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Abstract
Planning and control for uncertain contact sys- tems is challenging as it is not clear how
to propagate uncertainty for planning. Contact-rich tasks can be modeled efficiently using
complementarity constraints among other tech- niques. In this paper, we present a stochastic
optimization technique with chance constraints for systems with stochastic complementarity
constraints. We use a particle filter-based approach to propagate moments for stochastic
complementarity system. To circumvent the issues of open-loop chance con- strained plan-
ning, we propose a contact-aware controller for covariance steering of the complementarity
system. Our opti- mization problem is formulated as Non-Linear Programming (NLP) using
bilevel optimization. We present an important- particle algorithm for numerical efficiency for
the underlying control problem. We verify that our contact-aware closed-loop controller is
able to steer the covariance of the states under stochastic contact-rich tasks.
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Covariance Steering for Uncertain Contact-Rich Systems

Yuki Shirai†, Devesh K. Jha‡, and Arvind U. Raghunathan‡

Abstract— Planning and control for uncertain contact sys-
tems is challenging as it is not clear how to propagate
uncertainty for planning. Contact-rich tasks can be modeled
efficiently using complementarity constraints among other tech-
niques. In this paper, we present a stochastic optimization
technique with chance constraints for systems with stochastic
complementarity constraints. We use a particle filter-based
approach to propagate moments for stochastic complementarity
system. To circumvent the issues of open-loop chance con-
strained planning, we propose a contact-aware controller for
covariance steering of the complementarity system. Our opti-
mization problem is formulated as Non-Linear Programming
(NLP) using bilevel optimization. We present an important-
particle algorithm for numerical efficiency for the underlying
control problem. We verify that our contact-aware closed-loop
controller is able to steer the covariance of the states under
stochastic contact-rich tasks.

I. INTRODUCTION

Contacts lead to discontinuous dynamics and thus, plan-
ning through contacts requires careful treatment of con-
straints arising due to these discontinuities. Complementarity
constraints offer an efficient way of modeling contact sys-
tems. However, uncertainty in contact systems could lead
to stochastic complementarity systems [1]. Even though
complementarity systems are well studied, stochastic com-
plementarity systems are not well understood. The state
and complementarity variables are implicitly related via the
complementarity constraints – uncertainty in one leads to
stochastic evolution of other. This makes uncertainty propa-
gation challenging. Furthermore, multiplicity of solutions to
the complementarity variables also makes it difficult to char-
acterize the stochastic evolution. In this paper, we present
an approximate treatment of stochastic complementarity sys-
tems using particles. We present the design and evaluation of
a contact-aware stochastic controller for covariance control
of the underlying uncertain system. An important-particle
algorithm is presented for an efficient solution to the resulting
stochastic optimization problem.

Chance-constrained optimization (CCO) has been exten-
sively studied in the control of uncertain systems [2], [3], [4],
[5], [6], [7]. It allows us to plan using the uncertainty in the
model by propagating the uncertainty which can be then used
to design a controller for desired performance constraints
of the system. However, in practice, the CCO techniques,
based on the analytical form of chance constraints, impose
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restrictive assumptions of Gaussian uncertainty and linear
constraints. Further, state uncertainty increases with time
and thus finding a controller for satisfying tighter state
constraints could be infeasible over a long planning horizon.
This is often the case in control of nonlinear systems with
large uncertainty. This problem is aggravated for contact-
rich systems due to the presence of discontinuities in system
dynamics.

To circumvent these challenges, we consider particle-
based method for uncertainty propagation and explicit covari-
ance control of our contact-rich system during optimization.

Contributions.
1) We present a novel formulation of covariance steering

for complementarity systems using feedforward and
feedback controller design.

2) An important-particle algorithm is proposed for numer-
ical efficiency and we evaluate the proposed method on
several examples.

While our motivation is to design robust feedback controllers
for manipulation [8], the full problem is out of the scope of
the current formulation. Thus, in this current paper, we limit
the scope to linear complementarity systems with uncertainty.

II. RELATED WORK

Our proposed stochastic optimization problem is mainly
related to three major areas of work. The first major area
is optimization with complementarity constraints. This topic
has been well studied in optimization and robotics litera-
ture [9], [10], [11], [12]. This approach has been shown
to work well for generating trajectories for manipulation
and locomotion problems. However, it cannot be trivially
extended to stochastic complementarity systems to intro-
duce robustness. More recently, contact-aware feedback con-
trollers for contact-rich systems have been proposed [13] for
linear complementarity systems. However, it cannot also be
extended to consider stochastic complementarity constraints
to provide stochastic guarantees.

Using stochastic complementarity constraints for planning
robust manipulation is not so well understood in literature.
Some of the recent work could be found in [14], [1].
However, the problem with these approaches is that the
uncertainty needs to be very small otherwise the optimiza-
tion might be infeasible. Consequently, these approaches
could fail to provide robust plans for uncertain contact
systems. Furthermore, uncertainty propagation for stochastic
complementarity systems is not properly modeled in these
approaches. One of the reasons is the implicit relationship
between contact and state variables in complementarity con-
straints. As a consequence, most of the known approaches



(e.g., extended Kalman filter [15], unscented Kalman filter
[16], moment-based [17], [18]) for uncertainty propagation
can not be used for stochastic complementarity systems.

Since open-loop CCO would lead to quite conservative
solutions to satisfy chance constraints, covariance steering
methods have gained attention to deal with long-horizon
planning for uncertain systems [19], [20], [21]. Covari-
ance steering methods are able to design feedforward and
feedback gains simultaneously to satisfy chance constraints.
However, these cannot be directly applied to contact-rich
systems since they assume (in general) linear dynamics with
Gaussian additive noises.

In this paper, we present an approach for planning in
stochastic contact-rich systems which formulates a robust
controller design by considering covariance steering during
planning. To understand uncertainty evolution in stochastic
complementarity systems, we use particle-based control for-
mulation [4], [22], [23], [24] to get approximate uncertainty
propagation. To the best of our knowledge, this is the first
time that we have shown covariance steering with chance
constraints for complementarity systems.

III. PROBLEM FORMULATION

In this section, we describe preliminaries of the method
proposed in the current work.

A. Stochastic Discrete-time Linear Complementarity Systems

In this work, we consider the Stochastic Discrete-time
Linear Complementarity Systems (SDLCS):

xk+1 =Ak(ξ)xk +Bkuk + Ck(ξ)λk+1 + gk(ξ)

+ wk(ξ) (1a)
0 ≤ λk+1 ⊥Dk(ξ)xk + Ekuk + Fk(ξ)λk+1 + hk(ξ)

+ lk(ξ) ≥ 0 (1b)

where k is the time-step index, xk ∈ Rnx is the state,
uk ∈ Rnu is the control input, and λk ∈ Rnc is the
algebraic variable (e.g., contact forces). We define x =
[x1, . . . , xT ], u = [u0, . . . , uT−1], λ = [λ1, . . . , λT ]. The
parameter ξ ∼ Ξ is the uncertain parameter with distribution
Ξ. In addition, Ak(ξ) ∈ Rnx×nx , Bk ∈ Rnx×nu , Ck(ξ) ∈
Rnx×nc , gk(ξ) ∈ Rnx , Dk(ξ) ∈ Rnc×nx , Ek ∈ Rnc×nu ,
Fk(ξ) ∈ Rnc×nc , and hk(ξ) ∈ Rnc are all dependent on the
uncertain parameter ξ. For simplicity, we abbreviate ξ from
these matrices for the discussion in the following sections.
The notation 0 ≤ a ⊥ b ≥ 0 denotes the complementarity
constraints a ≥ 0, b ≥ 0, ab = 0. The initial state of the
system x0(ξ) is also assumed to be uncertain. ∥x∥2Q means
a quadratic term with a weighting matrix Q.

In the following, we make the assumption that Fk(ξ) is a
P-matrix [25] for all k and ξ. Under this assumption, there is
an unique solution λk+1 to (1b) for each ξ and any uk, xk.
From this it is easy to infer that there exists an unique
trajectory x and λ for any realization of uncertainty ξ ∼ Ξ
and controls u from every initial condition x0(ξ). In other
words, we can define functions x : Ξ × Rnu(T−1) → RnxT

and λ : Ξ× RnuT that provides the unique trajectory given

a realization of uncertainty, and the controls trajectory. Note
that we do not show explicit dependence on initial condition
due to the dependence of x0 on the uncertain parameter ξ.

B. Stochastic Control for Contact-Rich Systems

In this work, we aim at finding a robust controller that
satisfies chance constraints over SDLCS. To realize this, the
following optimization problem can be formulated:

min
u

T∑
k=1

∥Eξ∼Ξ [xk(ξ, u)]− xd∥2Q +

T−1∑
k=0

∥uk∥2R (2a)

s.t. uk ∈ U (2b)
Prξ∼Ξ (x(ξ, u) ∈ X ) ≥ ∆ (2c)

where Q = Q⊤ is positive semidefinite, R = R⊤ is
positive definite, U is a convex polytope consisting of a
finite number of linear inequality constraints. xd is the target
state at t = T . The set X represents a convex safe region
where the entire state trajectory has to lie in. We assume
that X = {x ∈ RnxT | gi(x) ≤ 0 ∀ i = 1, . . . , ng}. Pr
denotes the probability of an event and ∆ is the user-
defined minimum safety probability, where the probability
of satisfying constraints is at least greater than ∆.

We propose to obtain an approximate solution to (2)
using the Sample Average Approximation (SAA) introduced
in [22], [23]. We explain more details in Sec IV.

IV. COVARIANCE STEERING FOR CONTACT-RICH
SYSTEMS

This section presents our proposed framework of stochas-
tic optimal control for contact-rich systems. Our framework
approximates the distribution of the state and algebraic
variables using particles. Under the assumption that F̄ is
P-matrix, our method can capture stochastic evolution of
SDLCS such that we can formally guarantee the violation of
states and design a closed-loop controller for SDLCS (i.e.,
covariance steering for SDLCS).

We first present our open- and closed-loop controller
formulation for SDLCS using particles and then present a
computationally beneficial approach based on the active-
point method [26] to accelerate the resulting optimization.

A. Particle-based Control for Contact-Rich Systems

We propose to solve (2) approximately using SAA by
sampling the uncertainty. In particular, we obtain N real-
izations of the uncertainty ΞN = {ξ1, . . . , ξN} by sampling
the distribution Ξ. In other words, we approximate the dis-
tribution Ξ using a finite-dimensional distribution ΞN which
follows an uniform distribution on the samples. Accordingly,
the SAA for (2) is given as

min
u

T∑
k=1

∥∥Eξ∼ΞN [xk(ξ, u)]− xd

∥∥2
Q
+

T−1∑
k=0

∥uk∥2R (3a)

s.t. uk ∈ U (3b)
Prξ∼ΞN (x(ξ, u) ∈ X ) ≥ ∆. (3c)



Note that the distribution Ξ has been replaced with the finite-
dimensional ΞN in the above to simplify the computation of
the expectation in the objective and chance constraint. How-
ever, there still remains the implicit function x(ξ, u) which
requires us to simulate the SDLCS for every realization of
ξ ∈ ΞN . We opt to remove this difficulty by replacing the
implicit functions with the corresponding trajectories xi, λi

for each ξi ∈ ΞN .
Our proposed computational formulation using N particles

is given by:

min
xi,u,λi

T∑
k=1

∥∥∥∥∥ 1

N

N∑
i=1

xi
k − xd

∥∥∥∥∥
2

Q

+

T−1∑
k=0

∥uk∥2R (4a)

s.t. xi
k+1 = Ai

kx
i
k +Bkuk + Ci

kλ
i
k+1 + gik + wi

k (4b)

0 ≤ λi
k+1 ⊥ Di

kx
i
k + Ekuk + F i

kλ
i
k+1

+ hi
k + lik ≥ 0 (4c)

xi
0 = x0(ξ

i) (4d)
uk ∈ U (4e)

1

N

N∑
i=1

I
(
xi ∈ X

)
≥ ∆ (4f)

where I(·) is an indicator function returning 1 when the
conditions in the operand are satisfied and 0 otherwise.
Note that xi, λi represent the state and algebraic variable
trajectory, respectively, propagated from a particular set of
particles xi

0, θ
i
k where θik = [Ai

k, C
i
k, g

i
k, D

i
k, F

i
k, h

i
k, w

i
k, v

i
k].

Using N trajectories obtained from N particles, we ap-
proximate mean of random variables as Eξ∼Ξ[xk(ξ, u)] ≈
1
N

∑N
i=1 x

i
k,Eξ∈Ξ[λk(ξ, u)] ≈ 1

N

∑N
i=1 λ

i
k. In (4), we ap-

proximate (2a) using the mean variable as shown in (4a).
Chance constraints (2c) can be also approximated as (4f)
using N realization trajectories, which can be formulated as
integer constraints (see [4]).

In this work, we consider the following controllers:

feedforward : uk = vk (5a)
feedback : uk = vk +Kk(xk − x̄k) + Lk(λk − λ̄k) (5b)

where Kk, Lk are feedback gains to control covariance. For
brevity, we use x̄k = 1

N

∑N
i=1 x

i
k, λ̄k = 1

N

∑N
i=1 λ

i
k. We

emphasize that controlling both states and contact variables
is critical for contact-rich systems and thus we also introduce
Lk(λk−λ̄k) to (5b) to stabilize the system. Here, we focus on
discussing feedback controller (5b) for (4). The optimization
formulation for covariance steering of SDLCS using particles
would be:

min
xi,v,K,L,λi

T∑
k=1

||x̄k − xd||2Q +

T−1∑
k=0

∥uk∥2R (6a)

s. t. xi
k+1 = (Ai

k +BkKk)x
i
k +Bkvk

+ (Ci
k +BkLk)λ

i
k+1 + ḡik

−BkKkx̄k −BkLkλ̄k+1 + wi
k (6b)

0 ≤ λi
k+1 ⊥ (Di

k + EkKk)x
i
k

+ Ekvk + (F i
k + EkLk)λ

i
k+1

+ hi
k − EkKkx̄k − EkLkλ̄k+1 + lik ≥ 0 (6c)

(4d), (4e), (4f) (6d)

To solve (6), we need to take care of, (6b), (6c) and (4f).
One method is mixed-integer programming. It is possible that
binary variables can be used to deal with integer constraints
(4f) using Big-M formulation. Also, bilinear terms in (6b)
and (6c) can be approximated using McCormick envelopes,
leading to additional binary variables. As a result, a number
of binary variables are introduced and we observed that it
is almost impossible to obtain a single feasible solution.
Instead, in this work, we use NLP which can solve (6b)
as nonlinear constraints and (6c) as complementarity con-
straints. We describe how we solve (4f) using NLP through
complementarity constraints in Sec IV-B.

B. Bilevel Optimization for Particle-based Control

To solve (6) using NLP, we need to solve integer con-
straints (4f) in NLP fashion. To achieve this, we propose the
following bilevel optimization problem.

min
xi,v,K,L,λi,ti,z∗

T∑
k=1

∥x̄k − xd∥2Q +

T−1∑
k=0

∥uk∥2R (7a)

s. t. (6b), (6c), (4e) (7b)

∀j = 1, . . . , ng, gj(x) ≤ ti, (7c)

1

N

N∑
i=1

zi,∗ ≥ ∆ (7d)

∀i = 1, . . . , N, zi,∗ = argmin
zi

tizi|0 ≤ zi ≤ 1 (7e)

We introduce time-invariant parameter ti ∈ R1 for each
set of trajectory realization i. If xi ∈ X , ti ≥ −ϵ with
ϵ ≥ 0. In contrast, if x ̸∈ X , ti ≥ 0. This condition is
encoded in (7c). We have in total N lower-level optimization
problems (7e), where each optimization is formulated as
linear programming. zi ∈ R1 is the decision variable used
in i -th lower-level optimization problem.

The purpose of (7e) is to count the number of trajectory
realizations that are inside X . The optimal solution of (7e)
can be as follows:

zi =


1, ti < 0

[0, 1] , ti = 0

0, ti > 0

(8)

If ti < 0, (7c) argues that xi ∈ X and thus we count
this i-th trajectory propagated from i-th particles as one. If
ti = 0, (7c) argues xi ∈ X (xi lies on the boundary of X )
and thus we count this i-th trajectory propagated from i-th
particles as one. If ti > 0, then xi is not within X , and thus
we count it as zero. Then (7d) considers the approximated
chance constraints.

Since the upper-level optimization decision variable ti can
be influenced by other upper-level decision variables, we
need to solve these two problems simultaneously, leading
to a bilevel optimization problem. Since the lower-level



optimization problems are formulated as N linear program-
ming problems, we can efficiently solve the entire bilevel
optimization problem using the Karush-Kuhn-Tucker (KKT)
condition as follows:

min
xi,v,K,L,λi,ti,zi,∗,wi

+,wi
−

(7a) (9a)

s. t. (7b), (7c), (7d) (9b)

∀i = 1, . . . , N, 0 ≤ zi,∗ ≤ 1, wi
+, w

i
− ≥ 0 (9c)

wi
+(z

i,∗ − 1) = 0, wi
−(z

i,∗) = 0, (9d)

ti + wi
+ − wi

− = 0 (9e)

where wi
+, w

i
− are Lagrange multipliers associated with

zi − 1 ≤ 0, −zi ≤ 0, respectively. In conclusion, we
obtain a single-level nonlinear programming problem with
complementarity constraints, which can be efficiently solved
using an off-the-shelf solver such as IPOPT [27].

C. Important-particle Method for Particle-based Control

One limitation of our method in Sec IV-B is that the
computation can be demanding with many particles to cap-
ture the evolution of uncertainty. In this section, we present
an approximate algorithm which samples important particles
which might be most informative for constraint violation. To
decrease the computational burden, we employ an important-
particle method (see Alg. 1) which starts from a relatively
small number of particles and keeps adding particles if the
chance constraints are not satisfied due to the lack of the
accurate approximation of variables. Since we start from a
small number of particles, it is possible that our optimization
could quickly find a feasible solution which works over
testing data set. However, in the case when the problem
is infeasible for some particles, we add the particles which
experience maximum constraint violation to our set. Thus,
we call our proposed method ”important-particle” method–
the worst particles specify the boundary of feasible sets.

The pseudocode of our important-particle method for co-
variance steering is shown in Alg. 1. Param is the collection
of parameters such as Q,R. α, β represent the number of
particles for training and testing the controller, respectively.
γ is the number of initial particles our method uses during
its first iteration. η is the number of particles our methods
adds to (9) for each iteration.

As shown in Alg. 1, our method keeps adding more
particles unless either it runs more than MAX-ITER or
converges to user-defined ∆ given threshold ∆th. For each
iteration, we run (9). If the obtained solution is feasible, we
do Monte Carlo simulation (MC simulation) over the training
data set with α particles and calculate the empirical safe
probability ∆α. If this ∆α is close to or greater than ∆, we
terminate the while loop and run the obtained controller over
the testing data set with β particles. Otherwise, we choose the
η worst particles based on how much they violate the chance
constraints and add them to θ. If we obtain the infeasible
solution or the ”restoration phase failed” solution in IPOPT,
we randomly choose the η particles.

Algorithm 1 ImportantParticle(Param, α, β, γ, η)

1: j = 0, θ = γ, ∆α = 0
2: while j ≤ MAX-ITER and (∆−∆α)

2 ≥ ∆th and ∆ > ∆α;
do

3: Run (9) with N = θ
4: if The obtained solution from (9) is feasible then
5: Run MC simulation with α particles and calculate ∆α.
6: Choose the η worst particles that violate chance con-

straints.
7: else
8: Choose the random η particles.
9: θ = θ + η

10: Run MC simulation with β particles and calculate ∆β .
11: return xi,∗, v∗,K∗, L∗, λi,∗, ti,∗, zi,∗, wi

+, w
i
−,∆β
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Fig. 1: (a): cartpole with softwalls. (b): acrobot with soft joints.

V. RESULTS

In this section, we present numerical results for our pro-
posed approach and compare them against some baselines.
In particular, we would like to highlight and understand the
following questions:

1) Does uncertainty in complementarity constraints lead
to uncertainty in state trajectory?

2) How does the proposed controller perform of variance
of states for SDLCS?

We implement our method using IPOPT [27] with PY-
ROBOCOP [10]. The optimization problem is implemented
on a computer with Intel i7-12700K processor. We set α =
250, β = 1000 for Alg. 1. For γ and η in Alg. 1, we use the
different values for different applications as shown in Table II
and Table III. When we run (9) alone without using Alg. 1,
we use 1000 samples to calculate the empirical probability
of failure to evaluate the satisfaction of chance constraints.

Here we explain how we simulate trajectories (i.e., per-
form MC simulation for SDLCS, see [1] for more details).
We propagate the dynamics by finding the roots of the
complementarity system with sampled parameters given the
control sequence obtained from optimization. We run each
case for 1000 trials with different sampled parameters to
estimate the probability of failure. Note that, unlike the
continuous-domain dynamics, we cannot rollout the dynam-
ics for SDLCS with the given control sequences since we do
not have the access to λk+1.

A. Uncertainty Propagation for SDLCS

We show uncertainty evolution for SDLCS. We demon-
strate this for a cartpole system with softwalls (see [13] for
more details). Here we consider both k1 and k2 follows uni-
form distributions where upper bound of uniform distribution
for k1 and k2 is 14, 12, respectively, and the lower bound
is 5 for both k1 and k2. In this experiment, we do not run



Fig. 2: Uncertainty propagation for cartpole system. Here only uncertainty
arises from stiffness parameters k1, k2.

Fig. 3: Simulated trajectories for cartpole system using ERM-based con-
troller. ∆ = 0.2 and ∆test = 0.083. Red lines show boundaries specified
in chance constraints.

any controller: we simply propagate SDLCS given uncertain
parameters in order to show how the SDLCS behaves.

Fig. 2 shows the evolution of uncertainty for the aforemen-
tioned system. At t = 0 s, there is no uncertainty for state
θt=0. However, because we provide uncertainty with k1 and
k2, λt=0.1 has uncertainty. This is again because given real-
ization of uncertain parameters, complementarity constraints
give a realization of λ and y, resulting in uncertainty in λ and
y. This stochastic λt=0.1 brings uncertainty in θt=0.1 based
on (1). As shown in Fig. 2, both state and complementarity
variables are stochastic. This can not be captured in approx-
imations like Expected Residual Minimization (ERM) [14].

B. Cartpole with Softwalls

We demonstrate our open- and closed-loop controllers for
cartpole with softwalls system. x is the cart position and
θ is the pole angle. u1 is the control and λ1, λ2 are the
reaction forces at from the wall 1, 2, respectively. We have
the following deterministic physical parameters. g = 9.81 is
the gravitational acceleration, mp = 0.1,mc = 1.0 are the
mass of the pole, cart, respectively. l = 0.5 is the length of
the pole and d = 0.15 is the distance from the origin of the
coordinate to the walls. We assume that the uncertainty arises
from the k1, k2 and use the same distribution in Sec V-A.
We set dt = 0.1 for the explicit Euler integration and T = 6.

The results using ERM and our controller for the open-
loop trajectory are shown in Fig. 3, Fig. 4. We observed
that the proposed open-loop controller shows the better sat-
isfaction of chance constraints compared to the ERM-based
method. This is because our method explicitly considers
propagation of uncertainty for SDLCS while the ERM-based
method is unable to consider. Also, we observe that the gap
between the commanded ∆ used in our optimization and

Fig. 4: Simulated trajectories for cartpole system using our open-loop
controller. ∆ = 0.2 and ∆test = 0.190 where ∆ is input of optimization
and ∆test is the empirically obtained success rate from MC simulation. Red
lines show boundaries specified in chance constraints.

Fig. 5: Simulated trajectories for cartpole system using our closed-loop
controller. Top: ∆ = 0.6 and ∆test = 0.510, bottom: ∆ = 0.2 and
∆test = 0.188, where ∆ is input of optimization and ∆test is the empirically
obtained success rate from MC simulation. Red lines show boundaries
specified in chance constraints.

∆test obtained from MC simulation over testing dataset is
smaller the gap between the commanded ∆ used in ERM
method and ∆test obtained from MC simulation over testing
dataset. Again this is because our method could capture
the evolution of uncertainty for SDLCS. However, even
our open-loop controller does not show the much better
performance than the ERM. To show the higher ∆test, we
need to input the higher ∆ as an input of optimization. It is
quite difficult especially for long-horizon planning problems
since uncertainty keeps evolving, which can be observed
from both Fig. 3 and Fig. 4.

Next, we discuss the difference among our proposed
contact-aware closed-loop, the non-contact-aware (i.e., Lk =
0,∀k in (5b)) closed loop, and the open-loop controllers. We
observed that in Table I, (9) for open-loop controller with
high ∆ was unable to find feasible solutions but (9) for
closed-loop controller could find feasible solutions. Since
the closed-loop controller can change feedback gains to
satisfy chance constraints, it could find feasible solutions
with high ∆. Also, Table I shows that the contact-aware
closed-loop controller could find the feasible solution with
high ∆ = 0.8, 0.7 but the non-contact-aware controller (i.e.,
Lk = 0,∀k in (5b)) could not. For SDLCS, introducing
feedback to both states and forces is important to realize the
robust motion. The MC simulation results using our contact-



TABLE I: Comparison of feasibility for cartpole system among open-, non-
contact-aware closed, and contact-aware-closed controllers with different ∆.
◦ and × show if optimization finds a feasible solution or not, respectively.

∆ 0.8 0.7 0.6 0.4 0.2
Open-loop × × × ◦ ◦

Non-contact-aware closed-loop × × ◦ ◦ ◦
Contact-aware closed-loop ◦ ◦ ◦ ◦ ◦

TABLE II: Comparison of safe probability and runtime for cartpole system
between important-particle method (top) with γ = 10, η = 10 and naive
method (bottom) with ∆ = 0.6 for designing the closed-loop controller. T
represents runtime for each iteration and np is the number of particles.

iter 1 2 3
∆train 0.2708 0.09 0.592
∆test N/A N/A 0.588
T [s] 25 35 148
np 10 20 30

Case 1 2 3 4
∆test 0.277 0.376 0.451 0.499
T [s] 25 26 55 620
np 10 20 30 50

aware closed-loop controller are shown in Fig. 5. In contrast
to Fig. 3 and Fig. 4, the closed-loop controller could bound
the distribution of the states because it controls covariance.

We discuss computational results. Firstly, we observe
that our important-particle method converges and the gap
between ∆train and ∆test is small once it finishes its third time
iteration. It means that our important-particle method could
successfully find feasible trajectories with relative small
number of particles. Secondly, in Table II the important-
particle method shows the higher ∆train as the number
of particles used in optimization increases. The proposed
important-particle method shows better convergence (in total
208 s to have ∆train ≥ 0.49) than the naive method (620 s
with 50 particles to have ∆test ≥ 0.49) since our important-
particle method keeps choosing the worst-case particles
which break chance constraints.

C. Acrobot with Soft Joints

We also demonstrate our controller for acrobot with soft
joints system (see [13] for more details). θ1 is the first joint
angle and θ2 is the second joint angle. u1 is the control at the
second joint and λ1, λ2 are the reaction forces at from the
wall 1, 2, respectively. We have the following deterministic
physical parameters.g = 9.81 is the gravitational acceler-
ation, m1 = 0.5,m2 = 1.0 are the mass of the pole, cart,
respectively. l1 = 0.5 is the length of the rod from the first to
the second joint. d = 0.2 is the angle limit of θ1. We consider
the stochastic physical parameters k and l2 where k is the
stiffness of the walls and l2 is the length of the second rod.
We assume that k follows uniform distribution where the
upper bound and the lower bound of the distribution is 1.6
and 0.6, respectively. We assume that l2 follows a truncated
Gaussian distribution where we set the mean to 1.0, variance
to 0.01, the upper bound of the interval is 1.3, and the lower
bound of the interval is 0.7, respectively. We set dt = 0.04
for the explicit Euler integration and T = 15.

The open- and closed-loop trajectories are shown in Fig. 6.
We observed that both controller could satisfy chance con-

Fig. 6: Simulated trajectories for acrobot using our open- and closed-loop
controllers. Top: closed-loop controller with ∆ = 0.8 and ∆test = 0.771,
bottom: open-loop controller with ∆ = 0.4 and ∆test = 0.366. Red lines
show boundaries specified in chance constraints. The reader should note
that open-loop controller solution was infeasible for ∆ = 0.8, and thus we
show results for ∆ = 0.4.

TABLE III: Comparison of safe probability and runtime for acrobot system
between important-particle method (top) with γ = 4, η = 4 and naive
method (bottom) with ∆ = 0.8. T represents runtime for each iteration
and np is the number of particles.

iter 1 2 3 4 5 6 7
∆train 0.426 0.485 0.562 0.625 0.363 0.593 0.763
∆test N/A N/A N/A N/A N/A N/A 0.771
T [s] 31 97 557 887 698 2450 779
np 4 8 12 16 20 24 28

Case 1 2 3 4 5 6 7
∆test 0.009 0.103 0.159 0.541 0.670 0.553 0.539
T [s] 31 15 229 260 944 3993 901
np 4 8 12 16 20 24 28

straints over the testing dataset and the closed-loop controller
shows the better performance. Table III shows that the
important-particle method shows the higher ∆test = 0.771
than the naive method with the same number of particles
used in optimization.

VI. DISCUSSION

Stochastic complementarity systems are not well under-
stood in literature. This paper presents a study of SDLCS
to perform covariance steering using particles. Under the
assumption of uniqueness of trajectory (F̄ is P-matrix) for
complementarity systems, the proposed method is able to
compute covariance controller for SDLCS. We presented an
important-particle method to alleviate computational com-
plexity of the resulting optimization problem. It is shown that
our work could design open- and closed-loop controllers with
chance constraints by appropriately considering the evolution
of uncertainty for SDLCS.

In the future, we would like to study more general manip-
ulation systems by relaxing the assumption on uniqueness of
trajectory for SDLCS. Another limitation of this work is that
the computation is still demanding. Thus, we would like to
employ distributed optimization techniques such as ADMM
[28].
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