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ABSTRACT

Recent research has shown remarkable performance in leveraging
multiple extraneous conditional and non-mutually-exclusive seman-
tic concepts for sound source separation, allowing the flexibility to
extract a given target source based on multiple different queries.
In this work, we propose a new optimal condition training (OCT)
method for single-channel target source separation, based on greedy
parameter updates using the highest performing condition among
equivalent conditions associated with a given target source. Our ex-
periments show that the complementary information carried by the
diverse semantic concepts significantly helps to disentangle and iso-
late sources of interest much more efficiently compared to single-
conditioned models. Moreover, we propose a variation of OCT with
condition refinement, in which an initial condition vector is adapted
to the given mixture and transformed to a more amenable repre-
sentation for target source extraction. We showcase the effective-
ness of OCT on diverse source separation experiments where it im-
proves upon permutation invariant models with oracle assignment
between estimated and target sources and obtains state-of-the-art
performance in the more challenging task of text-based source sepa-
ration, outperforming even dedicated text-only conditioned models.

Index Terms— Conditional sound separation, optimal condi-
tion, condition embedding refinement, text-based separation

1. INTRODUCTION

Humans possess the remarkable ability to isolate sounds from a
noisy auditory input stimuli and associate them with objects and
actions seamlessly. Auditory machine perception aims to mimic and
even enhance this ability in a digitized manner, wherein the main
challenge is how to train audio source separation models effectively.

Early works in deep-learning based audio source separation
leveraged fundamental differences between the statistics of the
sources of interest and interfering sources in a mixture, making
implicit assumptions on their semantic attributes. Thus, specialist
models were developed by dedicating an output slot to recovering
only a given sound of interest, such as for speech enhancement [1–4]
or instrument demixing [5]. Eventually, more general training proce-
dures such as deep clustering [6] and permutation invariant training
(PIT) [7, 8] became the conventional ways of training separation
systems, mainly because of their minimal a priori assumptions on
the types of sources. However, PIT’s flexibility in training source
separation networks does not come without a price. PIT suffers
from instability [9] and cannot be used to explicitly specify a source
of interest (i.e., PIT cannot solve the output sources’ assignment
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problem). In contrast to semantically agnostic approaches, condi-
tionally informed systems do not need to fix the order of the output
sources and sometimes outperform PIT models [10–12]. Such works
include models where an extra input condition vector might carry
information about speaker characteristics, musical instrument type,
or general sound-class semantics, as proposed for speech [13–17],
music [18–20], and universal sound separation [21–23].

Lately, there has been a resurgence of interest towards condi-
tional separation models [24, 25], not only for boosting their perfor-
mance but also to give the user more flexibility to query the model.
In particular, heterogeneous speech separation [24] was recently pro-
posed as a conditional source separation training procedure where
non-mutually-exclusive concepts are used to discriminate between a
mixture’s constituent sources. The resulting model not only can be
queried using a diverse set of discriminative concepts (e.g., distance
from the microphone, signal-level energy, spoken language, etc.),
but also leverages the extra semantic information at training time to
outperform PIT. Other follow-up works include single-conditioned
models using a natural language description of the sources of inter-
est [26] and/or encoded audio-snippet queries [27].

Since a target source may be queried using multiple equivalent
conditions, we investigate whether, for a given input mixture, an ini-
tial conditioning may be reformulated into a new conditioning that
leads to better separation under signal-level metrics. As an inter-
mediate step towards that goal, we first consider a system that for
a given target focuses on reaching the best target extraction perfor-
mance among all equivalent conditions. Our novel training method,
optimal condition training (OCT), performs a gradient step using the
best-performing condition vector. We then propose OCT++, which
combines OCT with an on-the-fly condition vector refinement mod-
ule to reformulate, based on the input mixture, an initial query into
a representation which can lead to better source target extraction.
We also extend the original heterogeneous training framework [24]
to conduct conditional separation experiments with arbitrary sounds
using more diverse and easy-to-use discriminatory semantic con-
cepts such as text, harmonicity, energy, and source order. Our ex-
periments show that OCT yields a much higher upper bound for con-
ditional separation based on the complementary semantic informa-
tion of the diverse associated discriminative concepts, surpassing all
single-conditioned models and PIT. Notably, OCT++ yields state-of-
the-art performance on text-based sound separation and outperforms
all dedicated text-based methods by a large margin.

2. METHOD

We formulate the problem of conditional source separation as fol-
lows. Given an input mixture x consisting of the sum x =

∑M
i=1si

of M sources s = (s1, . . . , sM ), we consider a target waveform
sT =

∑
j∈Asj corresponding to a (potentially empty) subset A ⊆

{1, . . . ,M} of target sources which can be described as associated
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Fig. 1: Different conditional separation training procedures for a given input mixture x. 1a: a heterogeneous condition vector c′ (associated
with the target waveform sT) is sampled at random and a gradient step is performed. 1b: all available conditions are first evaluated and the
error corresponding to the maximally performing condition vector c∗ is backpropagated. 1c: an initial condition vector of interest c is first
converted to a more amenable representation r(x, c) using the trainable mappings ϕ and g, and the parameters are updated based on a regular
OCT gradient update as well as the backpropagated errors from the regular path (black).

with a condition v. Expressing v as a condition vector c = c(v), we
aim to train a model f with parameters θf which outputs estimates
for both the target submix sT and the non-target (“other”) submix
sO =

∑
j ̸∈Asj of the mixed input sources s:

ŝ
(c)
T , ŝ

(c)
O = f(x, c; θf ). (1)

The condition v could be any discriminative concept which is
associated with semantic characteristics of the target waveform
sT. In this work, we consider the set of signal characteristics
C = {E ,H,O, T }, where E denotes the signal energy (with
values low/high), H is the harmonicity of the target source (har-
monic/percussive), O the order of appearance of the source in time
(first/second), and T the text description of the target sound class(es)
(e.g., a text embedding representing the words “a dog barking” given
a mixture of sounds from an audio recording at a park). Importantly,
several conditions v (and the corresponding condition vector c(v))
may be associated with the same target waveform sT. A schematic
representation for all different conditional separation training meth-
ods discussed in this work is displayed in Fig. 1.

2.1. Permutation invariant training (PIT)

Usually, PIT [7, 8] is employed for supervised training of uncondi-
tional source separation models by backpropagating the error using
the best permutation π ∈ PM of the set {1, . . . ,M} aligning the
estimated sources ŝ with the ground-truth sources s as shown next:

LPIT(s,θf ) = min
π∈PM

[
∑M

i=1D(ŝπ(i), si)], ŝ = f(x,−; θf ) (2)

where D is any desired signal-level distance or loss used to penalize
the reconstruction error between the estimates and their correspond-
ing targets, and − indicates the absence of conditioning. Notice that
for the problem of target source separation, unconditional PIT mod-
els need to be considered in combination with a speaker selection
scheme, since they do not solve the ordering problem of the esti-
mated sources. Thus, we use the oracle permutation of sources, to
study the upper bound of their separation performance.

2.2. Heterogeneous condition training (HCT)

The concept of heterogeneous condition training, introduced in [24]
for conditional speech separation, can be readily extended to general
target sound source separation tasks. In essence, the model is fed
with an input mixture x as well as a one-hot encoded condition vec-
tor cH(v) = 1[v] ∈ {0, 1}|V| for the desired semantic concept v,
where in [24] Vwas a set of speaker discriminative concept values
such as “highest/lowest energy speaker” or “far/near field speaker.”
During training, a mixture x is drawn or synthetically generated and

an associated discriminative concept v (corresponding to an encoded
condition vector c = c(v)) is drawn from a sampling prior P (v) to
form the desired target submix sT containing all the sources si as-
sociated with v. The model tries to faithfully recover the target and
non-target waveforms for v by minimizing the following loss:

LHCT(sT, sO, c; θf ) = D(ŝ
(c)
T , sT) +D(ŝ

(c)
O , sO), (3)

where we explicitly stated sT, sO, c as parameters of LHCT to in-
dicate that multiple combinations of conditions and targets may be
considered. In [24], it was shown that a model trained with multiple
heterogeneous pairs of condition queries and targets could achieve
an overall separation performance improvement.

2.3. Optimal condition training (OCT)

As the same target waveform may be associated with multiple con-
ditions, the question remains whether some conditions lead to better
separation accuracy than others, and whether the system may bene-
fit from modifying the condition vector based on the input, in other
words to “rephrase the query” in light of the actual input. One rea-
sonable goal to reach when modifying the conditioning would be the
conditioning that obtains maximum performance for the given input
mixture and target waveforms. A heterogeneous model may however
need to balance its performance under multiple conditions, leading
to suboptimal separation accuracy for the best conditioning, and thus
ultimately for a system relying on modifying an original condition-
ing by replacing it or making it closer to the best one. Thus, we first
consider training a model that solely focuses on optimizing perfor-
mance for the maximally performing condition.

OCT follows a greedy approach in which instead of sampling
a heterogeneous condition vector c, we first sample several (poten-
tially all) vectors c′ from the set of all possible condition vectors C
that are associated with the target waveform sT, and evaluate them
using the current parameters of the model. Then, we update the pa-
rameters of the network based on the condition that minimizes the
overall error. Formally, we write the loss function as:

c∗ = argmin
c′∈C

[
D(ŝ

(c′)
T , sT) +D(ŝ

(c′)
O , sO)

]
,

LOCT(sT, sO; θf ) = LHCT(sT, sO, c
∗; θf ),

(4)

where c∗ is the optimal condition (i.e., the one obtaining the small-
est loss) for the input mixture x and the target sT. We consider
updating the model’s parameters using condition vectors which are
1) associated with the ground-truth target submix sT under various
contexts and 2) are sampled from the available signal characteristics
C={E ,H,O, T }. For example, if one wants to train a conditional
separation system based on text queries T , there might be more ef-



fective ways to disentangle and isolate the same sources of interest
based on complementary semantic information like the energy, the
harmonicity, or the order of appearance of the sources. The eval-
uation of the ideal condition vector c∗ is straightforward since we
have access to the model f and the ground-truth waveforms sT and
sO during training. Of course, at inference time, one does not have
access to the set of equivalent conditions to a given condition v, so
focusing on improving only the optimal condition is not guaranteed
to be a viable solution. This procedure was intended to serve as the
basis for a method in which an auxiliary network refines an original
condition by mapping it to the optimal equivalent one in light of the
input mixture. One may in fact expect that focusing solely on max-
imally performing conditions, or in other words the easiest queries,
may harm performance for other conditions. Surprisingly, the final
conditional model learns to associate sources of interest with their
corresponding semantic concepts and the overfitting problem can be
easily avoided using an extra gradient update based on the condition
of interest. OCT models can perform better compared to dedicated
systems trained and tested on the same input condition information.

2.4. OCT++: OCT with embedding refinement

Going a step further, there are cases where the input condition in-
formation might not be informative enough by itself to lead to a
condition vector that appropriately specifies the sources of interest,
and one may hope to obtain an improved condition vector by letting
the system look at both the input mixture and the original condition
vector to output an improved condition vector. We thus consider in-
troducing a learnable transformation g(·) of the condition vector c to
refine the conditional information so that it may be better utilized by
the framework. For example, if the input mixture contains a guitar
and a bass with different starting times, a query that corresponds to
which instrument was played first (cO: source order query) could be
more informative than the textual description of the target musical
instrument (cT : text query). In that case, even if the user gives as an
input retrieve the bass, the learnable transformation g could be used
to map the less informative textual condition input cT to something
that resembles the ideal (oracle) condition vector c∗ = cO . That
transformation would in effect relieve the extraction network from
making a difficult source selection and let it focus on the extraction.
We let the learnable mapping g take into account information about
both the input mixture, via a time-invariant encoded representation
ϕ(x; θϕ), and the initial condition vector c, computing the refined
(or reassigned) condition vector r(x, c) as:

r(x, c) = g(concat(ϕ(x; θϕ), c); θg). (5)

The final loss to be minimized combines the heterogeneous loss
of Eq. 3 on the refined condition r(x, c) and the OCT loss of Eq. 4,
where c∗ is the condition which leads to maximal performance after
refinement. The loss is computed based on the refined counterpart
r(x, c∗), as well as an extra regularizer term which aims to promote
consistency at the conditional refinement mapping g (e.g. steer the
refined condition vector r(x, c) towards the ideal one r(x, c∗)):

c∗ = argmin
c′∈C

[
D(ŝ

(r(x,c′))
T , sT) +D(ŝ

(r(x,c′))
O , sO)

]
,

LOCT++(sT, sO, c;θ) = LHCT(sT, sO, r(x, c); θf )

+LHCT(sT, sO, r(x, c
∗); θf ) + ∥r(x, c)− r(x, c∗)∥2,

(6)

where the set of trainable parameters θ = {θf , θg, θϕ} contains all
the main network’s f parameters, the parameters of the conditional
refinement mapping g, and the parameters of the mixture encoder ϕ.
In this case, the model tries to both optimize the separation perfor-

mance of its estimate ŝT as well as the reassignment mapping g as it
tries to make the input condition vector look mostly like the highest
performing condition query after the transformation r(x, c∗).

3. EXPERIMENTAL FRAMEWORK

3.1. Datasets

We extract the following three mixing datasets based on different
portions of the FSD50K [28] audio data collection, which consists
of 200 sound classes. Each training epoch consists of the on-the-fly
generation of 20, 000 mixtures of 5 s length, sampled at 8 kHz and
mixed at random input SNRs U [0, 2.5] dB with at least 80% overlap
(harder set) or U [0, 5] dB with at least 60% overlap (easier set). The
validation and test sets for each one of the following datasets are
similarly generated, with 3, 000 and 5, 000 mixtures, respectively.
Random super-classes: We first randomly sample two distinct
sound classes (out of the available 200), then sample a representa-
tive source waveform for each class and mix them together.
Different super-classes: We select a subset of classes from the
FSD50K ontology corresponding to six diverse super-classes of
sounds, namely: Animal (21 subclasses), Musical Instrument (35
subclasses), Vehicle (15 subclasses), Domestic & Home Sounds (26
subclasses), Speech (5 subclasses) and Water Sounds (6 subclasses).
Each mixture contains two sound waveforms that belong to distinct
super-classes.
Same super-class: Following the super-class definition from above,
we force each mixture to consist of sources that belong to the same
abstract category of sounds to test the ability of text-conditioned
models in extremely challenging scenarios.

3.2. Separation Model

We follow [24] and use the same conditional Sudo rm -rf model [29]
with a trainable FiLM [30] layer before each U-ConvBlock, with a
mixture consistency layer at the output sources [31], except that we
here use only B = 8 U-ConvBlocks since they were empirically
found to be adequate for our universal conditional separation exper-
iments. For the OCT++ embedding refinement part, we use as ϕ the
downsampling encoder part of one U-ConvBlock block with a sim-
ilar configuration of 512 intermediate channels and four 4-strided
depth-wise convolutional layers, and we reduce the time axis using
a two-head attention pooling similar to [32]. The resulting vector
is concatenated with the condition vector c and passed through g,
which is a two-layer MLP with ReLU intermediate activations to
form the refined condition vector r(x, c).

3.3. Baseline systems

Text-based separation [26]: We follow the previous state-of-the-art
text-based source separation system proposed in [26] and use a pre-
trained BERT [33] encoding for the class of each sound. The final
class encoding is computed after passing the first output token of the
sequence model through a linear layer with a ReLU activation.
Proposed text-based separation: We also propose a stronger base-
line for the text-based separation, wherein we replace the language
model with a sentence-BERT model [34] and the first token with
a mean average pooling operation and a trainable linear layer on
top which better describes the linguistic information for shorter sen-
tences like in audio-class based information (see results in Table 1).
HCT [24]: We train the system with equal sampling probability over
all the available signal characteristics C={E ,H,O, T }.



3.4. Training and evaluation details

We train all models using the losses described in Sec. 2. For the OCT
text-based separation experiments we always perform a gradient up-
date with both the text-query cT and the best performing condition
c∗ to avoid overfitting to the rest of the heterogeneous conditions.
We use a batch size of 6 and the Adam [35] optimizer with an initial
learning rate of 10−3, halving it every 15 epochs.

We evaluate the source reconstruction fidelity at 110 epochs, af-
ter empirically finding that all models had converged, using the mean
scale-invariant signal-to-distortion ratio (SI-SDR) [36] between the
estimate ŝT and the ground-truth target sT. For the unconditional
PIT oracle models, we measure the permutation invariant SI-SDR.

4. RESULTS

4.1. Importance of the appropriate condition vector

In Fig. 2, we show the performance of several single-condition mod-
els (trained to only handle a single type of query) and their oracle en-
semble (where, for a given target, we select the highest-performing
query and corresponding single-condition model) versus our pro-
posed oracle OCT approach for target sound extraction. It is evident
that several of the conditions fail dramatically on challenging data,
while the best performing condition remains more robust, which in-
dicates the importance of providing the right context for the task of
target sound separation. For instance, the energy condition cannot be
used when there is an ambiguity regarding the loudest source, as in
cases where the input SNR is close to 0 dB (see Fig. 2a). Notably, the
text-based condition, which is the most convenient to be used, per-
forms poorly in the more challenging setups where the super-classes
of sounds being mixed are similar (last column), which enhances our
belief that one needs to steer the condition embedding vector towards
the highest performing condition based on the given input mixture.
Surprisingly, the OCT oracle model performs better than the ora-
cle best single-conditioned model which hints that integrating sound
sources’ semantic information through gradient-based updates can
be an effective way for more robust source separation.

4.2. OCT against state-of-the-art methods

We choose text-based separation as our main benchmark since it is
the most challenging condition and simultaneously the one that a
user would likely use to describe the sources of interest. We mea-
sure the separation performance for the three universal separation
datasets, as summarized in Table 1. It is evident that the oracle
OCT method gives the best results even compared to the PIT ora-
cle, which does not solve the problem of assigning the estimated
sources. We can thus assume that the complementary conditional
information might be used to better disentangle the sources. Al-
though our proposed single-conditioned text-based model surpasses
the previous state-of-the-art text-based condition method [26] under
all dataset configurations, it still performs poorly, especially for the
harder to disentangle mixtures with input SNR in the [0, 2.5]dB
range. Surprisingly, OCT, which was trained using the error sig-
nal from the best condition (which could be different from the text
query), outperforms the dedicated text-based models, leveraging
the complimentary information from the rest of the discriminative
semantic concepts. OCT yields a significant improvement over
heterogeneous training, which indicates that it is potentially a more
efficient way of performing cross-semantic information training for
source separation. Finally, our proposed embedding refinement
method OCT++ outperforms the previous state-of-the-art text-based
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Fig. 2: Mean test SI-SDR (dB) for target source separation with
single-conditioned models using either harmonicity (H), source or-
der (O), text (T ), or signal-level energy (E) versus their oracle en-
semble, which uses the best condition vector, and an oracle OCT
model trained and tested with the highest performing query.

Table 1: Mean test SI-SDR (dB) results for text-based sound
source separation using mixing strategies with two levels of diffi-
culty: input-SNRs U [0, 2.5]dB and at least 80% overlap (left) and
U [0, 5]dB with at least 60% overlap (right). Bolded and Italic num-
bers denote the best non-oracle and oracle models trained to perform
text-based source separation, respectively.

Training method
∗ Denotes our

implementation.

Input-SNR U [0, 2.5]dB Input-SNR U [0, 5]dB

Super-classes in-mixture Super-classes in-mixture
Random Diff. Same Random Diff. Same

Text only [26]∗ 6.1 3.9 2.2 8.6 6.0 2.9
Text only (ours) 7.9 5.6 3.1 9.0 6.3 3.3
HCT [24] 6.8 4.8 2.3 7.0 4.3 2.4

(Proposed) OCT (No ϕ and g) 8.4 6.0 3.3 9.3 6.5 3.6
(Proposed) OCT++ 8.7 6.2 3.6 9.3 6.7 3.7

(Oracle) OCT (No ϕ and g) 13.1 11.5 10.5 14.4 12.4 11.2
(Oracle) OCT++ 13.2 11.5 10.6 14.7 12.6 11.5
(Oracle) PIT [8] 12.4 10.7 9.8 12.4 10.7 9.8

separation method by 0.7 to 2.6 dB SI-SDR and yields a consistent
improvement on top of the OCT by converting the condition vector
to a more amenable representation for text-based separation. We
hypothesize that future work could provide much larger improve-
ments by employing more sophisticated mixture encoders ϕ and
refinement embedding maps g.

5. CONCLUSION

We have introduced a new training method for source separation
which leverages the backpropagation of the optimal condition vec-
tor signal. OCT outperforms all previous state-of-the-art single- and
multi-condition (aka heterogeneous) training methods for the more
challenging and easier-to-use text-based conditioning. Oracle OCT
also outperforms unconditional models trained and evaluated with
permutation invariance. OCT++ enables further refinement by trans-
formation of the conditional information vectors to a more amenable
to separation form adapted to the input mixture. In the future, we
aim to pair the proposed training methods with self-supervised ap-
proaches and explore in more detail the effectiveness of OCT.
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