.e., three-dimensional (3D) content delivery, is a crucial
application for the next generation of wireless and mobile
networks to provide highly immersive experiences for users
through extended reality (XR) and holographic devices [3],
[4].

There are two main representations to display the 3D con-
tent on XR devices: point cloud and mesh formats [5]. A point
cloud consists of many points in the 3D space. Each point
typically has 3D coordinates, and color attributes to represent
the shape and color patterns of the 3D content. A mesh utilizes
faces and textures to represent the shape and color patterns. A
key challenge in 3D content delivery over wireless channels
is efficiently sending high-quality 3D content within a limited
bandwidth. Some compression methods [6]–[9] have been
proposed for both point cloud and mesh to deliver the 3D
data under the bandwidth constraint. Typically, uniform/non-
uniform quantization with an arithmetic code is used to
compress the 3D content into a bitstream.

However, the compressed bitstream is easily affected by
fading fluctuation of wireless channels since the arithmetic
coding for entropy coding has all-or-nothing behavior. Al-
though channel coding is usually used for the bitstream to
tackle the issues of fluctuation, it also has all-or-nothing
behavior. When the channel signal-to-noise ratio (SNR) falls
below a certain threshold, bit errors will cause fatal distortion
on the reconstructed 3D data [10], [11].

To solve the abovementioned issues, the existing studies
designed soft delivery [13]–[16] for directly sending the
3D content via wireless channels. HoloCast [17]–[19] and
HoloCast+ [20] are pioneer works on soft 3D point cloud
delivery for unstable wireless channels. The key idea of both
schemes is to adopt near-analog modulation, i.e., mapping the
transformed coefficients onto the transmission symbols, for
the 3D content delivery. It enables graceful 3D reconstruction
according to the wireless channel quality, without sudden
quality degradation.

This study proposes an alternative soft delivery scheme for
3D content, i.e., 2D-to-3D soft delivery, to realize a better
solution for holographic-type communication. Specifically, the
transmitter only sends a single 2D image in an analog manner,
and the receiver reconstructs the corresponding 3D data of the
point cloud and meshes from the received 2D image. To this
end, the receiver uses convolutional neural networks (CNN)
and graph convolutional neural networks (GCNN) for the 2D-
to-3D reconstruction. The CNN and GCNN are suited for
regular-structured 2D pixels and irregular-structured 3D point
cloud signals, respectively [12], [21].

There are three major advantages for our 2D-to-3D content
delivery compared with direct 3D content delivery. Firstly, the
user can reconstruct clean 3D data even with deep fading and
severe noise in 2D image delivery. Secondly, a decorrelation
in the 2D image delivery benefits the reconstruction quality
of the 3D content. Lastly, 2D-to-3D delivery can significantly
reduce the data size. The existing works [12], [21] consider
the 2D-to-3D reconstruction from an error-free 2D image, i.e.,
content delivery over wired networks.

Our contribution is three-fold as follows:
• we demonstrate that the proposed scheme can compensate

for wireless channel distortion;
• we show that the trained model in the proposed scheme is

resilient to channel fluctuation and bandwidth variations
between training and testing, and

• we verify that the proposed 2D-to-3D content delivery
can outperform the existing 3D content delivery.

II. PROPOSED 2D-TO-3D SOFT DELIVERY

Fig. 1 shows the overview of the proposed soft 2D-to-
3D content delivery scheme, which consists of a 2D image
encoder, 2D image decoder, and 2D-to-3D decoder. The 2D
image encoder takes 2D-discrete cosine transform (2D-DCT)



Fig. 1. End-to-end soft 2D-to-3D content delivery systems for immersive applications.

Fig. 2. Network architecture of our 2D-to-3D decoder based on
pixel2mesh [12].

to transform the 2D image into the corresponding DCT coeffi-
cients. The encoder assigns a transmission power to map each
DCT coefficient onto a transmission symbol. A channel fading
with an additive noise impairs the transmission symbols during
wireless transmission. The impaired DCT coefficients are
denoised by a minimum mean-square error (MMSE) filter and
transformed into the pixel-domain by inverse 2D-DCT (2D-
IDCT). The reconstructed 2D image is finally fed into the
2D-to-3D decoder to obtain the 3D point cloud and mesh.

A. 2D Image Encoder

The 2D image encoder performs the 2D-DCT operation on
the original 2D image to obtain the DCT coefficients. Each
DCT coefficient is scaled before the near-analog modulation
to achieve higher reconstruction quality of the 2D image.

Let xi denote the ith analog-modulated symbol in either
I (in-phase) or Q (quadrature) components. Each analog-
modulated symbol is amplified by a scale factor gi for noise
reduction as: xi = gi · si, where si is the ith DCT coefficient.

The encoder performs a near-optimal power control by
adjusting gi for each DCT coefficient. We consider the best gi
is obtained by minimizing the MSE under the power constraint
with a total power budget P . For this case, the near-optimal
solution is expressed as:

gi = λ
−1/4
i

√
P∑
j

√
λj
, (1)

where λi = s2i is the power of the ith DCT coefficient.

B. 2D Image Decoder

After transmission over the wireless channels, each symbol
obtained at the receiver can be modeled as: yi = hixi + ni,
where yi is the ith received symbol, hi is the channel gain, and
ni is an effective noise having a variance of σ2. The receiver

extracts DCT coefficients from I and Q components, using the
MMSE filter [22] as follows:

ŝi =
higiλi

h2i g
2
i λi + σ2

· yi. (2)

The original 2D image is reconstructed by taking 2D-IDCT
for the filter output ŝi.

C. 2D-to-3D Decoder

The proposed scheme then reconstructs the 3D point cloud
and mesh from the reconstructed 2D image based on a deep
learning framework [12] as shown in Fig. 2. It consists of a
DCNN-based image feature network and a GCNN-based mesh
deformation network. The image feature network consists of
multiple 2D-CNN layers to extract perceptual features from
the 2D image. The mesh deformation network leverages the
extracted feature to deform an ellipsoid mesh into the desired
3D data progressively. The GCNN-based mesh deformation
network includes three deformation blocks intersected by two
graph unpooling layers. Each deformation block takes an
input graph representing the current mesh model with the 3D
shape feature attached to vertices and produces new vertices’
locations and features. The graph unpooling layers gradually
increase the number of vertices to improve the capacity to
handle finer details. This architecture can learn how to deform
and add details in the 3D model in a coarse-to-fine fashion.

We use a combination of Chamfer distance, surface, Lapla-
cian regularization, and edge length regularization as a loss
function to train both networks to decode accurate 3D data
from the given 2D image. Specifically, the Chamfer distance
constrains the 3D coordinates of the vertices, the surface loss
keeps the consistency of surface normal, the Laplacian regular-
ization maintains relative 3D coordinates between neighboring
vertices during deformation, and the edge length regularization
prevents outliers in the reconstructed 3D data.

III. PERFORMANCE EVALUATION

A. Simulation Settings

1) Datasets: We use a benchmark dataset of ShapeNet [23]
for experiments. ShapeNet contains unique 3D points from
55 categories. In our experiments, we select point clouds of
the “Plane” category as an example. We use 77,663 samples
of 2D images and the corresponding 3D point clouds for
training and 100 samples for testing. We set the total number
of training epochs and the batch size to 30 and 50, respectively.
We use the training data to learn the network parameters of
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(a) Chamfer distance in AWGN channels
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Fig. 3. Chamfer distance for the different channel SNRs in AWGN and
Rayleigh fading channels.

the 2D-to-3D decoder, while the testing data to evaluate 3D
reconstruction and visual quality. Here, we consider a 2D
image resolution of 224 × 224 pixels and 156 vertices with
462 edges for an initial ellipsoid mesh.

2) Quality Metric: We use the Chamfer distance [24]
for performance metrics of 3D reconstruction quality. The
Chamfer distance is commonly used to measure the similarity
between the 3D points.

3) Wireless Environment: We consider Rayleigh fading
channels with an additive noise ni for realistic wireless en-
vironments. The additive noise ni follows circular-symmetry
complex white Gaussian distribution with a variance of σ2, i.e.,
ni ∼ CN(0, σ2). For simplicity, we assume that the channel
coefficients are known at the receiver and transmitter.

4) 2D-to-3D Decoding Training: We implement our 2D-
to-3D decoder using Pixel2Mesh in PyTorch.The network is
optimized using Adam with a weight decay of 10−5. We
initialize the learning rate as 3× 10−5.

B. 3D Reconstruction Quality in AWGN and Fading Channels

We first discuss the baseline performance over additive
white Gaussian noise (AWGN) and Rayleigh fading chan-
nels. Figs. 3 (a) and (b) show the Chamfer distance over
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Fig. 5. Chamfer distance of the 2D-to-3D delivery schemes vs. available
bandwidth in AWGN and Rayleigh fading channels for 20 dB channel SNR.

AWGN and Rayleigh fading channels as a function of wireless
channel SNRs. For comparison, we consider three schemes:
2D-to-3D delivery without decorrelation; SoftCast [22]; and
HoloCast [17]. The 2D-to-3D delivery without decorrelation
scheme directly maps the pixel values onto the transmission
symbols using the near-analog modulation and then obtains the
corresponding 3D data using the proposed 2D-to-3D decoder.
SoftCast and HoloCast decorrelate the 3D vertices using 1D-
DCT and graph Fourier transform (GFT) [25] and map the
coefficients onto the transmission symbols.

We can see that the proposed scheme achieves the best
performance and maintains constantly high 3D reconstruction
quality irrespective of wireless channel SNRs. In addition,
direct 3D delivery schemes suffer from low reconstruction
quality compared with 2D-to-3D delivery schemes.

C. Impact of Channel Quality Fluctuation

The previous evaluations considered an adaptive 2D-to-3D
decoder depending on channel SNRs. Precisely, the channel
SNRs at training and testing are consistently adjusted. It is



(a) Original 2D image (b) Decoded 2D image
No Decorrelation (SNR: 5 dB)
MSE: -6.6 dB

(c) Decoded 2D image
Proposed (SNR: 5dB)
MSE: -33.8 dB

(d) Reconstructed mesh
No Decorrelation (SNR: 5 dB)
Chamfer distance: 0.014178

(e) Reconstructed mesh
Proposed (SNR: 5 dB)
Chamfer distance: 0.000164

Fig. 6. Snapshots of the decoded 2D images and reconstructed 3D mesh in the comparative schemes in AWGN channels.

(a) No Decorrelation (SNR: 5 dB) (b) Proposed (SNR: 5 dB)

Fig. 7. Snapshots of 3D printed models delivered at a channel SNR of 5 dB
in AWGN channels.

more practical when one 2D-to-3D decoder trained at a certain
SNR is non-adaptively re-used during 2D image delivery
regardless of channel SNRs. We discuss the impact of the
mismatch between the training and testing channel SNRs on
the Chamfer distance.

Fig. 4 shows the Chamfer distance of the 2D-to-3D delivery
schemes as a function of instantaneous channel SNRs in
AWGN channels. Here, we compare three models trained
at a channel SNR of 5, 10, and 15 dB. In both schemes,
the model trained at a lower channel SNR can improve
performance irrespective of the instantaneous SNRs. When the
instantaneous channel SNR is lower than the trained SNR, the
mismatch causes degraded 3D reconstruction quality.

D. Impact of Bandwidth Fluctuation

Fig. 5 shows the Chamfer distance of the 2D-to-3D delivery
schemes as a function of the available bandwidth in AWGN
and Rayleigh fading channels at a channel SNR of 20 dB. The
proposed scheme keeps almost the same Chamfer distance
even in the band-limited channels. On the other hand, no
decorrelation scheme suddenly degrades the Chamfer distance
when the available bandwidth is limited. It implies that the
proposed scheme has stronger resilience to bandwidth fluctu-
ation.

E. 2D Visual and 3D Printed Quality

Finally, we show some examples of visual snapshots of the
decoded 2D image and reconstructed 3D mesh for the pro-
posed and existing schemes. Figs. 6 (a) and (e) show original
2D images selected from the ShapeNet dataset. Figs. 6 (b)
and (c) show the decoded 2D images of delivery schemes
at a wireless channel SNR of 5 dB. In addition, Figs. 6 (d)
and (e) show the reconstructed mesh of delivery schemes at
a wireless channel SNR of 5 dB. The proposed scheme can
reconstruct 3D data with clean aircraft tail and wings even in
a low channel SNR.

As a proof-of-concept application, we also discuss the 3D
reconstruction quality using a 3D-printed mesh model. We
used a commercial 3D printer of Anycubic Mega X with poly-
lactic acid (PLA) for fabrication. Once the 3D mesh was re-
constructed through wireless transmission in the proposed 2D-
to-3D delivery, the mesh was exported to Ultimaker Cura—an
open-source 3D printer slicing application—for preprinting.
We set Cura’s printing parameters to Anycubic Mega i3 and
generated a gcode file for printing the 3D mesh model.

Figs. 7 (a) and (b) show the 3D printed models, which
correspond to the reconstructed mesh data selected from the
ShapeNet dataset. As expected, the printed model in the
proposed scheme can reproduce relatively cleaner wings.

IV. CONCLUSIONS

Our study is the first paper investigating 2D-to-3D content
delivery over wireless channels. To obtain a clean 3D point
cloud and mesh at the receiver in fading channels, we proposed
a novel soft 2D-to-3D delivery scheme. We verified that the
proposed scheme achieves constantly high 3D reconstruction
quality irrespective of wireless channel SNRs. In addition, it
was shown that the signal decorrelation offers a high resilience
against bandwidth limitation. We further demonstrated remote
3D printing applications as proof-of-concept validation.

In our future work, we will evaluate the performance of the
proposed scheme with state-of-the-art of digital-based solu-
tions such as geometry-based point cloud compression (PCC)
and video-based PCC [26] to clarify the benefits of our analog-
based scheme against the digital-based solutions.
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