
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Pac-HuBERT: Self-Supervised Music Source Separation via
Primitive Auditory Clustering and Hidden-Unit BERT

Chen, Ke; Wichern, Gordon; Germain, Francois; Le Roux, Jonathan

TR2023-030 May 06, 2023

Abstract
In spite of the progress in music source separation research, the small amount of publicly-
available clean source data remains a constant limiting factor for performance. Thus, recent
advances in self-supervised learning present a largely-unexplored opportunity for improving
separation models by leveraging unlabelled music data. In this paper, we propose a self-
supervised learning frame- work for music source separation inspired by the HuBERT speech
representation model. We first investigate the potential impact of the original HuBERT model
by inserting an adapted version of it into the well-known Demucs V2 time-domain separa-
tion architecture. We then propose Pa -HuBERT, a time-frequency-domain self-supervised
model, that we later use in combination with a Res- U-Net decoder for source separation.
Pa -HuBERT uses primitive auditory features of music as unsupervised clustering labels to
initialize the self-supervised pretraining process using the Free Music Archive (FMA) dataset.
The resulting framework achieves better source-to-distortion ratio (SDR) performance on the
MusDB18 test set than the original Demucs V2 and Res-U-Net models. We further demon-
strate that it can boost performance with small amounts of supervised data. Ultimately, our
proposed framework is an effective solution to the challenge of limited clean source data for
music source separation.

IEEE ICASSP Satellite Workshop on Self-supervision in Audio, Speech and Beyond
(SASB) 2023

c© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Pa -HuBERT: SELF-SUPERVISED MUSIC SOURCE SEPARATION
VIA PRIMITIVE AUDITORY CLUSTERING AND HIDDEN-UNIT BERT

Ke Chen x, Gordon Wichern , François G. Germain , Jonathan Le Roux

Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA
xUniversity of California San Diego (UCSD), La Jolla, CA, USA

ABSTRACT

In spite of the progress in music source separation research, the
small amount of publicly-available clean source data remains a
constant limiting factor for performance. Thus, recent advances in
self-supervised learning present a largely-unexplored opportunity
for improving separation models by leveraging unlabelled music
data. In this paper, we propose a self-supervised learning frame-
work for music source separation inspired by the HuBERT speech
representation model. We first investigate the potential impact of
the original HuBERT model by inserting an adapted version of it
into the well-known Demucs V2 time-domain separation architec-
ture. We then propose Pa -HuBERT, a time-frequency-domain
self-supervised model, that we later use in combination with a Res-
U-Net decoder for source separation. Pa -HuBERT uses primitive
auditory features of music as unsupervised clustering labels to ini-
tialize the self-supervised pretraining process using the Free Music
Archive (FMA) dataset. The resulting framework achieves better
source-to-distortion ratio (SDR) performance on the MusDB18 test
set than the original Demucs V2 and Res-U-Net models. We further
demonstrate that it can boost performance with small amounts of
supervised data. Ultimately, our proposed framework is an effective
solution to the challenge of limited clean source data for music
source separation.

Index Terms— Music source separation, primitive auditory
principles, self-supervised Learning, BERT

1. INTRODUCTION

Music source separation aims to separate one or more sound sources
(e.g., vocals, drums, bass, and other instruments) from music tracks.
This task has broad applications in various domains, including vocal-
accompaniment separation and music remixing. Current state-of-
the-art methods for the task rely on deep learning techniques [1].
However, unlike in speech research [2], data for music source separa-
tion remains limited. The benchmark dataset for the task, MusDB18
[3], consists of only 100 songs for training and 50 songs for testing.
The scarcity of data is not only due to the challenge of collecting
source data, but also to copyright issues of music assets.

Self-supervised learning (SSL) is a rapidly growing deep learn-
ing approach that leverages unlabeled data to improve model train-
ing, resulting in better generalization capabilities and task perfor-
mance [4]. SSL has already achieved promising results in a multi-
tude of audio processing tasks such as speech recognition [5], speech
quality prediction [6, 7], or audio classification [8–10], and has even
demonstrated the ability to generalize across tasks [11,12]. Recently,
several SSL approaches for music representation learning have also
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been proposed [13–15]. However, all of these approaches focus
on the learning of representations for content labeling tasks, while
source separation requires a representation capable of isolating indi-
vidual components present in an audio mixture.

One area where SSL has been used for source separation is using
the pretrained WavLM [16] model for speech enhancement [17, 18].
WavLM is based on HuBERT [5], one of the most effective speech
SSL models. HuBERT leverages a transformer-based BERT archi-
tecture [19] and is trained to generate a discrete token at each time
step, using a masking mechanism such that HuBERT learns to pre-
dict the masked tokens from the input data and the unmasked to-
kens. The tokens are cluster indices, initially determined by running
k-means clustering on MFCC features of unlabeled speech data, and
subsequent HuBERT iterations use tokens obtained by clustering in-
termediate network layer outputs from earlier iterations.

In this paper, we explore the use of HuBERT-style methods for
enhancing the quality of music source separation models by using
readily available unlabeled (i.e., containing no isolated sources or
stems) music mixtures. However, the original HuBERT may not
be directly applicable to music separation due to its lower 16 kHz
sampling rate, and the MFCC features used for creating HuBERT
training targets may not provide enough time-frequency (TF) res-
olution to provide a useful representation for separating music
sources. Therefore, we explore replacing MFCC features in the ini-
tial step of HuBERT with TF features specifically designed for music
separation such as common-fate (2DFT) [20], repetition structure
(REPET) [21], harmonic-percussive source separation (HPSS) [22],
and melody contour (Melodia) [23]. These primitive auditory fea-
tures, which in some sense mimic how the human brain performs
an initial segmentation of an auditory scene [24], have previously
been used to create pseudo-labels for unsupervised music source
separation [25], but never in a HuBERT-style training paradigm.

One fundamental design decision for both SSL and source sepa-
ration models is whether they operate on time-domain waveforms or
TF representations such as spectrograms. Time-domain audio repre-
sentation models such as HuBERT and wav2vec [26] encode raw au-
dio signals into a latent representation, while time-domain separation
models contain similar encoders, but also include decoders to ob-
tain separated signals, either through direct synthesis (e.g., Wave-U-
Net [27]) or through masking of features (e.g., TasNet [28]). These
models are widely used in speech separation, where they offer high
separation quality and low latency in real-time scenarios. However,
non-speech sources such as music and general sounds are typically
recorded at a higher sampling rate and contain a wide variety of com-
plex harmonic patterns, which is why TF-domain models (or hybrid
models) have been found historically to yield better performance in
audio classification [8, 29] and music source separation [30–34].

We introduce a novel framework that leverages self-supervised
learning in either the time domain or TF domain. Our main con-
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Fig. 1: The whole pipeline of the proposed self-supervised music source separation framework. Left: k-means models for label creation;
Middle: self-supervised pretraining (HuBERT and our proposed Pa -HuBERT); Right: fine-tuning on separation tasks.

tributions are as follows. First, we adapt HuBERT into a time-
domain music source separation model, which provides support for
subsequent model design in the TF domain. Next, we introduce the
first self-supervised framework for TF-domain music source sepa-
ration, Pa -HuBERT (pronounced Pac-HuBERT, for primitive au-
ditory clustering HuBERT). Our framework leverages primitive au-
ditory features of music data to initiate the self-supervised pretrain-
ing process and embeds the resulting pretrained layers into a Res-
U-Net [31] separation model, an already very effective architecture
for the task. Ultimately, we find the separation performance of mod-
els including either our time-domain or TF-domain pretrained layers
to outperform their original counterparts. Additionally, we evalu-
ate performance in scenarios with even less available training data,
demonstrating the robustness of the pretrained model representation,
with reliable performance with only a small amount of data available
for supervised fine-tuning.

2. MODEL ARCHITECTURE

Our proposed self-supervised music source separation framework
(see Fig. 1) is composed of an encoder (convolution blocks), a bot-
tleneck model (transformer), and a decoder (deconvolution blocks).
The learning pipeline consists of k-means training, self-supervised
pretraining, and separation fine-tuning.

2.1. Encoder Model

The encoder acts as a feature extractor for audio waveforms or spec-
trograms, as depicted in the middle of Fig. 1. For the time-domain
model at the top, the encoder consists of 7 downsampling 1D con-
volutional layer blocks (CNN). The input audio waveform, denoted
by x ∈ RC×L, where C denotes the number of channels and L the
sample length, is fed into the encoder and transformed into the bot-
tleneck feature s ∈ RCb× L

P , with Cb the channel size and P the
downsampling rate. We follow the design of HuBERT to construct
the 1D CNN blocks, each containing one CNN layer and one GeLU
function and also similar to the encoder block in Demucs V2 [35]
(see Fig. 2). In our experiments, in order to use the pretrained model
of HuBERT while still following the training scheme of Demucs
V2, each input is a 3-second mono audio signal sampled at 16 kHz
(C = 1, L = 48 000), and we set Cb = 1024 and P = 320.

For the TF-domain model at the bottom, the encoder consists of

6 downsampling 2D CNN blocks. The input audio signals are first
transformed into STFT spectrograms, denoted as x ∈ RC×T×F ,
where C denotes the number of channels, T the number of frames,
and F the number of frequencies. The encoder then converts x into

the bottleneck feature s ∈ R
Cb× T

Pt
× F

Pf , where Pt and Pf denote
the downsampling rates on the time axis and the frequency axis, re-
spectively. We follow the Res-U-Net [31] separation model for the
encoder block design (see Fig. 2 for details). Since we build our own
TF-domain SSL model, we can align it with the traditional music
source separation pipeline. Hence, each input is a 3-second stereo
audio sampled at 44.1 kHz (C = 2, L = 132 300). The STFT
window size is 2048 and the hop size is 441, resulting in T = 320
frames after zero-padding with 20 frames to the right, and F = 1024
frequency bins after removing the Nyquist frequency. The model pa-
rameters are set to Cb = 384, Pt = 32, and Pf = 64.

2.2. Bottleneck Model

The bottleneck model consists of N transformer encoder blocks,
each of which contains a multi-head self-attention layer [19] with
d heads, hidden size h, and a feedforward layer of inner hidden size
4h. For time-domain models, we use the HuBERT-LARGE model
(N = 24, d = 16, h = 1024). For TF-domain models, to limit GPU
memory consumption and without existing prior pretrained models,
we set N = 12, d = 8, and h = 384. The output of the encoder s
is reshaped to (L

P
, Cb) in the time-domain case and ( T

Pt
× F

Pf
, Cb)

in the TF-domain case, and fed into the bottleneck model. The out-
put is a latent feature s′ with the same shape as s, which is sent to
the decoder for the separation task (Section 2.3) or the projection
module for self-supervised pretraining (Section 2.4). We denote the
encoder/bottleneck combinations as HuBERT for the time-domain
model and as Pa -HuBERT for the TF-domain model.

2.3. Decoder Model

The decoder is designed by replacing all CNN layers in the encoder
with deconvolutional layers (DCNN) for both time-domain and TF-
domain models (see right of Fig. 1). The upsampling rate is equal to
the downsampling rate in order for the audio input and the separation
output (or mask) to have the same shape. Additionally, we have
skip-connections between each encoder block and the corresponding
decoder block (not shown in Fig. 1).
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Fig. 2: Comparison of CNN block designs between Demucs V2
[35], HuBERT [5], and Pa -HuBERT (the same as Res-U-Net [31]).

2.4. Training and Inference Scheme

K-means Training: HuBERT creates initial labels for SSL by per-
forming k-means clustering on MFCC features (see left of Fig. 1)
as follows: 1) extract 39-dimensional MFCC features with 20 ms
frame size and 10 ms frame shift, from the LibriSpeech and Libri-
Light audio samples [36,37], and 2) fit a 500-cluster k-means model
to the MFCC features, and use the cluster index assigned to each
time frame as the label.

For Pa -HuBERT, we replace MFCC features for each time
frame with primitive auditory features computed over spectrogram
patches (see left of Fig. 1). Formally, given a mixture spectrogram
x ∈ RC×T×F , each of the primitive algorithms we use here gener-
ates foreground and background estimates ef , eb ∈ RC×T×F . The
six primitive algorithms we employ1 are HPSS [22,39], REPET [21],
REPET-SIM [40], FT2D-M, FT2D-R [20], and Melodia [23]. Com-
bining foreground and background cues for each primitive algo-
rithms, we obtain a 12-dimensional feature for each TF bin. Due
to the memory requirements of transformers, we follow the audio
spectrogram transformer [8], combining features in non-overlapping
spectrogram patches of shape (Pt, Pf ) bins (matching the downsam-
pling ratio in the TF-domain encoder). We obtain a 24-dimensional
feature for each patch by first dividing each patch into a low-
frequency sub-patch containing the lower Pf/2 TF bins, and a
high-frequency sub-patch containing the upper Pf/2 TF bins. We
then average over TF bins in each sub-patch, obtaining two 12-
dimensional features, which we concatenate. For stereo (C = 2)
music data, we obtain a 48-dimensional feature vector for each TF
patch, which is of comparable dimension to the 39-dimensional
MFCCs used in the original HuBERT model. We fit a 960-cluster
k-means model to all of the 48-dimensional features extracted from
the FMA-Large dataset [41] (106 574 music tracks or about 890 h).
SSL Pretraining via Masked Unit Prediction: We train HuBERT
and Pa -HuBERT with the k-means labels using masking predic-
tion [42] for the self-supervised learning process. The bottleneck
model of HuBERT (or Pa -HuBERT) produces a sequence of n la-
bels with D classes. For HuBERT, n = L

P
and D = 500; for Pa

-HuBERT, n = ( T
Pt

× F
Pf

) and D = 960. We connect the bot-
tleneck model to a projection module (see middle of Fig. 1) to map
the output feature into the class feature o ∈ Rn×E , where E is the
projection dimension. The loss function is defined as:

L =
1

|M |
∑
t∈M

exp
(
τ (ot · ec) / (||ot|| ||ec||)

)∑D

c′=1
exp

(
τ (ot · ec′) /

(
||ot|| ||ec′ ||

)) , (1)

1Implementations from https://github.com/nussl/nussl [38]

where M is the set containing all indices of masked tokens (as shown
in Fig. 1), ot is the class feature token at frame t in HuBERT (or TF
patch t in Pa -HuBERT), ec is a learned embedding for k-means
cluster c to which the frame t was assigned, and τ = 10 scales the
logit. We apply the span masking mechanism by randomly selecting
p% of the frames as starting indices and masking spans of l frames.
For Pa -HuBERT, p = 40% and l = 5. The loss is only computed
over the masked frames.
Source Separation Fine-tuning: After pretraining the encoder and
the bottleneck models with LibriSpeech+Libri-Light or FMA-Large,
we connect the bottleneck model to the decoder and fine-tune the
whole model on the separation task with separation datasets. The
loss function is L1 Loss between the final separation signals and the
source signals, the same as both Demucs V2 and Res-U-Net.

3. EXPERIMENTS

3.1. Hyperparameters and Training Details

During the pretraining stage, for HuBERT, we directly used the
pretrained model HuBERT-LARGE from the torchaudio2 library.
HuBERT-LARGE is pretrained on the Libri-Light speech dataset.
The details can be found in [5]. For Pa -HuBERT, we pretrained it
on the “FMA-Large” set of the Free Music Archive dataset, contain-
ing 890 hours of music tracks. We applied the AdamW optimizer
with a 32 000-step warm-up [43] and a reduced LR scheduler after
150 000 steps. The basic learning rate was 5 × 10−4. We trained
the model using a batch size of 96 on 8 NVIDIA A40 GPUs for
180 000 steps, by which time the masked accuracy on the validation
set achieves 81%. Since higher masked accuracy does not guaran-
tee better separation performance, we used pretrained checkpoints
at various steps and fine-tuned them on a subset of the separation
training set to determine the best model (details in Table 3). The
checkpoint after 60 000 steps yielded the best separation perfor-
mance and we used it for all subsequent experiments.

During the fine-tuning stage, we used the MusDB18 [3] dataset
for training separation models. We followed [35] to divide the 100-
song training set into 84 songs for training and 16 songs for val-
idation. After determining the best model on the validation set,
we evaluate it on the test set of 50 songs. For the time-domain
framework, we trained the decoder while fine-tuning the HuBERT-
LARGE model. For the TF-domain framework, we trained the de-
coder while fine-tuning the Pa -HuBERT model. The data formats
and audio processing settings are mentioned in Section 2.1. We ap-
plied the Adam optimizer with a learning rate of 3 × 10−4 (time
domain) or 10−3 (TF domain). We adopted a 3000-step warm up
and a decay scheduler, where the learning rate is scaled by α = 0.9
every 15 000 steps. We trained the models using a batch size of
128 (time domain) or 96 (TF domain) on 8 NVIDIA A40 GPUs, for
200 000 steps, by which time all models had converged in terms of
the separation performance on the validation set.

3.2. Separation Results

Effectiveness of Self-Supervised Learning: Table 1 presents the
source-to-distortion ratio (SDR) performance on MusDB18. We fol-
low the MusDB18 benchmark using the SiSEC2018 [46] version
of the SDR metric (BSS Eval v4 framewise SDR) implemented by
mus eval3. We report the median SDR over all 50 songs in the
MusDB18 test set.

2https://github.com/pytorch/audio
3https://github.com/sigsep/sigsep-mus-eval



Table 1: Source-to-distortion ratio (SDR) performance on the test
set of MusDB18. Results marked in grey are not directly compa-
rable due to the use of additional training data or the absence of a
validation set. All results are at 44.1 kHz unless otherwise noted.

SDR on MusDB18 test set (dB)
Model Pretrain Vocals Drums Bass Other

Demucs V2 [35] - 16 kHz ✗ 5.02 6.02 5.40 3.41
HuBERT-SEPN - 16 kHz ✗ 5.14 5.59 4.96 2.82
HuBERT-SEPSSL - 16 kHz ✓ 5.58 6.63 6.03 3.65

Bytedance Res-U-Net [31] ✗ 7.83 5.47 5.21 4.90
Pa -HuBERT-SEPN ✗ 8.07 5.78 5.21 5.29
Pa -HuBERT-SEPSSL ✓ 8.32 5.86 6.01 5.38
Pa -HuBERT-SEP2SSL ✓ 8.52 6.20 5.76 5.18

Open Unmix [44] ✗ 6.32 5.73 5.23 4.02
Spleeter [34] ✗ 6.86 6.71 5.51 4.55
D3Net [45] ✗ 7.24 6.68 5.25 4.53
MDX-Net [30] ✗ 9.00 7.33 7.86 5.95
Band-Split RNN [32] ✗ 10.01 9.01 7.22 6.70
HT Demucs [33] ✗ 7.93 7.94 8.48 5.72

Table 2: Separation performance with different amounts of training
data. Subscripts denote improvement from SSL pretraining.

Model Data
Ratio

SDR on MusDB18 test set (dB)

Vocals Drums Bass Other

Pa -HuBERT-SEPN
25% 5.72 4.42 4.00 3.38
50% 6.76 4.50 4.14 4.13
100% 8.07 5.78 5.21 5.29

Pa -HuBERT-SEPSSL
25% 6.75 +1.03 4.57 +0.15 4.11 +0.11 3.90 +0.52

50% 7.32 +0.56 5.16 +0.66 5.07 +0.93 4.50 +0.37

100% 8.32 +0.25 5.86 +0.08 6.01 +0.80 5.38 +0.09

We denote our models as HuBERT-SEP and Pa -HuBERT-SEP,
with a superscript indicating no pretraining (N ) or SSL pretraining
(SSL). Similar to HuBERT, we clustered the latent features of the
6th transformer block from the first pretrained model, and pretrained
a new Pa -HuBERT as the second pretraining iteration, indicated as
2SSL. All experiments on the original Res-U-Net and Demucs V2
were reproduced by us to ensure a fair comparison. Time-domain
models were trained at 16 kHz to utilize the pretrained HuBERT
model, so the baseline Demucs V2 results differ from [35]. Addi-
tionally, we provide the reported performance of several state-of-the-
art models, although some of them (denoted in grey) used additional
training data or were developed for the MDX challenge [1], which
used the MusDB18 test set as a validation set for model selection.

From the comparison between Demucs V2, Res-U-Net, HuBERT-
SEPN , and Pa -HuBERTN models (i.e., without pretraining), we
observe that Pa -HuBERTN generally outperforms Res-U-Net.
The potential reason is that the transformer bottleneck processes the
encoder features more efficiently than the CNN bottleneck model
in Res-U-Net. However, we found that Demucs V2 performs better
than HuBERT-SEPN , possibly due to the more complex encoder-
decoder design of Demucs V2, which was also reported in [35].

When fine-tuning the pretrained HuBERT and Pa -HuBERT
models on the separation task, we observe an improvement in SDR
for all four sources compared to models without pretraining. This
demonstrates the effectiveness of HuBERT in contributing to au-
dio separation tasks beyond speech, and also shows that our pro-
posed Pa -HuBERT model, pretrained with primitive auditory fea-
tures from music data, can improve the performance of TF-domain

Table 3: Performance of pretrained models at different training steps
on the pretraining and separation tasks.

Metrics Training Steps

30 000 60 000 120 000 180 000

Masked Accuracy (Valid.) 0.71 0.78 0.79 0.81
Vocal SDR (25% Data) 6.02 6.75 6.50 6.04

separation models. When comparing Pa -HuBERT-SEPSSL and
Pa -HuBERT-SEP2SSL, we observe that 2SSL yields better per-
formance on vocals and drums separation, but is degraded on bass
and other separation. We believe that the design of iterative pre-
training can be further improved, including exploring different lay-
ers of latent features for pretraining and training varying numbers
of k-means models for different separation sources. This will be a
focus of our future work. Specifically, HuBERT shows a larger im-
provement than Pa -HuBERT, which can potentially be attributed
to the size of the pretraining dataset (60 000 hours for HuBERT vs.
890 hours for Pa -HuBERT). The ability of speech-only pretrain-
ing to improve music separation performance presents another op-
portunity for future work in finding ways to harness this data for
full-bandwidth TF-domain music separation models.
Effectiveness with Limited Training Data: We further extracted
from the 84 MusDB18 training songs a 25% data subset with 21
songs, and a 50% data subset with 42 songs. We then fine-tuned
our Pa -HuBERT-SEP model on these subsets and report the sepa-
ration performance of the test set in Table 2. Results show that the
pretrained model achieves significantly better performance than the
models without pretraining on both subsets. Notably, with only 25%
of the supervised data, the pretrained model improves separation per-
formance for vocals and other source classes by 0.5 to 1.0 dB. This
demonstrates the effectiveness of pretraining using primitive audi-
tory features, as the foreground and background features are highly
correlated with the vocals and other source classes. However, for
bass and drums, pretraining provides little benefit with 25% of the
supervised data, indicating that pretraining is less useful for these
classes, and different auditory primitives should be explored.
Pretrained Model Selection: We also investigated varying the num-
ber of Pa -HuBERT pretraining steps and evaluating vocal separa-
tion performance when fine-tuning on 25% of the MusDB18 training
data in Table 3. We observe that the separation performance of the
model is not consistent with its pretraining performance (i.e., masked
token prediction accuracy). A similar trend was reported in [9] for
audio classification. High accuracy during pretraining may indicate
over-fitting, which could weaken the quality of the learned represen-
tation and negatively impact performance in separation tasks.

4. CONCLUSION

In this paper, we investigated the efficacy of self-supervised learn-
ing methods in music source separation. First, we adapted HuBERT
into a time-domain source separation model and achieved notable
improvements. Next, we proposed Pa -HuBERT, a TF-domain
self-supervised source separation model that leverages the primi-
tive auditory features of unlabelled music data during pretraining.
Pa -HuBERT demonstrates significant improvements in TF-domain
music source separation models, with consistent performance in-
creases across different proportions of supervised data. We consider
Pa -HuBERT to be an effective solution for utilizing unlabeled mu-
sic data in music source separation. Moving forward, we plan to
adapt Pa -HuBERT to other separation models besides Res-U-Net,
and explore its generalization on the separation of more instruments.
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