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Abstract
Recent developments in wave-based sensor technologies, such as ground penetrating radar
(GPR), provide new opportunities for accurate imaging of underground scenes. Given mea-
surements of the scattered electromagnetic wavefield, the goal is to estimate the spatial dis-
tribution of the permittivity of the underground scenes. How- ever, such problems are highly
ill-posed, difficult to formulate, and computationally expensive. In this paper, we propose a
physics- inspired machine learning-based method to learn the wave-matter interaction under
the GPR setting. The learned forward model is combined with a learned signal prior to re-
cover the permittivity distribution of the unknown underground scenes. We test our approach
on a dataset of 400 permittivity maps with a three-layer background, which is challenging
to solve using existing methods. We demonstrate via numerical simulation that our method
achieves a 50% improvement in mean squared error over benchmark machine learning- based
solvers for reconstructing layered underground scenes.
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ABSTRACT

Recent developments in wave-based sensor technologies, such as
ground penetrating radar (GPR), provide new opportunities for ac-
curate imaging of underground scenes. Given measurements of the
scattered electromagnetic wavefield, the goal is to estimate the spa-
tial distribution of the permittivity of the underground scenes. How-
ever, such problems are highly ill-posed, difficult to formulate, and
computationally expensive. In this paper, we propose a physics-
inspired machine learning-based method to learn the wave-matter
interaction under the GPR setting. The learned forward model is
combined with a learned signal prior to recover the permittivity dis-
tribution of the unknown underground scenes. We test our approach
on a dataset of 400 permittivity maps with a three-layer background,
which is challenging to solve using existing methods. We demon-
strate via numerical simulation that our method achieves a 50% im-
provement in mean squared error over benchmark machine learning-
based solvers for reconstructing layered underground scenes.

Index Terms— Underground Imaging, Diffraction Tomogra-
phy, Full-waveform Inversion

1. INTRODUCTION

Ground Penetrating Radar (GPR) provides a non-destructive solu-
tion for underground utility mapping. The data acquisition process
involves emitting known electromagnetic waves into the subsur-
face with transmission antennas located above the ground and then
recording the scattered waves by receiver antennas also located
above the ground. From the received scattered waves, data process-
ing is applied to provide information about the physical properties
of the subsurface.

Traditional GPR data processing is mainly based on migration
methods originated from seismic imaging [1, 2]. These methods
are efficient and can be implemented in real-time. However, images
produced by migration methods only provide information about
locations and rough shapes for the objects in the subsurface, but
lack quantitative information about the electric permittivity con-
trast, from which materials of the objects can be inferred. More
advanced data processing techniques are based on the principle
of inverse scattering [2, 3]. These methods estimate the spatial
distribution of the electric permittivity contrast of the subsurface,
thus producing more informative images than migration methods.
Assuming time harmonic waves, it has been well-established that
the nonlinear wave-object relationship due to multiple scattering
can be fully described by an integral equation. In the 2D scalar
field setup, the integral equation coincides with the well-known
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Lippmann-Schwinger equation. Inverse scattering based on the in-
tegral equation requires knowledge of the background and efficient
methods to compute the corresponding Green’s function. Most ex-
isting results along this line consider homogeneous background, for
which the Green’s function is easy to compute. A few results for the
GPR setup have also considered layered background and proposed
methods for computing the corresponding Green’s function [2, 4].
While the integral equation formulation is exact, inverting the in-
tegral equation can be computationally expensive when accurate
optimization schemes are used to solve the inverse problem [5, 6, 7].
A commonly used approximation to the integral equation is based
on the Born series expansion. Keeping higher order terms in the
series expansion retains some level of nonlinearity of the system
and results in better approximation; this is called iterative Born
approximation (IBA) [3, 8].

More recently, machine learning-based approaches have emerged
attempting to learn the wave-object relationship from training data.
Recent works use the Graph Neural Network architecture or the
Fourier Neural Operator (FNO) to model the time domain wave
propagation [9, 10]. One main challenge of such learned simula-
tions is the error accumulation during temporal unrolling.

In this paper, we propose to use a modification to the FNO archi-
tecture that is inspired by the IBA, to directly learn the wave-matter
interaction in the frequency domain without prior knowledge of the
background. Our learned forward model, called Born FNO (BFNO),
is combined with a learned signal prior and isotropic total varia-
tion (TV) regularization to recover unknown underground structures
from surface measurements. We test our approach under a three-
layer background setup, and achieve a 50% improvement in mean
squared error compared to benchmark machine learning-based solu-
tions1. While we focus on the GPR setting, the proposed approach is
general and may be applied to other inverse scattering applications,
including geophysical imaging[11, 12], optical tomography[13], etc.

2. PROBLEM FORMULATION

2.1. Background

In the 2D scalar wave setup with homogeneous background, the
wave-object relationship is fully described by the Lippmann-
Schwinger integral equation

u(x)=uin(x)+k2
b

∫
D

g(x−x′)u(x′)f(x′)dx′, ∀x∈R2 (1)

where u(x) is the total field, uin(x) is the incident field, ϵb is the
permittivity of the background, kb=

√
ϵbω/c is the wavenumber in

1The complete code and dataset are available online at: https://
github.com/merlresearch/DeepBornFNO
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Fig. 1. The pipeline of our approach. The forward model Born FNO and the signal prior network are pre-trained with a dataset generated
by gprMax [14]. At test time, the signal prior network first maps a latent code z to the estimated permittivity ϵ, ϵ is then concatenated with
[uωi

in,r,u
ωi
in,i], the incident field with respect to the free space background at frequency ωi, to predict the total field [uωi

r ,uωi
i ]. The latent code

is optimized using stochastic gradient descent (SGD) to minimize the difference between the predicted total field and the measured total field
across all sensor locations and 50 frequencies.

the background, c is the speed of light in vacuum, ω is the angular
frequency, and g is the Green’s function for the background. Let
ϵ(x) denote the permittivity of the object. We assume that the per-
mittivity contrast f(x)=ϵ(x)/ϵb−1=0 for x ̸∈D, thus the domain
for integration can be restricted to some bounded computational do-
main D⊂R2. Moreover, we assume that ϵ and ϵb are real-valued and
do not depend on frequency. Let Γ⊂R2 denote the set of receiver
locations. Our measurements are then the total field u(x) with x∈Γ.
Note that to apply Eq. (1) with x∈Γ as the forward model, we need
to first compute u(x) with x∈D, which should satisfy Eq. (1) with
x∈D for the exact formulation.

A Kth-order IBA can be used to approximate the total field via:

ui+1(x)=uin(x)+k2
b

∫
D

g(x−x′)f(x′)ui(x
′)dx′ (2)

with u0(x)=0 and i=1,...,K−1. Under this approximation, the to-
tal field u(x) with x∈D that is used to compute the measurements
is replaced by uK(x). The forward model in discrete form under the
Kth-order IBA can then be written as

y=uΓ
in+GΓDdiag(f)uK+e

ui+1=uD
in +GDDdiag(f)ui, i=0,...,K−1

(3)

where GAD is the discretization of k2
bg(x−x′) with x∈A, x′∈D,

uA
in is the discretization of uin(x) with x∈A, A∈{Γ,D}, y is the

measured total field at the receiver locations Γ, and e represents
model mismatch.

The goal of the inverse problem is to estimate f given y. In
addition, information about the source and the background is also
necessary for computing the incident field and the Green’s function.
One way to estimate f is to solve the optimization problem:

f̂=argmin
f

∑
ω

1

2
∥yω−Zω(f)∥22+R(f) (4)

where Zω is the forward operator that maps the permittivity constrast
f to the corresponding wavefield measurements yω at frequency ω
according to Eq. (3) and R is the regularizer.

In the GPR setting, while it is reasonable to assume a layered
structure for the background permittivity distribution ϵb(x), the
depth and the permittivity value for each layer may be unknown.
Moreover, computing the Green’s function for a layered background
is non-trivial. If instead free space is assumed as the background,

then the domain of integration cannot be restricted to a bounded
region without careful treatment of the boundaries, as the layered
structure extends outside the computational domain.

2.2. Proposed Approach

Given the difficulties in applying an analytical forward model for
inverse scattering in the GPR setting, we propose to learn a for-
ward model directly from data, where the architecture of our neural
network is based on the recently proposed Fourier Neural Operator
(FNO) and shares some similarity with the IBA Eq. (2). We call our
learned forward model “Born FNO”. Born FNO maps the spatially
discretized permittivity distribution ϵ of the entire scene within the
computational domain to the wavefield on the same discretization
grid at a given frequency ω, i.e., uω=BFNO(ϵ,ω). Since the prob-
lem is ill-posed due to the sparse and restricted angle measurements,
we also learn a prior to represent the space of desired images. Our
learned prior is a generative model that maps a low-dimensional la-
tent code z to the permittivity ϵ, i.e., ϵ=Gϵ(z). Therefore, the opti-
mization problem based on our formulation can be written as

ẑ=argmin
z

∑
ω

1

2
∥yω−H(BFNO(Gϵ(z),ω))∥22+R(Gϵ(z)) (5)

where H is a sampling operator that selects the wavefield at the sen-
sor locations and the estimated permittivity is obtained by ϵ̂=Gϵ(ẑ).
R(·) is the isotropic total variation regularizer. A detailed pipeline
of our proposed approach can be see in Fig. 1.

3. METHOD

3.1. Forward Model

We discretize our computational domain into a uniformly sampled
2D grid, D. The input to our forward model is [ϵ,uω

in,r,uω
in,i], where

ϵ is the total permittivity of the underground structure on the grid,
and [uω

in,r,uω
in,i] represent the real and imaginary parts of the free

space response of the source on the grid at frequency ω, i.e., the
incident field with respect to the free space background. We use this
to provide information of the frequency and the source. The output
of our forward model are the real and imaginary parts of the total
field on the grid [uω

r ,uω
i ]. Examples of the input and the output of

the learned forward model could be found in Fig. 1.



3.1.1. Fourier Neural Operator

Fourier Neural Operator (FNO) is a state-of-the-art neural network
architecture for solving partial differential equations (PDEs) on reg-
ular grids [15], which is inspired by the Green’s function of the dif-
ferential operator. The solution of a given PDE can be written as:

u(x)=

∫
D

G(x,x′)f(x′)dx′ (6)

Assuming that G(x,x′)=G(x−x′), Eq. (6) reduces to a convolu-
tion operator and can be computed using the convolution theorem.
In FNO, the input states are first independently lifted to some higher
dimensional space using multi-layer perceptrons (MLPs). Denoting
the corresponding high dimensional vector after lifting by v0, each
layer of FNO is defined recursively as,

vi+1(x)=σ(Wivi(x)+(Ki(vi))(x)), ∀x∈D (7)

where

(Ki(vi))(x)=F−1(Ri·F(vi))(x), (8)

Ki and Ri are the network parameters of the ith layer, σ(·) is the
GeLU nonlinearity, and F is the Fourier operator.

3.1.2. Born Fourier Neural Operator

Inspired by the IBA, we formulate our Born FNO (BFNO) as fol-
lows, ∀x∈D:

vϵ(x)=Pϵ(x,ϵ(x)) (9)
vω0 (x)=vωin(x)=Pin(x,u

ω
in,r(x),u

ω
in,i(x)) (10)

vωi+1(x)=vωin(x)+σ(W1(σ(W0(K(vϵ,v
ω
i )(x))))) (11)

K(vϵ,v
ω
i )(x)=F−1(R·F(vϵv

ω
i ))(x) (12)

uω(x)=[uω
r (x),u

ω
i (x)]=Q(vωn (x)) (13)

where Pϵ,Pin, Q are local transformations parameterized by MLPs,
n is the number of BFNO layers, and σ(·) is the Leaky ReLU non-
linearity. Note that unlike FNO, which has different Ri,Wi for each
layer, we use the same R,W0,W1 for all layers, which resembles
the structure in the IBA formulation Eq. (2). We follow the same
normalization scheme as in [15] to preprocess our data, and train
our model with the normalized-mean-squared error as formulated in
Eq. (14).

ϕ∗
BFNO=argmin

ϕBFNO

∑
j

∑
ω

∑
x∈D

∥uω
gt,j(x)−BFNO(ϵj ,ω;ϕBFNO)(x)∥2

∥uω
gt,j(x)∥2

(14)

where ϕBFNO is the collection of network parameters for BFNO, ϵj is
a permittivity map from the training dataset, and uω

gt,j is the ground
truth total field for ϵj at frequency ω.

3.2. Learned Signal Prior

Since inverse scattering in the GPR setting is highly ill-posed, we
restrict the solutions to a lower-dimensional subspace represented
as the range of a generative model, Gϵ. Given a training dataset of
permittivity maps {ϵi}i, we train Gϵ by solving:

(ϕ∗
Gϵ
,ϕ∗

E)=argmin
ϕGϵ ,ϕE

∑
i

∥Gϵ(E(ϵi;ϕE);ϕGϵ)−ϵi∥22+
1

σ2
∥E(ϵi;ϕE))∥22

where E denotes the encoder, and Gϵ denotes the decoder, i.e. the
learned generative prior, and ϕGϵ and ϕE are the trained parameters
for Gϵ and E , respectively.
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Fig. 2. Illustration of the layered medium considered in this work
showing the source location and example target objects.

3.3. Inverse Problem

Combing the learned forward model and the learned prior, we
can then solve the optimization problem defined in Eq. (5), where
R(·) is the isotropic total variation regularizer. With pre-trained
BFNO(·;ϕ∗

BFNO), and Gϵ(·;ϕ∗
Gϵ
), we solve this optimization problem

using standard ADAM[16] optimizer for 1200 steps. We use the
incremental frequency inversion framework proposed in [7] during
the optimization, where we include a batch of 10 frequencies every
120 update steps, i.e. [ω0,···,ω10] for the first 120 steps, [ω0,···,ω20]
for the next 120 steps, etc. We also fine-tune our prior Gϵ after 300
steps by updating the parameters ϕGϵ of Gϵ during the optimization,
see Eq. (15). This fine-tuning procedure improves the generalization
performance of Gϵ for the inverse problem. Similar techniques have
been widely used in GAN inversion problems [17].

min
z,ϕGϵ

∑
ω

1

2
∥yω−H(BFNO(Gϵ(z;ϕGϵ),ω;ϕ

∗
BFNO))∥22+R(Gϵ(z;ϕGϵ))

(15)

4. EXPERIMENT

4.1. Dataset

We generate our dataset using gprMax [14], an open source finite
difference time domain simulation tool for electromagnetic wave
simulation. Our computational domain is of size 0.5m×0.5m. We
consider a three layer background setup, as shown in Fig. 2, where
the top layer is air with depth 0.15m and the ground consists of two
layers with total depth 0.35m. The source is located in the center
along the horizontal axis and 0.1m above the ground. We use a stan-
dard Ricker wavelet source with center frequency 1GHz. The depth
of the second ground layer is sampled from a uniform distribution
d2∼U(0.1,0.3), and the depth of the first ground layer is computed
as d1=0.35−d2. The first layer has permittivities sampled from
ϵ1∼U(3,5), and the second layer has permittivities sampled from
ϵ2∼U(5,10). Two cylinders are embeded in the second ground layer.
One of the cylinder is air, thus with ϵc1=1. The permittivity of the
other cylinder is sampled from a uniform distribution ϵc2∼U(3,10).
Both cylinders has radius r∼U(0.03,0.06) Sample structures could
be found in Fig. 3 and Fig. 2.

From the time domain simulation results generated by gprMax,
we apply the Fourier transform and extract the wavefield with fre-
quencies within [0.5GHz,1.5GHz] band to train the forward model
and solve the inverse problems. Our dataset consists of 400 simula-
tions with 350 training samples and 50 test samples.

4.2. Forward Problems

In this section, we compare the FNO [15] and the proposed Born
FNO for the forward problem. The training and test losses are the
mean squared error (MSE) between the ground truth total field and



Fig. 3. Randomly sampled qualitative results for the inverse problem solved by different approaches. CNN uses an autoencoder to learn the
mapping between the measurements and permittivity maps. Both “TV” and “TV + prior” use Born FNO with 10 layers as the forward model.
“TV” uses the standard isotropic TV regularizer, whereas “TV + prior” uses isotropic TV combined with the learned signal prior.

Fig. 4. Loss for FNO and Born FNO with different number of lay-
ers. Left: training loss as a function of frequency average over 350
training samples. Right: test loss as a function of frequency aver-
aged over 50 test samples.

the total field generated by FNO or Born FNO. The training and
test losses as functions of frequency is shown in Fig. 4. We can see
that while FNO achieves lower training errors (overfits well), it has
higher test errors compared to Born FNO with the same number of
layers. This demonstrates that the proposed Born FNO achieves bet-
ter generalization performance. We also observe that the test errors
of Born FNO converge as the number of layers increases.

4.3. Inverse Problems

For the inverse problem, we place the receivers along the source
plane and use all 50 frequencies from ω∈2π[0.5GHz,1.5GHz]. We
solve the inverse problem with different forward models, FNO with
5 layers, Born FNO with 5 layers, or Born FNO with 10 layers. We
also perform ablation where we solve the inverse scattering prob-
lem with or without the learned prior, Gϵ, to test the effectiveness of
the proposed learned prior. Another existing machine learning solu-
tion for full-waveform inversion is to treat it as an image-to-image
translation problem and use a CNN to learn the mapping between
the measurements and the permittivity maps, similar to what shown
in [18]. As a baseline, we also train an autoencoder with latent fea-
ture size 8 with our dataset. Quantitative results can be found in
Table (1). We also include the forward model loss, MSEevo, for dif-
ferent learned forward models in Table (1), where MSEevo=∥uω

true−
BFNO(ϵ,ω)∥22, measures the accuracy of each forward model. All
numbers reported in Table (1) are averaged over 50 test samples.

We observe that with a more accurate forward model, lower

MSEevo, we get a better reconstruction result. Our Born FNO with
10 layers achieves the lowest forward model loss as well as the low-
est reconstruction error. Given the same forward model, solving the
inverse problem with the learned prior yields a lower reconstruction
error compared to the without the learn prior case, indicating the
effectiveness of the learned prior. Our approach also achieves bet-
ter results compared to the baseline CNN. Besides, while the CNN-
based approach learns the mapping between the measurements and
permittivity maps under a specific measurement setup, our approach
can adapt to arbitrary sensor setups which provides more flexibility.
Fig. 3 shows qualitative comparisons between the different learned
forward models and demonstrates that the learned prior with the
Born FNO leads to the best reconstruction of the underground per-
mittivity distribution.

MSEevo TV TV + Learned Prior
FNO 5 [15] 9.96e-3 1.366 0.809

BFNO 5 (ours) 8.63e-3 1.065 0.715

BFNO 10 (ours) 6.94e-3 1.030 0.683
CNN 1.139

Table 1. Quantitative results for underground imaging problem with
different forward models and regularizers. The number in the first
column represents the number of layers used in each model. Each
forward model is tested with or without the learned prior. Baseline
CNN learns a direct mapping between the measurements and the
permittivity map using an autoencoder. The reported numbers are
mean squared errors averaged over 50 test samples. We observe that
the proposed 10-layer Born FNO with the learned prior achieves the
best test performance.

5. CONCLUSION

In this paper we presented a machine learning framework for solv-
ing inverse scattering problems under the GPR setup. We demon-
strated that our Iterative-Born-Approximation inspired FNO model
can learn complicated wave-matter interaction with higher accuracy,
leading to more accurate reconstruction of the underground struc-
tures, compared to previous models.
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