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ABSTRACT
In frequency-modulated continuous-wave (FMCW) lidar, the

distance to an illuminated target is proportional to the beat frequency
of the interference signal. Laser phase noise often limits the range
accuracy of FMCW lidar, and existing frequency estimation meth-
ods make overly simplistic assumptions about the noise model. In
this work, we propose an algorithm that performs frequency estima-
tion via phase unwrapping by explicitly accounting for correlations
in the phase noise. Given a candidate frequency, we approximately
recover the maximum likelihood unwrapping sequence using the
Viterbi algorithm and the phase noise statistics. The algorithm
then alternates between unwrapping and frequency estimate refine-
ment until convergence. Compared to state-of-the-art alternatives,
our algorithm consistently achieves superior performance at long
range or with large-linewidth lasers when the signal-to-noise ratio is
sufficiently high.

Index Terms— Frequency-modulated continuous-wave lidar,
phase unwrapping, generalized least squares, Viterbi algorithm

1. INTRODUCTION

Lidar is an increasingly popular sensing modality for ranging ap-
plications varying from autonomous driving to industrial robotics.
Frequency-modulated continuous-wave (FMCW) lidar is particu-
larly attractive because it is less sensitive than conventional pulsed
lidar to ambient light or interference from other sensors [1]. Like
the related technique of swept-source optical coherence tomography
(SS-OCT), FMCW lidar is a coherent ranging technology that mea-
sures distance by mixing a local copy of the transmitted laser beam
with the light reflected back to the receiver. The beat frequency of
the resulting interference signal is proportional to the reflector range,
so distance measurement becomes a frequency estimation problem.

The limiting factor for FMCW accuracy is often considered to
be the laser source phase noise. As illustrated in Fig. 1, laser phase
noise causes the interference signal to deviate from the true beat fre-
quency. For a laser whose frequency noise (the first derivative of the
phase noise) is white and Gaussian, the resulting interference signal
has a power spectral density (PSD) that asymptotically approaches
a Lorentz distribution as the range increases [2]. On the contrary,
classical frequency estimation settings assume a pure sinusoid in ad-
ditive white Gaussian noise (AWGN), for which the maximum like-
lihood estimate is the peak of the periodogram [3]. However, peak-
finding methods perform poorly when the signal power is distributed
over a range of frequencies. Kim et al. show improved performance
at long distance by fitting a Lorentzian function to the signal spec-
trum PSD [4], but the Lorentzian fitting has limited precision at high
signal-to-noise ratio (SNR).

∗A. Ulvog is a PhD student at Boston University, Boston, MA, USA. This
work was performed during an internship at MERL.
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Fig. 1: In an FMCW lidar interference signal, laser phase noise
causes variation in the beat frequency, decreasing the periodicity of
the phase and broadening the signal’s power spectral density.

Instead, we estimate the frequency in the time domain by per-
forming phase unwrapping followed by linear regression. However,
existing phase unwrapping methods do not take phase noise into ac-
count, which can lead to errors in the regression stage [5, 6, 7, 8,
9]. Inspired by the fast least squares phase unwrapping estimator
(FLSPUE) [8], we propose an algorithm for frequency estimation
via phase unwrapping that takes advantage of correlated phase error.
We propose an unwrapping approach that uses an initial frequency
estimate to predict the phase error via the linear minimium mean
squared error (LMMSE) estimator and then approximately recovers
the most likely unwrapping sequence via the Viterbi algorithm [10].
After unwrapping, the frequency estimate is refined via generalized
least squares (GLS) regression. By both applying the known phase
noise statistics and alternating between phase unwrapping and fre-
quency estimation, our iterative algorithm empirically converges bet-
ter than other methods, enabling the use of as little as one initial fre-
quency, and outperforming the state-of-the-art Lorentzian fitting at
sufficiently high SNR.

2. FMCW LIDAR MODEL

2.1. Optical Signal Model

Here we summarize the basic FMCW lidar modeling from Vasi-
lyev [11, Ch. 2], with definitions illustrated in Fig. 2. An FMCW
lidar measurement is made by linearly sweeping the frequency of a
tunable laser and splitting the swept beam into two channels: a lo-



fmin

fmax

τ

γ

Tmeas

Time

TLa
se

r f
re

qu
en

cy

ERX(t) ELO(t)

fbeat

Fig. 2: FMCW lidar definitions. Laser phase noise causes the instan-
taneous frequency to deviate from the expected linear modulation.

cal oscillator (LO) and a transmitter (TX). Transmitted light that is
reflected from a target is captured by the receiver (RX) and optically
mixed with the local oscillator. Let T be the sweep duration, ϕ0 the
initial phase, ω0 the initial angular frequency, γ the chirp rate, and
ϕn the source phase noise. Within one chirp period, the LO channel
has normalized electric field

ELO(t) = rect

(
t− T/2

T

)
cos

(
ϕ0 + ω0t+

γt2

2
+ ϕn(t)

)
. (1)

The received signal electric field ERX(t) =
√
RELO(t − τ) has

been scaled by the target reflectivity R and delayed by τ = 2d/c,
where d is the target distance and c is the speed of light. The LO
and RX fields are summed at the coherent receiver, and the low-
pass filtered intensity is measured by a detector, with measurement
window Tmeas ensuring overlap of the mixed chirps.

FMCW receivers often use a single balanced detector to capture
the in-phase interference measurement

iI(t) =
√
R cos

[
ω0τ −

γτ2

2
+ γτt+∆ϕn(t; τ)

]
+ wI(t), (2)

where ∆ϕn(t; τ) = ϕn(t)−ϕn(t−τ) is the phase change1 and wI is
approximately additive white Gaussian noise (AWGN) with variance
σ2
w/2. For phase extraction, the quadrature component could be

approximated by îQ(t) = H{iI(t)}, but the Hilbert transformH{·}
introduces errors in the phase. To more accurately extract the phase
of the interference signal, we assume the use of a 90◦ optical hybrid
with two pairs of balanced detectors [13], which also records the
quadrature measurement

iQ(t) =
√
R sin

[
ω0τ −

γτ2

2
+ γτt+∆ϕn(t; τ)

]
+wQ(t), (3)

where wQ and wI are independent and identically distributed. The
phase is extracted as atan2(iQ(t), iI(t)).

2.2. Sampled Signal Model

To simplify notation, we rewrite the observed signal as a complex-
valued sinusoid

r(t) = iI(t) + jiQ(t)

= a exp{j2π[ft+ θ + η(t)]}+ w(t), (4)

where a =
√
R is the signal amplitude, f = γτ is the beat fre-

quency, θ = ω0τ − γτ2/2 is the phase offset, η(t) = ∆ϕn(t; τ) is

1Since phase noise refers to variation in the phase of an oscillator such as
a laser, we follow [12, Ch. 7.6.1] in using the term phase change to describe
the resulting phase error in an interferometric measurement.

a stationary random process denoting the phase change, and w(t) =
wI(t) + jwQ(t) is circularly symmetric complex AWGN with auto-
correlation Rw(t) = σ2

wδ(t). The signal-to-noise-ratio (SNR) due
to AWGN is a2/σ2

w. Samples at times tn, n = 0, 1, . . . , N − 1 are
given as

rn = a exp{j2π[ftn + θ + ηn]}+ wn. (5)

The principal argument of rn is

∠rn = 2π[ftn + θ + ηn + ϵn], (mod 2π) (6)

where ϵn describes the effective phase error due to the AWGN and is
known as additive observation phase noise (AOPN) [14]. We further
define the unwrapped phase

xn = ftn + θ + ξn = yn + un, (7)

where ξn = ηn + ϵn is the total phase error, yn = ∠rn/(2π) is the
extracted wrapped phase (modulo 1), and un ∈ Z is the unknown
integer number of cycles that must be added to the wrapped phase to
perform phase unwrapping.

2.3. Phase Change Statistics

When the dominant source of laser phase noise is spontaneous emis-
sion, the frequency noise ωn = dϕn/dt is assumed to be white
and Gaussian [12]. Thus the frequency noise has a constant PSD
Sωn(ω) = ∆ω , where ∆ν = ∆ω/(2π) is the full-width at half-
maximum laser linewidth in Hz, and is assumed to be known. Then
the phase noise ϕn(t) is a Wiener process. For a fixed delay τ ,
the resulting phase change ∆ϕn(t; τ) in the interference signal is
a zero-mean, stationary Gaussian process with triangular autocorre-
lation function

R∆ϕn(t; τ) = ∆ω(τ − |t|) rect
(

t

2τ

)
. (8)

2.4. AOPN Statistics

Given |rn|, the scaled AOPN term 2πϵn has a zero-mean von Mises
distribution with a complicated dependence on a, |rn|, and σ2

w [14].
Tretter observed that the AOPN distribution is approximately Gaus-
sian with variance 1/(2 · SNR) at high SNR [5]. At low SNR, the
von Mises distribution is approximately uniform over (−π, π], so we
propose an approximation to the AOPN variance that captures both
SNR regimes:

σ2
ϵ ≈ min

{
σ2
w

(2π)2 2
N

∑N−1
n=0 |rn|2

,
1

12

}
. (9)

3. PROPOSED ALGORITHM

Our goal is to estimate frequency f from wrapped phase vector y.
However, directly maximizing the likelihood p(y|f, θ) is difficult
because the positions of the discontinuities in the wrapped phase
y are unknown. If one can recover the number of unwrappings u,
yielding the complete data x = y + u, then maximizing p(x|f, θ)
is straightforward because x is an affine function in correlated Gaus-
sian noise.

Tretter introduced the approach of frequency estimation via
phase unwrapping followed by linear regression [5]. Wang et al.
further updated the frequency estimation procedure to account for
both phase noise and AOPN [9]. However, these methods keep
the unwrapping and regression steps separate, and since the naı̈ve



Algorithm 1 Viterbi Unwrapping Frequency Estimation

Input: y, {f (0)
0 , . . . , f

(0)
M−1}, {θ

(0)
0 , . . . , θ

(0)
M−1}

Output: f̂ , θ̂
1: for m = 0, 1, . . . ,M − 1 do
2: Lbest

m ←∞, fbest
m ← f

(0)
m , θbestm ← θ

(0)
m

3: k ← 0
4: while converged = false do
5: compute Q(f

(k)
m )

6: x̂
(k)
m , LV(f

(k)
m , θ

(k)
m )← UnwrapViterbi(y, f

(k)
m , θ

(k)
m )

7: if LV(f
(k)
m , θ

(k)
m ) < Lbest

m then
8: Lbest

m ← LV(f
(k)
m , θ

(k)
m )

9: fbest
m ← f

(k)
m , θbestm ← θ

(k)
m

10: f
(k+1)
m , θ

(k+1)
m ← GLS

(
x̂
(k)
m ,Q(f

(k)
m )

)
11: k ← k + 1
12: else
13: f̂m ← fbest

m , θ̂m ← θbestm

14: converged = true
15: m̃ = argminm Lbest

m

16: f̂ ← f̂m̃, θ̂ ← θ̂m̃

phase unwrapping algorithms (e.g., [15]) have no requirement for
the underlying signal to be linear, unwrapping errors lead to fur-
ther errors in the regression. More sophisticated algorithms jointly
perform frequency estimation via phase unwrapping by alternating
between two main steps: 1) estimating the missing data u given
a current estimate of the parameters f̂ , θ̂, and 2) updating the pa-
rameter estimates f̂ , θ̂ assuming the complete data x = y + u
is known. For instance, the FLSPUE algorithm iterates between
unwrapping the phase for a dense grid of candidate frequencies and
then applying ordinary least squares (OLS) regression to refine and
compute the best estimate [8]. However, the FLSPUE approach to
unwrapping given a candidate frequency constrains the noise to be
bounded within [−1/2, 1/2), which is only a good approximation
for uncorrelated noise with small variance. Our proposed algorithm
likewise alternates between phase unwrapping and linear regression.
However, we perform both steps more rigorously by accounting for
the statistics of both correlated phase error and AOPN.

3.1. Viterbi Phase Unwrapping

We seek the maximum likelihood estimate of the sequence of
integer-valued unwrappings u, given the observed data y and initial
estimates of the frequency f̂ and phase offset θ̂. Assuming the
sequence unwrapping is causal, and using a finite memory of length
C, we can approximate the maximum likelihood estimate as

û = argmax
u

p(y|u, f̂ , θ̂)

≈ argmax
u

N−1∏
n=0

p(yn|un,y
n−1
n−C , û

n−1
n−C , f̂ , θ̂), (10)

where zℓk = [zk, zk+1, . . . , zℓ]
T denotes the subset of a vector z

with indices k ≤ ℓ. The Viterbi algorithm estimates the maxi-
mum likelihood sequence by assigning a length (branch metric) to
transitions between possible states (the unwrapping values un) and
then recursively finding the sequence of states with the shortest path
length. For each sample n, we use the previous C unwrapping es-
timates ûn−1

n−C and the phase error correlation for causal LMMSE

prediction of the phase error at sample n:

ξ̂LMMSE
n = pT

CQ
−1
C (yn−1

n−C + ûn−1
n−C − f̂tn−1

n−C − θ̂), (11)

where cross-covariance vector pC has elements

[pC ]k = E [ηnηn−C+k] + E [ϵnϵn−C+k] , (12)

auto-covariance matrix QC has elements

[QC ]kℓ = E [ηn−C+kηn−C+ℓ] + E [ϵn−C+kϵn−C+ℓ] , (13)

k, ℓ ∈ {0, . . . , C − 1}, and t = [t0, t1, . . . , tN−1]
T. Given the

predicted phase error, the likelihood of each value of un is then

p(yn|un,y
n−1
n−C , û

n−1
n−C , f̂ , θ̂)

≈ 1√
2πσ2

e

exp

{
− (yn + un − f̂ tn − θ̂ − ξ̂LMMSE

n )2

2σ2
e

}
, (14)

where σ2
e = σ2

η + σ2
ϵ − pT

CQ
−1
C pC is the variance of the LMMSE

estimator error. The branch metric is the negative log-likelihood

λ(un) =
(yn + un − f̂ tn − θ̂ − ξ̂LMMSE

n )2

2σ2
e

+ log
(
σ2
e

)
(15)

and a sequence of states has length
∑N−1

n=0 λ(un). The most likely
sequence has the shortest path, with length LV. Note that unlike
FLSPUE, our Viterbi unwrapping method encourages but does not
constrain y + û to follow the hypothesized line f̂t + θ̂, allowing
for correlated noise that may drift from the line. Since both f and
R∆ϕn depend on τ in the FMCW lidar setting, QC and pC can
be computed given f̂ . The number of possible unwrappings at each
time step is large, so we use per-survivor processing and only keep
a fixed number of S survivor paths [16]. Viterbi unwrapping thus
considers multiple possible unwrapping sequences and chooses the
most likely one.

3.2. Generalized Least Squares Refinement

Based on the unwrapped phase estimate x̂ = y + û computed
from Viterbi phase unwrapping, we can refine f̂ and θ̂ by fitting an
affine function. Defining 1N as a column vector of N ones, matrix
A = [t,1N ], parameter vector b = [f, θ]T, and QN as the phase
error auto-covariance for the entire length-N sequence, the GLS pa-
rameter estimates are

b̂ = argmin
b

(x̂−Ab)TQ−1
N (x̂−Ab) (16)

=
(
ATQ−1

N A
)−1

ATQ−1
N x̂. (17)

Because R∆ϕn(t; τ) yields a banded Toeplitz matrix QN , a cir-
culant approximation to QN enables inversion via the fast Fourier
transform algorithm and is sufficiently accurate for N much larger
than the band width [17].

3.3. Full Algorithm

Like the FLSPUE algorithm [8], we initialize our estimation pro-
cedure at a discrete set of M initial frequencies {f (0)

0 , . . . , f
(0)
M−1}

and phase offsets {θ(0)0 , . . . , θ
(0)
M−1}. Starting with the an initial

pair f
(0)
m and θ

(0)
m , we iteratively perform Viterbi phase unwrap-

ping and refinement of f̂ and θ̂ as long as the LV of the unwrap-
ping sequence decreases. Then the final estimates of f̂ and θ̂ are the
frequency/offset pair that produced the lowest LV over all M grid
points. Pseudocode is shown in Algorithm 1.
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Fig. 3: Comparison of phase unwrapping methods for frequency es-
timation. Only our proposed Viterbi unwrapping method performs
consistently well when phase error is significant.

4. NUMERICAL EXPERIMENTS

We first demonstrate in Fig. 3 the performance of our proposed
Viterbi phase unwrapping algorithm compared to FLSPUE [8]
and the naı̈ve unwrapping used by Tretter [5]. The linewidth
∆ν = 10 MHz and the true distance is d = 120 m, resulting in
highly-correlated, high-variance phase error. The naı̈ve unwrapping
performs poorly when the phase error variance is large, causing the
frequency to be underestimated by Tretter’s method. Both FLSPUE
and our Viterbi unwrapping are initialized with a frequency cor-
responding to 80 m, far from the true frequency. While FLSPUE
unwrapping yields a bounded error distribution and thus has trouble
deviating from the initial phase, our proposed approach converges
to the true phase.

We next tested our proposed frequency estimation against ex-
isting algorithms, including periodogram maximization (Rife &
Boorstyn [3]), naı̈ve unwrapping and OLS regression (Tretter [5]),
and Lorentzian fitting (Kim et al. [4]). We found FLSPUE did not
achieve the best performance at any depth under any of the tested
conditions, so the results are omitted. The simulation consists of
30 trials each at distances from 10 to 140 m in 10-m increments.
Measurements consist of N = 2 × 104 samples over measurement
window Tmeas = 10 µs. The source is swept over a bandwidth of
10 GHz (i.e., γ = 1 GHz/µs) and has white frequency noise, with
linewidths 1- and 10-MHz. For our proposed method, the Viterbi
unwrapping algorithm uses a memory length C = 1, and the fre-
quency estimation uses the Lorentzian estimate as the single initial
frequency (M = 1).

Fig. 4 depicts the root mean square error (RMSE) performance
versus distance for AWGN levels yielding SNRs of 20, 10, and
0 dB. We observe that periodogram maximization, often the default
method for frequency estimation, is highly effective at low phase
noise because there is a strong periodogram peak around the true
depth. However, as the phase error increases with linewidth and/or
distance, the signal PSD broadens, degrading the performance of
peak-finding methods. Tretter’s method is even more sensitive to
phase error, achieving the best performance overall only when the to-
tal phase error variance is small. Lorentzian fitting and our proposed
method are far more consistent as a function of distance. Fig. 5 fur-
ther shows that our proposed algorithm achieves a lower RMSE than
Lorentzian fitting if the SNR is sufficiently high (i.e., above 7 dB)
because the phase error prediction performance improves as the un-
correlated AOPN component diminishes. Otherwise, initializing our
algorithm with the Lorentzian estimate yields similar performance
at low SNR.
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Fig. 4: Algorithm performance vs. distance for linewidths 1 and
10 MHz and SNR levels 20, 10, and 0 dB.
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5. CONCLUSIONS

We have introduced an algorithm for accurate depth estimation from
FMCW lidar measurements with significant phase noise and over
long range. While Lorentzian fitting achieves good robustness over-
all, we show that phase unwrapping methods such as our algorithm
can achieve even greater accuracy at high SNR. By handling large
laser linewidths, our algorithm could enable the use of cheaper swept
lasers with significant phase noise for use in FMCW lidar, SS-OCT,
coherent communications, and other applications. Future work will
aim to match the performance of Tretter’s method when the phase
error variance is low.
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