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to restore high-quality samples from arbitrary degradations. Based on these properties, we
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ABSTRACT

Diffusion models have recently shown promising results for diffi-
cult enhancement tasks such as the conditional and unconditional
restoration of natural images and audio signals. In this work, we ex-
plore the possibility of leveraging a recently proposed advanced iter-
ative diffusion model, namely cold diffusion, to recover clean speech
signals from noisy signals. The unique mathematical properties of
the sampling process from cold diffusion could be utilized to restore
high-quality samples from arbitrary degradations. Based on these
properties, we propose an improved training algorithm and objective
to help the model generalize better during the sampling process. We
verify our proposed framework by investigating two model archi-
tectures. Experimental results on benchmark speech enhancement
dataset VoiceBank-DEMAND demonstrate the strong performance
of the proposed approach compared to representative discriminative
models and diffusion-based enhancement models.

Index Terms— Speech enhancement, diffusion probabilistic
model, cold diffusion, unfolded training, deep learning

1. INTRODUCTION

Speech enhancement (SE) aims at improving the intelligibility and
quality of speech, especially in scenarios where the degradations
are caused by non-stationary additive noise. It finds real-world
applications in various contexts such as robust automatic speech
recognition [1–3], speaker recognition [4, 5], and assistive listening
devices [6,7]. Modern state-of-the-art speech enhancement methods
based on deep learning, typically estimate a noisy-to-clean map-
ping through discriminative methods. Time-frequency (T-F) domain
methods learn that mapping between spectro-temporal features such
as the spectrogram, typically obtained via a short-time Fourier trans-
form (STFT). Some approaches predict the clean speech features
directly from the noisy speech features using nonlinear regression
techniques, using the clean speech features as training target [8, 9].
Others instead predict a T-F mask to estimate the clean speech
features through pointwise multiplication between the mask and
the noisy speech features [10, 11]. Time-domain methods learn the
noisy-to-clean mapping directly between waveforms, using the clean
waveform as training target, in an attempt to circumvent distortions
caused by inaccurate phase estimation [12, 13].

Instead of learning a direct noisy-to-clean mapping, a more re-
cent class of approaches uses generative models. Generative models
aim to learn the distribution of clean speech as a prior for speech
enhancement. Several approaches have utilized deep generative
models for speech enhancement using generative adversarial net-
works (GANs) [14, 15], variational autoencoders (VAEs) [16–18],
and flow-based models [19].

The diffusion probabilistic model, proposed in [20], has shown
strong generation and denoising capability in the computer vision

field. The standard diffusion probabilistic model includes a diffu-
sion/forward process and a reverse process. The core idea of diffu-
sion process is to gradually convert clean input data to pure noise
(isotropic Gaussian distribution), by adding Gaussian noise to the
original signal with various steps [21, 22]. In the reverse process,
the diffusion probabilistic model learns to invert the diffusion pro-
cess by estimating a noise signal and uses the predicted noise sig-
nal to restore the clean signal by subtracting it from the noisy input
step by step. Recently, diffusion-based generative models have been
introduced to the task of speech enhancement. Lu et al. [23] first
proposed to build upon standard diffusion framework and devised a
supportive reverse process to perform speech enhancement. In their
follow-up paper, they further designed a conditional diffusion prob-
abilistic model (CDiffuSE) with a more generalized forward and re-
verse process which incorporates the noisy spectrograms as the con-
ditioner into the diffusion process [24]. In [25] the authors present a
complex STFT-based diffusion procedure for speech enhancement,
while [26], proposes a score-based diffusion model for a universal
speech enhancement system that tackles 55 different distortions at
the same time.

While existing diffusion models typically built upon additive
Gaussian noise for the forward and reverse processes, cold diffu-
sion [27] considers a broader family of degradation processes (e.g.,
blur, masking, and downsampling) that can generalize the previous
diffusion probabilistic framework without its theoretical limitations.
With their proposed improved sampling procedure, cold diffusion
shows that the generalization of diffusion models enables us to re-
store images with arbitrary degradations. The underlying properties
of cold diffusion make it a promising framework for speech enhance-
ment where, in realistic conditions, the noise characteristics are usu-
ally non-Gaussian. Based on these properties, we expect to be able
to avoid the need for any prior assumptions on the noise distribution
and recover clean speech signals from arbitrary noise degradations.

In this work, we propose utilizing the cold diffusion framework
to perform speech enhancement. Defining the degradation as the
deterministic process that iteratively converts clean samples to noisy
samples, the model learns to restore clean speech from noisy speech.
Furthermore, we propose a modified training process, namely un-
folded training, that encourages the network to take into account
multiple degradation and restoration steps, thus improving the per-
formance and stability of the restoration model. Experimental results
on the VoiceBank-DEMAND dataset demonstrate that our proposed
system outperforms existing diffusion-based enhancement models
and substantially shrinks the gap typically observed between genera-
tive and discriminative models. In summary, the major contributions
of the present work are as follows: (1) this is the first study that in-
vestigates the applicability of cold diffusion to additive degradations
in general, and SE tasks in particular, with promising results; (2) we
propose an improved training process for cold diffusion to achieve
better performance.



Algorithm 1 Training for Cold Diffusion

for n = 1, . . . , Niter do
Sample clean data x0

Sample t ∼ Uniform({1, . . . , T})
xt ← D(x0, t), x̂0 ← Rθ(xt, t)
Take gradient descent step on∇θ ∥x̂0 − x0∥1

end for

2. RELATED METHODS

2.1. Cold Diffusion

The original cold diffusion approach [27] is built around two com-
ponents, a degradation operator D and a restoration operator R.
Given a “clean” training image x0 ∈ RN , D is first defined as per-
forming a target degradation of x0 resulting in a “degraded” image
y=D(x0, T ). T is a pre-defined number which corresponds to the
numbers of severity levels for the degradation, and simultaneously
the numbers of diffusion steps we will use to reconstruct a clean im-
age from a degraded output. Next, the definition of D is expanded to
produce degraded images xt with an intermediary level of severity t
(0≤ t≤T ) so that xt =D(x0, t). Note that, by definition, y=xT .
A learnable restoration operator Rθ , implemented as a neural net-
work parameterized by θ, is trained to approximately invert D, such
that Rθ(xt, t)≈x0. In practice, the training process (the restoration
network) is trained via a minimization problem

argmin
θ

Ex0 ∥Rθ(D(x0, t), t)− x0∥ , (1)

where ∥ · ∥ denotes a norm, which for audio signals can for example
be the L1 norm. The training process is summarized in Algorithm 1.

After choosing the degradation D and training the model Rθ ,
these operators can be used in tandem to restore degraded signals
whose degradations are similar in nature to the chosen degradation
D. For small degradations, a direct reconstruction consisting of a
single reconstruction step Rθ(y, T ) can be used to obtain a restored
signal. However, for more severe degradations, direct reconstruction
yields poor results. To address this limitation, the cold diffusion ap-
proach instead performs an iterative algorithm, applying the restora-
tion operator to a degraded image to perform reconstruction and then
(re)degrading the reconstructed image, with the level of degradation
severity t decreasing over time, starting from chosen T down to 0.
This iterative method is referred to as sampled reconstruction. A
further algorithmic improvement is presented in [27] where the sam-
pling is modified by altering the naive (re)degradation step in the
iteration with a first-order approximation of the degradation opera-
tor D as shown here in Algorithm 2. The improvement is shown to
result in a reconstruction process that is then much more tolerant to
errors in the estimation of Rθ .

2.2. Conditional Diffusion Probabilistic Model
The conditional diffusion probabilistic model for speech enhance-
ment (CDiffuSE) [24] is a generalized version of the prior diffusion
probabilistic model for speech enhancement (DiffuSE) [23], which
was the first study to apply this type of model to SE tasks. DiffuSE
did not take into account the noisy data but used Gaussian noise
solely during the diffusion/reverse process, which is not a valid as-
sumption under realistic conditions. To address this issue, CDif-
fuSE defines the conditional diffusion process by incorporating the
noisy data into the diffusion process and assumes that the mean of
the Markov chain Gaussian model of a given step is represented as
a linear interpolation between the clean data and noisy data. Under

Algorithm 2 Improved Sampling for Cold Diffusion [27]

Input: A degraded sample xT

for t = T, T − 1, . . . , 1 do
x̂0 ← Rθ(xt, t)
xt−1 ← xt −D(x̂0, t) +D(x̂0, t− 1)

end for

this assumption, the model learns to estimate both the Gaussian noise
and the non-Gaussian noise during the reverse process. The authors
derive the corresponding optimization criterion for the conditional
diffusion and reverse processes, and show that the resulting model is
a generalization of the original diffusion probabilistic model.

However, despite conditioning on noisy spectrograms, the
derivation of the CDiffuSE objective function is still based on
the assumption that the distribution of the noisy speech follows a
standard white Gaussian, which may not be the case for speech
enhancement as described in the following section.

3. COLD DIFFUSION FOR SPEECH ENHANCEMENT

3.1. Degradation and Sampling Process

We propose to formulate the speech enhancement problem, which is
to recover clean speech x0 from noisy speech y = x0 + n, within
the cold diffusion framework. We do so by defining a degradation
process along the lines of the animorphosis transformation in [27],
where a “clean” sample (image of a person) is iteratively transformed
into an out-of-domain “degraded” sample (picture of an animal).
However, note that our process differs in the sense that our degraded
sample still contains the clean sample information, as we now have
a degradation process that instead adds an out-of-domain sample to
the clean sample. Such a degradation does not correspond to any of
those addressed in [27]. More formally, given a clean sample x0 and
the noisy data xT = y = x0 +n, we define the degraded sample for
a level of degradation severity t as

xt = DxT (x0, t) =
√
αtx0 +

√
1− αtxT , (2)

where, departing [27], we make the dependence on xT explicit for
clarity. The degraded sample xt is the deterministic interpolation
between x0 and xT with interpolation weights defined by αt, with
αt starting from α0=1 and gradually decreased to αT =0, where T
is the total number of degradation steps (or equivalently the terminal
level of degradation severity).

The sampling process follows the improved sampling algorithm
from [27]. Given the degraded sample xt at level t, we obtain the
restored sample x̂0 from the restoration model Rθ . One possibil-
ity for obtaining xt−1 would be to use D(x̂0, s) = DxT (x̂0, s) in
Algorithm 2. Another possibility, which was found to work better
in [27] and is akin to the deterministic sampling in denoising dif-
fusion implicit models [22], is to use an alternative degradation an-
chored around xt, that is, the degradation which leads from x̂0 to xt

in t steps. This can be done by defining a modified “noisy” sample
x̂
(t)
T as

x̂
(t)
T =

1√
1− αt

(xt −
√
αtx̂0), (3)

which when used in (2) in place of xT leads to a degradation operator

s 7→ Dx̂
(t)
T

(x̂0, s) =
√
αsx̂0 +

√
1− αs√
1− αt

(xt −
√
αtx̂0) (4)

that verifies Dx̂
(t)
T
(x0, t) = xt.



Algorithm 3 Proposed Unfolded Training for Cold Diffusion

for n = 1, ..., Niter do
Sample clean data x0

Sample t ∼ Uniform({1, . . . , T})
xt ← D(x0, t), x̂0 ← Rθ(xt, t)
Sample t′ ∼ Uniform({1, . . . , t})
x̂t′ ← D(x̂0, t

′), ˆ̂x0 ← Rθ(x̂t′ , t
′)

Take gradient descent step on∇θ(∥x̂0 − x0∥1+
∥∥ˆ̂x0 − x0

∥∥
1
)

end for

While it might be counterintuitive at first that the implied de-
graded sample shifts during the sampling process, this must be un-
derstood as an expedient intermediary mathematical quantity from
the perspective of a local approximation of the ambiguously-defined
D(x̂0, t) and D(x̂0, t−1) rather than to be interpreted literally as
our initial degraded output being changed. The calculation of xt−1

in Algorithm 2 then simplifies to

xt−1 ←
√
αt−1x̂0 +

√
1− αt−1√
1− αt

(xt −
√
αtx̂0). (5)

Additionally, we show in Section 4 that this formulation gets
better performance than the alternative proposition mentioned ear-
lier, where we simply use DxT (x̂0, s).

3.2. Unfolded Training for Cold Diffusion

While our proposed cold diffusion-based speech enhancement net-
work can be trained similarly to the original cold diffusion method,
we find that the original cold diffusion training procedure [27] suf-
fers from limitations. As can be seen in Algorithm 1, the network
only gets to see degradations resulting from the forward diffusion
process and attempts to compensate for those, but it has no way to
compensate for errors in its attempt at reconstructing the clean in-
put. We thus propose an unfolded training approach that allows the
network to consider and potentially repair its own past mistakes.

We propose to improve the training algorithm by unfolding mul-
tiple degradation and restoration steps, using two steps in the follow-
ing as a proof of concept. As in the original cold diffusion training
process, we first transform a clean sample x0 to its degraded version
xt with respect to severity t using the degradation operator D, then
apply the restoration operator Rθ to obtain a first predicted clean
sample x̂0. We then generate another degraded sample x̂t′ . How-
ever, instead of using another clean sample, we use the predicted
clean sample x̂0 from the last step and perform degradation with a
smaller severity t′ ≤ t. We then restore x̂t′ to another approximated
clean sample ˆ̂x0. As shown in Algorithm 3, the unfolded training
objective is now defined to reduce the L1 distance between each of
the estimated samples x̂0 and ˆ̂x0 and the clean sample x0:

Lunf(θ) = ∥x̂0 − x0∥1 + ∥ˆ̂x0 − x0∥1
= ∥Rθ(D(x0, t), t)−x0∥1 + ∥Rθ(D(x̂0, t

′), t′)−x0∥1. (6)

using Eq. 4 for D(x̂0, t
′). We argue that the combination of unfolded

steps is more consistent with the iterative sampling process of cold
diffusion, making the model more tolerant of errors in Rθ .

3.3. Model Structure

We consider two different backbone network architectures.
DiffWave: The DiffWave [28] model architecture is similar to
WaveNet [29]. DiffWave uses a feed-forward and bidirectional
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(b) Architecture of the DCCRN model.

Fig. 1: Architectures of the backbone models used in this work. FC denotes
a fully connected network.

dilated convolution (Bi-DilConv) architecture, which is non-autore-
gressive and can synthesize high-dimensional waveforms in parallel.
The network is composed of a stack of N residual layers with resid-
ual channels C. These layers are grouped into m blocks and each
block has n = N

m
layers. The dilation is doubled at each layer

within each block, i.e., [1, 2, 4, . . . , 2n−1]. The skip connections
from all residual layers are summed up as in WaveNet. The original
DiffWave uses a ReLU activation function before the output. How-
ever, unlike the original DiffWave, which aims to estimate noise at
each step, our system directly estimates the clean waveform. Hence,
we modify the last activation from ReLU to Tanh, directly generating
an output waveform. Figure 1a shows the overall architecture.
DCCRN: Deep Complex Convolution Recurrent Network (DC-
CRN) [30] modified the original CRN [31] with a complex CNN
and complex batch normalization layers in the encoder and de-
coder. Specifically, the complex module models the correlation
between magnitude and phase with the simulation of complex mul-
tiplication. When training, DCCRN estimates a complex ratio mask
(CRM) [32] and is optimized by waveform approximation (WA) on
the reconstructed signal. The complex encoder block includes com-
plex Conv2d, complex batch normalization [33], and real-valued
PReLU [34]. Complex Conv2d consists of four traditional Conv2d
operations, controlling the complex information flow throughout the
encoder. We adapt DCCRN by inserting a diffusion-step embedding
layer into all encoder/decoder blocks, providing the model with
information of the diffusion (degradation) step t. The diffusion-step
embedding layer uses a sinusoidal positional embedding followed
by a fully connected layer. Fig. 1b shows the overall architecture.

4. EXPERIMENTS

4.1. Dataset

To train and evaluate our model, following CDiffuSE [24], we use
the VoiceBank-DEMAND dataset [35] spoken by 30 speakers with
10 types of noises. The dataset is split into a training and a testing set
with 28 and 2 speakers. Four types of signal-to-noise ratio (SNRs)
are used to mix clean samples with noise samples in the dataset,



[0, 5, 10, 15] dB for training and [2.5, 7.5, 12.5, 17.5] dB for testing.
We further excerpt two speakers from the training set to form the
validation set, resulting in 10,802 utterances for training and 770 for
validation. The testing set has 824 utterances.

We follow CDiffuSE [24] and use multiple evaluation measure-
ments, including wide-band perceptual evaluation of speech quality
(PESQ) [36], prediction of the signal distortion (CSIG), prediction of
the background intrusiveness (CBAK), and prediction of the overall
speech quality (COVL) [37]. More specifically, PESQ assesses the
perceptual quality of speech signals, and CSIG, CBAK, and COVL
are composite metrics reflecting mean opinion scores (MOS).

4.2. Model Setting and Training Procedure

We investigate two model architectures, DiffWave and DCCRN (see
Section 3.3). For DiffWave, we broadly follow the setup of Dif-
fuSE and CDiffuSE. We construct the model using 30 residual lay-
ers with 3 dilation cycles and a kernel size of 3. While DiffuSE and
CDiffuSE use the DiffWave version with mel-filterbank conditioner
(pretrained for the former, not for the latter), ours is the uncondi-
tioned version (cf. Fig. 1a), resulting in a slightly smaller model with
2.3M parameters overall. For DCCRN, the number of channels in
encoder/decoder is {32, 64, 128, 128, 256, 256} and the kernel size
and stride are set to (5, 2). The adapted DCCRN with diffusion-step
embedding layer has around 5.6M trainable parameters. Our sys-
tems take T =50 diffusion steps. The interpolation parameter αt is
defined using a cosine schedule as proposed in [38]. More formally,

αt =
f(t)

f(0)
, f(t) = cos

(
t/T + s

1 + s
· π
2

)2

, s = 0.008, (7)

which satisfies α0=1 and αT =0. We train our model with Niter =
105 iterations and choose the best model using the PESQ score on
the validation set. We use L1 loss over all output samples in a batch
and set the batch size to 256. For our proposed cold diffusion-based
method, we report the results for both direct reconstruction (1 step)
and improved sampling (50 steps) as mentioned in Section 2.1.

4.3. Results

Table 1 reports the results of representative discriminative models,
diffusion-based enhancement models, and our cold diffusion-based
methods. For Demucs, we rerun the publicly-available pretrained
model. Base and Large DiffuSE/CDiffuSE use 50 and 200 diffusion
steps, respectively. For cold diffusion-based methods, we report the
results for both the DiffWave and DCCRN architectures. We also
retrain and report results of discriminatively-trained DiffWave (con-
ditioned and unconditioned) and DCCRN models for fair compari-
son. The original training framework for cold diffusion is denoted
as CD. Our proposed unfolded training framework is denoted as Un-
folded CD. Except where indicated, all cold diffusion-based models
use Dx̂

(t)
T
(x̂0, s) as degradation operator (cf. Section 3.1). Table 1

shows using DxT (x̂0, s) leads to slightly worse performance.
Comparing CD and Unfolded CD with two diffusion-based

methods, DiffuSE [23] and CDiffuSE [24], we find an improve-
ment with the same DiffWave model as backbone architecture.
CD outperforms DiffuSE as well as Base CDiffuSE on all evalu-
ation metrics, and unfolded CD yields further improvements and
outperforms Large CDiffuSE with fewer sampling steps and no con-
ditioning mechanism. Comparing the results of our CD framework
combined with two different backbone models, we find that both CD
and unfolded CD with the DCCRN model outperform the DiffWave
model. This shows that the cold diffusion framework significantly
benefits from increased model capacity. Moreover, unfolded CD

Table 1: Comparison of various (discriminative models, DiffuSE, CDiffuSE)
and our proposed cold diffusion-based methods on VoiceBank-DEMAND.
CD refers to cold diffusion with the original training, and Unfolded CD de-
notes cold diffusion with our proposed unfolded training. “w/ DxT ” indi-
cates that DxT (x̂0, s) is used for the degradation (cf. Section 3.1). * indi-
cates results reported as-is from prior literature.

Method Network Steps PESQ CSIG CBAK COVL

Unprocessed – – 1.97 3.37 2.45 2.65

Conv-TasNet* [13, 24] – – 2.84 2.33 2.62 2.51
DiffWave (uncond.) [28] – – 2.49 3.67 3.27 3.07
DiffWave (cond.) [28] – – 2.52 3.72 3.27 3.11
DCCRN [30, 39] – – 2.59 3.71 3.23 3.13
WaveCRN* [40] – – 2.64 3.94 3.37 3.29
Demucs [41] – – 3.07 4.31 3.40 3.63

DiffuSE (Base)* [23]

DiffWave

50 2.41 3.61 2.81 2.99
DiffuSE (Large)* [23] 200 2.43 3.63 2.81 3.01
CDiffuSE (Base)* [24] 50 2.44 3.66 2.83 3.03
CDiffuSE (Large)* [24] 200 2.52 3.72 2.91 3.10

CD

DiffWave

1 2.42 3.53 3.15 2.97
CD 50 2.48 3.75 3.02 2.97
Unfolded CD 1 2.50 3.59 3.21 3.04
Unfolded CD 50 2.60 3.79 3.21 3.19
Unfolded CD w/ DxT 50 2.55 3.69 3.18 3.10

CD
DCCRN

50 2.69 3.83 3.28 3.27
Unfolded CD 50 2.77 3.91 3.32 3.33
Unfolded CD w/ DxT 50 2.68 3.80 3.25 3.23

on both models shows significant improvement over CD on all the
metrics. Additionally, comparing the best results we obtained with
our proposed framework to existing discriminative models, we see
that, while they do not yet compete with top-performing methods,
we make up much of the ground that exists between them and the
best results of prior diffusion-based methods, namely Large CDif-
fuSE. We note however that some of those methods benefit from
far higher model capacity than the backbone models we used, and
that their performance on the VoiceBank-DEMAND dataset has
been shown to significantly benefit from techniques such as data
augmentation [41], whose inclusion we leave to future work. Most
importantly, except for the CBAK score for DiffWave, each Un-
folded CD model improves upon the discriminative model with the
same backbone network (DiffWave or DCCRN) on all the metrics.

5. CONCLUSION

In this study, we proposed to use cold diffusion for speech enhance-
ment. To further improve the framework, we also proposed an un-
folded training process that allows the model to learn from multiple
degradation and restoration steps. Our results show that the cold dif-
fusion framework can yield better performance than other diffusion-
based enhancement models and our proposed unfolded training ef-
fectively improves the original framework. While our systems have
yet to achieve the best overall results, we significantly shrink the
performance gap between diffusion-based models and discriminative
models. We contend that the remaining gap can be closed with dif-
ferent backbone models, advanced training losses, and data augmen-
tation, all of which are compatible with our framework, and consider
those to be important directions for future work. Also, our paper fo-
cused on establishing the in-domain performance of cold diffusion,
but we take note that CDiffuSE also displayed strong out-of-domain
performance (i.e., models trained on VoiceBank-DEMAND worked
well on other datasets). We contend that this robustness is due to its
conditioning on the noisy input, and consider such an addition to our
framework to be another direction for future work.
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