
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Robust Time Series Recovery and Classification Using
Test-time Noise Simulator Networks

Jeon, Eun Som; Lohit, Suhas; Anirudh, Rushil; Turaga, Pavan

TR2023-021 April 19, 2023

Abstract
Time-series are commonly susceptible to various types of corruption due to sensor-level
changes and defects which can result in missing samples, sensor and quantization noise, un-
known calibration, unknown phase shifts etc. These corruptions cannot be easily corrected as
the noise model may be unknown at the time of deployment. This also results in the inability
to employ pre-trained classifiers, trained on (clean) source data. In this paper, we present a
general frame- work and models for time-series that can make use of (unlabeled) test samples
to estimate the noise model—entirely at test time. To this end, we use a coupled decoder
model and an additional neural network which acts as a learned noise model simulator. We
show that the framework is able to “clean” the data so as to match the source training data
statistics and the cleaned data can be directly used with a pre-trained classifier for robust
predictions. We perform empirical studies on diverse application domains with different types
of sensors, clearly demonstrating the effectiveness and generality of this method.

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
2023

c© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





ROBUST TIME SERIES RECOVERY AND CLASSIFICATION
USING TEST-TIME NOISE SIMULATOR NETWORKS

Eun Som Jeon⋆ Suhas Lohit† Rushil Anirudh‡ Pavan Turaga⋆

⋆ Geometric Media Lab, Arizona State University, Tempe, AZ, USA
†Mitsubishi Electric Research Laboratories, Cambridge, MA, USA
‡Lawrence Livermore National Laboratory, Livermore, CA, USA

ABSTRACT

Time-series are commonly susceptible to various types of corruption
due to sensor-level changes and defects which can result in missing
samples, sensor and quantization noise, unknown calibration, un-
known phase shifts etc. These corruptions cannot be easily corrected
as the noise model may be unknown at the time of deployment. This
also results in the inability to employ pre-trained classifiers, trained
on (clean) source data. In this paper, we present a general frame-
work and models for time-series that can make use of (unlabeled)
test samples to estimate the noise model—entirely at test time. To
this end, we use a coupled decoder model and an additional neural
network which acts as a learned noise model simulator. We show
that the framework is able to “clean” the data so as to match the
source training data statistics and the cleaned data can be directly
used with a pre-trained classifier for robust predictions. We perform
empirical studies on diverse application domains with different types
of sensors, clearly demonstrating the effectiveness and generality of
this method.

Index Terms— Signal recovery, DNN, time series

1. INTRODUCTION

A common obstacle in deploying machine learning models in a prac-
tical setting, usually trained in ideal conditions, is that the sensor data
may exhibit a domain shift from those employed during training-
time. This can arise due to differing sensor configurations, such as
sampling rate and calibration, defects leading to missing data, mea-
surement noise, unknown phase shifts etc. Due to its unpredictable
nature, the noise model for any particular setting is usually unknown.
When dealing with 2D images, this has been studied under the um-
brella of robustness, with several effective techniques that use aug-
mentations [1, 2], adversarial training [3, 4], and other specialized
strategies that expose the machine learning model to a large class of
potential variations in the data during train time, so that they gen-
eralize well at test time, even when the data shift is unknown. Un-
fortunately, many heuristics like augmentations, and ℓp-norm per-
turbations developed in images do not work as well when dealing
with time varying data – especially when dealing with noise mod-
els specific to time series such as phase shifts. Moreover, in some
applications like healthcare, it can be important to recover the origi-
nal signal instead of simply building invariance into a discriminative
model, so that a person can visualize/use the recovered signal for
decision-making.

This work of E. Jeon and P. Turaga was supported by NIH under Grant
R01GM135927, as part of the Joint DMS/NIGMS Initiative to Support Re-
search at the Interface of the Biological and Mathematical Sciences.

Fig. 1: Overview of ROBUSTTS and ROBUSTTS++ and the Noise
Simulator Network (NSN) architecture.

In this paper, we address the problem of robustness and recov-
ery of time-series to several unknown test-time corruptions. We ap-
proach it using a decoder model trained on clean or ideal unlabeled
training data to capture the entire space of possible signals. To ac-
count for the unknown noise, we use a shallower network called a
Noise Simulator Network (NSN) which simulates the noise model
relative to the training data used to train the decoder model. With
this strategy, called ROBUSTTS , we can “clean” the data at test time
by sampling the decoder model in such a way that when the simu-
lated noise is applied to the generated data, it matches the observed
samples. An important benefit, in addition to high fidelity signal re-
covery, is that the final output from the decoder model can be used
in lieu of the measured data as input to a classifier trained on clean
data. We design a further refinement step, ROBUSTTS++ , where
the training and test sets are brought closer using the learned NSN
from ROBUSTTS , and leads to further improved performance.

In multiple application domains and sensors, we find that RO-
BUSTTS and ROBUSTTS++ consistently and significantly improve
performance over several baselines both from the denoising perspec-
tive (denoise and then classify) and robustness perspective (make the
classifier robust to distribution shifts). By simulating commonly oc-
curring noise models, we present extensive empirical analysis clearly
demonstrating the advantages of the proposed method.

2. RELATED WORK

Unsupervised learning and decoder modeling for time series:
The algorithms proposed in this paper rely on a pretrained decoder
model to generate the time series and we optimize the latent space of
a decoder model. Within the realm of neural network-based meth-
ods, different types of decoder models have been designed. Concep-
tually, the simplest one is the autoencoder (AE) trained to minimize
the reconstruction loss, however, it cannot sample new data easily.



This drawback can be overcome with models such as GANs [5, 6],
Variational AEs (VAE) [7] and Wasserstein AEs (WAE) [8], which
allow for sampling the latent space easily. WAEs are the most stable.
Denoising, recovery and imputation methods for time series:
Several algorithms exist for denoising and imputation of time series
problems, including linear filtering techniques [9] and dictionary
learning and sparse coding [10], which are consistently outper-
formed by deep learning techniques for large data [11–13]. In
general, noise models are assumed to be known or are limited to a
single type, which is not universal in nature. Noise learning-based
denoising autoencoder [14] is not applicable if the noise at test time
is unknown. Our work is inspired by a recent method [15], which
was specifically designed to account for domain shift in the test 2D
images. Instead, we develop a framework that is meant for time
series and propose a further refinement algorithm which is crucial in
improving performance.
Making deep classifiers more robust: As the eventual goal of de-
noising and imputation is high-level inference e.g. classification
and anomaly detection, we can try to directly train classifiers and
anomaly detectors to be more robust to test-time corruptions. Meth-
ods like domain adaptation [16] are related to our approach in that
they employ unlabeled data from the test domain. However, they
typically rely on learning invariant representations between source
and target, which may not always be possible if the target domain is
corrupted by several different random noise models, particularly in
a few shot setting with only a few tens of samples available at test
time. Furthermore, in most of augmentations and auxiliary tasks [2]
are image-domain specific (like affine transforms, cutouts, etc.), and
its unclear how they generalize to the time domain.

3. ALGORITHM AND ARCHITECTURE

Our main goal is to achieve robustness in recovering and classifying
time series under unknown noise during test-time. An overview our
approach is depicted in Fig 1. At its core, ROBUSTTS utilizes a
decoder model trained on clean data, to jointly estimate the unknown
noise using a NSN, and the latent space parameters corresponding to
the cleaned test data.
Problem setup and notation: We first train a decoder model on a
clean training set P and use the trained decoder model G : Rd 7→ M,
where M represents the manifold of clean time series and d is the di-
mensionality of the latent space. Consider a multi-variate time series
signal X ∈ M. X , clean test data, can be represented as a matrix
of dimensions c × t, where c and t are the number of channels and
frames/samples, respectively. Let us represent the (unknown) cor-
ruption process as Y = N (X), where N (·) is a noise function and
Y , the observed signal at the time of deployment. When N is known,
the problem becomes much simpler and the noisy signal Y can be
cleaned. When N is unknown, we perform cleaning by projecting Y
onto M and simultaneously approximating N . Next, let the observed
test-time sequences be Y = {Y1, Y2, . . . , Yn}, where n is the num-
ber of sequences and Yi = N (Xi), and X = {X1, X2 . . . , Xn}.
3.1. Joint signal recovery and noise simulator training
Let us denote by N̂ the neural network, parameterized by Θ used to
approximate the corruption process N . Given noisy data Yi’s and
the decoder G, we want to find N̂ and X̂ such that N̂ (X̂) ≈ Y and
X̂ ≈ X . Here X̂ = G(z∗), constrained by the sigmoid function
to set values between 0 and 1, obtained after optimizing over the
parameters Θ∗, and latent variables z which are the inputs to the
decoder model. To this end, our goal is to optimize the following
objective:

Θ∗, {z∗j}nj=1 = argmin
Θ,{zj}nj=1

n∑
j=1

L(Yj , N̂ (G(zj),Θ)) (1)

As both G and N̂ are differentiable, the gradients of the objective
in equation (1) can be evaluated with backpropagation and existing
gradient-based optimizers. In this paper, we solve this optimization
problem approximately using an alternating optimization framework
which converges to a minimum fairly quickly in all the applications
considered here. We outline the alternating optimization steps for
the (k + 1)th iteration below.
1. Fix N̂ and optimize for z∗ using a projected gradient descent

(PGD) method similar to [17]. For each j = 1, . . . , n,
z
(k+1)
j = argmin

zj

∥Yj − N̂ (G(zj),Θ(k))∥22 (2)

2. Fix {z∗j}nj=1 and optimize for Θ using the mean squared error as
the loss function and stochastic/mini-batch gradient-based opti-
mizers:

Θ(k+1) = argmin
Θ

1

n

n∑
j=1

∥Yj − N̂ (G(z(k+1)
j ),Θ)∥22 (3)

It is important to note that the inner loop optimization problems
(2) and (3) are solved (approximately) using gradient-based descent
methods run for η and λ iterations respectively. We will denote by
κ, the number of outer loop iterations, i.e. k = 1, 2, . . . , κ. Once
we reach convergence, the output of this algorithm is the cleaned
version of the Y given by X̂j = G(z∗j ), ∀j in the test set. We can
also envision periodically using this strategy to update N̂ to account
for changes in the noise model during test time. Assuming that the
pretrained decoder model is good, if the corruption function is well
estimated by N̂ , then X̂j ≈ Xj . However, if the unknown noise
process is very complicated and there are no common patterns in the
observed samples, it can be hard to estimate N accurately.

3.2. Noise simulator network (NSN) architecture

The NSN plays a crucial role in obtaining robustness to unknown
noise models within ROBUSTTS . We design a NSN to deal with
commonly occurring time series errors such as missing data, spikes,
noise injection, and unknown time scaling and phase shifts. The net-
work includes two parts – a time warping module (affine transform)
and a 1D CNN, which is shown in Fig. 1. To solve for unknown
phase shifts and linear time scaling, we adopt smaller network to
first predict these parameters which are applied to input via linear
interpolation, which is a differentiable operation [18]. The effective
warping function denoted by γ(τ) = ατ + β, τ ∈ {1, 2, . . . , t}, α
is the parameter for time scaling, and β is for time shifting. The time
warping module (TWM) is used to undo the effect of unknown time
scaling and shifting as the CNN layers alone may not be sufficient.
Importantly, we find that the NSN provides robustness to the span
of its constituent functions (i.e., combinations of different functions)
resulting in a significantly larger space of recoverable noise models.
Moreover, as we demonstrate, the NSN is also effective in cleaning
samples that are all independently corrupted in a batch with different
noise models.

3.3. Further refinement

To further refine the outputs X obtained from the ROBUSTTS stage,
we propose an additional refinement stage, ROBUSTTS++ , by re-
visiting the training set P. Having estimated the unknown noise
model, N̂ , with ROBUSTTS on the observed test data, we use it to
corrupt a subset of the clean training data, Ps ⊂ P, by computing
N̂ (Psi),∀Psi ∈ Ps. Next, we repeat the noise estimation process
using Ps and train a new NSN, N̂train in the same fashion as in RO-
BUSTTS . This allows us to create a “cleaned” version of the entire
corrupted training data, denoted by P̂. The advantage of this process
is that it gives us correspondence between the estimated clean data



Fig. 2: Corruption functions studied in this paper. We also consider
combinations of these corruptions in addition to simulating calibra-
tion errors with a random linear function.

and the true clean data. Consequently, we train a neural network de-
noiser H with the same architecture and training protocol as N . H
is parameterized by Θ′ to map P̂ to P. H is an autoencoder with
1D convolutional layers. It is trained by minimizing the usual mean
squared error L(Θ′) =

∑m
j=1∥H(P̂j ,Θ

′) − Pj∥22. Finally, using

the trained H, we can obtain the refined X′ = H(X̂) that is closer
to X, compared to X̂. We will substantiate this claim empirically.

4. EXPERIMENTAL RESULTS

In this section, we conduct experiments on a subset of the publicly
available PAMAP2 [19] and HDM05 [20] datasets to verify the ef-
fectiveness of the proposed method. For PAMAP2, the length of a
sequences is 100 with 40 channels, recorded from the heart rate and
IMUs for 9 subjects. We use only subjects in this dataset, about 3.5K
sequences each, for which examples from all 12 activity classes are
available and allow for measuring the effect of the proposed method
on downstream classification better. We use ResNet-18 as a clas-
sifier, whose the number of trainable parameters is approximately
248K. The clean test accuracy using leave-one-subject-out evalua-
tion on subject 1, 4, and 6 were 75.17%, 96.17% and 89.65%, re-
spectively. For the dataset, we use κ = 25, and n = 512 cor-
rupted/noisy test sequences for training the NSN. HDM05 is a chal-
lenging MoCap dataset of 3D human actions with 2337 samples of
5 subjects for 130 classes, consisting of 100 samples for a sequence
with 31 3D joints – 93 channels. We perform 5-fold cross validation
and report averaged results. The accuracy of the model for the clean
test data was 78.00%. We use κ = 15 and n = 512 for the dataset.

Table 1: Classification accuracy (%) (PSNR in dB) with various
corruption functions on test subject 1 of PAMAP2 with AE decoder.
(α, β) are (1.1, 7.0). Note, § denotes without TWM.

Method
Noise / corruption type

Removal Missing Removal +
Gaussian Noise

Missing +
Small Error

Time Scale
and Shift

No denoising 5.39 5.44 5.39 5.36 5.33
(11.71) (11.72) (11.69) (12.35) (10.91)

ROBUSTTS § 58.84±1.14 60.00±0.51 58.44±1.38 59.17±0.55 51.58±0.25
(26.85±0.09) (27.11±0.18) (26.80±0.12) (26.92±0.07) (21.73±0.02)

ROBUSTTS 60.11±0.13 61.20±0.22 59.82±0.18 59.90±0.30 58.54±0.31
(26.86±0.03) (27.31±0.03) (26.86±0.02) (26.97±0.06) (26.93±0.06)

4.1. Noise/corruption types for experiments

In this paper, we consider various corruption errors commonly
encountered in time series [21–24], including continuous/discrete
missing, Gaussian noise, small error, time axis error, calibration
error, and multiple noise error, as illustrated in Fig. 2. As a more
challenging setting (“Random”), we randomly choose and apply a
single noise function for each test sequence and then apply a ran-
dom “Time Scale/Shift”. The noisy sequences thus generated are
henceforth treated as the test set for all the algorithms. We use
the following values of noise parameters in all our experiments un-
less otherwise stated. For “Removal” and “Missing” corruptions on
PAMAP2, 15% of the samples in a sequence are used. For HDM05,
20% of the samples in a sequence are used for both corruption func-
tions. Standard deviation of “Gaussian noise” is 0.2 and the offset
value for “Small Error” is 0.2 for 50% of the frames in the sequence.

For applying time scale/shift are chosen by uniformly sampling from
0.8 ≤ α ≤ 1.2 and −15 ≤ β ≤ 15. Finally, we apply a linear
function to model unknown calibration using aY (t) + b, and we fix
them at arbitrarily chosen small values of a = 0.22 and b = 0.19.
Baseline methods: We measure our frameworks against both (a)
signal recovery methods i.e. denoise-then-classify where we first
denoise the signal and pass it through a classifier trained only on
clean data and (b) robust classifiers. (a) We denote Noisy input
which is directly feeding the noisy test signals to the classifier trained
on clean data. DAE [25], DAE+AT [26], TCDAE [13] are used as
baslines with an assumption that noise types that occur at test time
are known beforehand, even though the exact noise parameters
are not. We sample corresponding noise parameters randomly from
an interval of 0.1 to 4 times the true noise parameters used to gen-
erate observed data. We employ a latent space optimization (LSO)
framework for test-time adaptation, referring to recent works like
[17]. (b) With the assumption that the exact noise types that occur
at test time are unknown, we trained classifiers with the different
number of corruption functions that we use for generating observed
data. Besides the Naı̈ve augmentation (Aug), Mixup [1] with 0.25
and Adversarial training (Adv) [3] with PGD [4] and multiple per-
turbations (mPGD) [27] for attacks are implemented as baselines.
The attack parameters for number of steps, step size, and ϵ are set 7,
0.1, and 0.3, respectively. Also, we train ChoiceNet [28] on clean
data and evaluate with corrupted data.

4.2. Implementation details and results

The total number of iterations for training NSN η and PGD optimiza-
tion λ are 20 and 25. We compare the proposed methods with the
baselines in terms of peak signal-to-noise ratio (PSNR) between the
denoised/recovered time sequences and the ground-truth sequences
as well as classification accuracy using classifiers trained on clean
training data. We report the results with mean and std. dev over
5 random initializations. Note, § denotes without TWM. For aug-
mented classifier, one noise type is selected and averaged accuracy
is reported. For PAMAP2 and HDM05, the sizes of latent space
of encoder-decoder network are 64 and 200, respectively. The net-
works are trained with a batch size of 128 and 64, respectively. We
use Adam optimizer for training the models. The total number of
epochs is set to 200 for all datasets with the learning rate of 10−4.
Results on PAMAP2: In Table 1 and 2, classification accuracy
and PSNR under different unknown noise settings for ROBUSTTS
are described. We observe that ROBUSTTS with TWM yields the
best results, prominently shown with time scale and shift corruption.
TWM in the NSN helps further improves performance. It is easy
to see that ROBUSTTS++ yields the best results, followed by RO-
BUSTTS where the NSN employs the TWM. Additionally, as shown
in 3, ROBUSTTS with TWM achieves the best performance with a
decoder part of a WAE in accuracy and AE in PSNR. Results with
VAE generate the lowest in both accuracy and PSNR.
Results on HDM05: As described in Table 4, ROBUSTTS++
achieves, over 41%, the best results compared to all the baselines
including all the robust classifiers. Supervised denoiser-based meth-
ods including DAE [25] and TCDAE [13] performed good signal
recovery, about 26 dB in PSNR. However, their classification results
are poor, about 27% at best. As shown in Fig. 3, ROBUSTTS++
shows better performance in all examples.

4.3. Ablation study

Number of test sequences for training NSN: Additionally, since
we rely on the observed test samples to estimate the unknown noise
in the data, we explore the effects on the numbers of test sequence.



Table 2: Classification accuracy (%) (PSNR in dB) for “Random” corruption on PAMAP2 with the decoder part of an AE for ROBUSTTS .
∗ results for DAE and Adv.+mPGD outperform DAE+AT and Adv+PGD, respectively.

Subject LSO DAE∗ Mixup Aug. Aug.
+ mixup

Adv.
+ mPGD∗

ROBUSTTS ROBUSTTS++(w/o TWM) (w/ TWM)

1 8.68±0.08 44.04±0.20 10.36 22.32 23.91 17.77 52.03±0.24 52.62±0.23 60.40±0.19
(20.66±0.001) (25.37±0.04) ±0.40 ±3.48 ±3.80 ±0.64 (25.00±0.03) (25.02±0.01) (25.44±0.02)

4 11.53±0.17 73.05±0.45 12.38 25.37 27.03 18.47 70.50±0.17 71.42±0.28 76.94±0.23
(22.83±0.002) (28.72±0.06) ±1.07 ±4.62 ±4.66 ±0.72 (21.77±0.01) (21.83±0.01) (27.31±0.06)

6 9.74±0.16 66.27±0.83 14.83 28.30 26.66 24.32 70.95±0.06 71.17±0.16 73.28±0.44
(22.24±0.002) (27.60±0.004) ±0.89 ±4.17 ±4.52 ±0.49 (25.27±0.04) (25.31±0.02) (25.97±0.05)

Table 3: Classification accuracy (%) (PSNR in dB) with “Time
scale/shift” and “Random” corruption functions on test subject 1 of
PAMAP2.

Method Time Scale/Shift Random
WAE VAE AE WAE VAE AE

LSO 7.59±0.29 8.17±0.07 8.55±0.16 7.76±0.15 8.16±0.05 8.68±0.08
(20.61±0.03) (21.67±0.003) (20.66±0.001) (20.64±0.001) (21.71±0.002) (20.66±0.001)

DAE 50.51±0.92 9.62±0.05 62.05±0.58 38.90±0.58 9.60±0.06 44.04±0.20
(25.31±0.03) (21.44±0.001) (27.55±0.06) (24.72±0.05) (21.44±0.002) (25.37±0.04)

DAE+AT 50.57±0.60 9.58±0.06 62.34±0.73 38.75±0.63 9.55±0.05 43.60±0.67
(25.34±0.06) (21.43±0.01) (27.38±0.18) (24.69±0.05) (21.45±0.001) (25.27±0.05)

ROBUSTTS § 35.72±0.51 34.92±0.17 51.58±0.25 57.98±0.32 44.12±0.12 52.03±0.24
(20.84±0.04) (23.08±0.06) (21.73±0.02) (24.51±0.45) (23.28±0.003) (25.00±0.03)

ROBUSTTS 63.07±0.81 45.55±0.45 58.54±0.31 58.22±0.19 44.32±0.15 52.62±0.23
(26.49±0.18) (23.28±0.02) (26.93±0.06) (24.94±0.03) (23.27±0.01) (25.02±0.01)

Table 4: Classification accuracy (%) (PSNR in dB) on HDM05, av-
eraged over the 5 folds, with the decoder part of an AE. ∗ result
outperforms DAE+AT and TCDAE.

Denoise-then-classify Robust classification

Method Corruption Method Corruption
Scale/Shift Random Random

LSO 0.99 (13.39) 0.93 (15.49) Mixup [1] 3.01
DAE∗ [25] 55.53 (28.68) 26.97 (26.67) Augmentation 18.14
ROBUSTTS § 10.48 (20.41) 34.09 (25.88) Aug.+Mixup 13.23
ROBUSTTS 54.09 (29.53) 38.88 (25.95) Adv.+PGD [4] 4.23
ROBUSTTS++ 61.52 (29.67) 41.43 (26.32) ChoiceNet [28] 2.14

Fig. 3: Reconstructed actions with “Random” corruption for the
HDM05. G for ROBUSTTS++ is the decoder part of an AE trained
on clean data. From the top row, the actions shown are “Cartwheel”,
“Throw basketball”, and “Grab low”.
As shown in Fig. 4, using more test sequences improves the per-
formance and about 64 sequences are needed for good results using
ROBUSTTS (NSN with TWN) and ROBUSTTS++ .

Fig. 4: Accuracy (%) of ROBUSTTS /ROBUSTTS++ on the HDM05
with different numbers of test sequences used for training NSN for
“Random” corruption functions at test time.

Effect of main hyperparameters: As shown in Fig. 5, we trained
NSN with different combinations of parameters (η, λ) which denote
the number of inner loop iterations of PGD (Equation (2)) and NSN

training (Equation (3)) we use. We observe that the final classifica-
tion accuracy and PSNR are relatively stable over different values of
η and λ. Also importantly, ROBUSTTS exhibits convergence as k,
the outer loop iterations reach about 20.

Fig. 5: Accuracy (%) of RobustTS with different number of iter-
ations for training noise simulator networks η and PGD optimiza-
tion λ on unknown (“Random”) corruption functions for subj.1 of
PAMAP2 (η, λ). (a) is results with different η (λ = 25) and (b) is
results with different λ (η = 20).

Number of augmentation methods: Here, we show that recovering
the signal using ROBUSTTS++ and using a classifier trained only on
clean data performs better than directly classifying a noisy signal
using a classifier trained using augmented noisy data, irrespective of
the number of noise types used for augmentation. This is an impor-
tant advantage of our method especially when the noise types may be
unknown when the classifier is trained. For the augmented classifer,
we choose every combination of k out of the 6 noise types we have,
k = 1, . . . , 6 and report average classification accuracy for each k.
No augmentation is used for the classifier for ROBUSTTS++ . As
shown in Fig. 6, for PAMAP2 dataset (subject 4), except when all
augmentations are shown, ROBUSTTS++ significantly outperforms
the robust classifier. For HDM05 dataset, ROBUSTTS++ performs
much better in all cases. Therefore, ROBUSTTS++ is clearly the
better approach when the noise process is different from during clas-
sifier training.

Fig. 6: Accuracy (%) with “Random” corruption function for the
different number of augmentation methods. The left is results for
PAMAP2 (test subject 4) and the right is results for HDM05.

5. CONCLUSION

In this work, we proposed ROBUSTTS and ROBUSTTS++ which
provide a framework to adapt to different noise models at the time of
deployment. Using these methods, we showed how to recover clean
signals at test time, and we are able to use pre-trained classifiers on
the cleaned data with no need for fine tuning.



6. REFERENCES

[1] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David
Lopez-Paz, “mixup: Beyond empirical risk minimization,” in
International Conference on Learning Representations, 2018.

[2] Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph,
Justin Gilmer, and Balaji Lakshminarayanan, “Augmix: A
simple method to improve robustness and uncertainty under
data shift,” in International Conference on Learning Repre-
sentations, 2020.

[3] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy,
“Explaining and harnessing adversarial examples,” arXiv
preprint arXiv:1412.6572, 2014.

[4] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu, “Towards deep learning
models resistant to adversarial attacks,” in International Con-
ference on Learning Representations, 2018.

[5] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron C Courville, and
Yoshua Bengio, “Generative adversarial nets,” in Neural In-
formation Processing Systems, 2014.

[6] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar,
“Time-series generative adversarial networks,” Neural Infor-
mation Processing Systems, 2019.

[7] Otto Fabius, Joost R van Amersfoort, and Diederik P Kingma,
“Variational recurrent auto-encoders,” in International Confer-
ence on Learning Representations Workshops, 2015.

[8] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard
Schoelkopf, “Wasserstein auto-encoders,” in International
Conference on Learning Representations, 2018.

[9] Steffen Moritz, Alexis Sardá, Thomas Bartz-Beielstein, Mar-
tin Zaefferer, and Jörg Stork, “Comparison of different meth-
ods for univariate time series imputation in r,” arXiv preprint
arXiv:1510.03924, 2015.

[10] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo
Sapiro, “Online dictionary learning for sparse coding,” in In-
ternational Conference on Machine Learning, 2009, pp. 689–
696.

[11] Ali Mousavi and Richard G Baraniuk, “Learning to invert:
Signal recovery via deep convolutional networks,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing, 2017, pp. 2272–2276.

[12] Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, and Xiao-
jie Yuan, “Multivariate time series imputation with generative
adversarial networks,” in International Conference on Neural
Information Processing Systems, 2018, pp. 1603–1614.

[13] Naohiro Tawara, Tetsunori Kobayashi, and Tetsuji Ogawa,
“Multi-channel speech enhancement using time-domain con-
volutional denoising autoencoder.,” in INTERSPEECH, 2019,
pp. 86–90.

[14] Woong-Hee Lee, Mustafa Ozger, Ursula Challita, and Ki Won
Sung, “Noise learning-based denoising autoencoder,” IEEE
Communications Letters, vol. 25, no. 9, pp. 2983–2987, 2021.

[15] Rushil Anirudh, Jayaraman J Thiagarajan, Bhavya Kailkhura,
and Peer-Timo Bremer, “MimicGAN: Robust projection onto
image manifolds with corruption mimicking,” International
Journal of Computer Vision, pp. 1–19, 2020.

[16] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza,
Fernando Pereira, and Jennifer Wortman Vaughan, “A theory
of learning from different domains,” Machine learning, vol.
79, no. 1, pp. 151–175, 2010.

[17] Suhas Lohit, Rushil Anirudh, and Pavan Turaga, “Recover-
ing trajectories of unmarked joints in 3d human actions using
latent space optimization,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, 2021,
pp. 2342–2351.

[18] Kaushik Koneripalli, Suhas Lohit, Rushil Anirudh, and Pavan
Turaga, “Rate-invariant autoencoding of time series,” in IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing, 2020.

[19] Attila Reiss and Didier Stricker, “Introducing a new bench-
marked dataset for activity monitoring,” in International Sym-
posium on Wearable Computers, 2012, pp. 108–109.

[20] Meinard Müller, Tido Röder, Michael Clausen, Bernhard Eber-
hardt, Björn Krüger, and Andreas Weber, “Documentation
mocap database hdm05,” Technical Report CG-2008-2, June
2007.

[21] Manish Gupta, Jing Gao, Charu C Aggarwal, and Jiawei Han,
“Outlier detection for temporal data: A survey,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 26, no. 9,
pp. 2250–2267, 2013.

[22] Andrew A Cook, Göksel Mısırlı, and Zhong Fan, “Anomaly
detection for iot time-series data: A survey,” IEEE Internet of
Things Journal, vol. 7, no. 7, pp. 6481–6494, 2019.

[23] Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun
Gao, Xue Wang, and Huan Xu, “Time series data augmenta-
tion for deep learning: A survey,” in Proceedings of the Inter-
national Joint Conference on Artificial Intelligence,, 8 2021,
pp. 4653–4660.

[24] Xi Wang and Chen Wang, “Time series data cleaning: A sur-
vey,” IEEE Access, vol. 8, pp. 1866–1881, 2019.

[25] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-
Antoine Manzagol, “Extracting and composing robust features
with denoising autoencoders,” in International Conference on
Machine Learning, 2008, pp. 1096–1103.

[26] Bing Ma, Xiaoru Wang, Heng Zhang, Fu Li, and Jiawang Dan,
“Cbam-gan: generative adversarial networks based on convo-
lutional block attention module,” in International Conference
on Artificial Intelligence and Security, 2019, pp. 227–236.

[27] Florian Tramèr and Dan Boneh, “Adversarial training and ro-
bustness for multiple perturbations,” in Conference on Neural
Information Processing Systems, 2019, vol. 32.

[28] Sungjoon Choi, Sanghoon Hong, Kyungjae Lee, and Sungbin
Lim, “Task agnostic robust learning on corrupt outputs by
correlation-guided mixture density networks,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 3872–3881.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2023-021.pdf
	page 2
	page 3
	page 4
	page 5


