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Abstract

In this paper, we propose an efficient system approach to improve the power efficiency of
dual-input Doherty power amplifier (DIDPA) with maintaining its linearity level. Firstly,
an auto-tuning process based on a hybrid heuristic search control (HHSC) is applied to
optimally define DIDPA configuration by optimizing its free parameters, including peak- to-
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to moderate the inherent trade-off between linearity and power efficiency. The digital pre-
distortion (DPD) is then integrated to linearize DIDPA using an optimal reduced-complexity
model based on the segmentation approach. The coefficients of the cost function are updated
optimally based on the linearity improvement by DPD. An optimal prun- ing process of the
free parameters, based on hill-climbing (HC) heuristics, is proposed to reduce the HHSC com-
plexity in order to refine the optimal DIDPA configuration with the updated cost function.
The system ap- proach has been approved by experimental results, in different scenarios,
using an LTE 20 MHz signal with a PAPR of 8 dB PAPR. In the first step where HHSC is
applied, DIDPA exhibited a drain efficiency of 61%. DPD linearization improved linearity
using a low-complex model with only 30 coefficients, which exhibited an error vector magni-
tude (EVM) of 2.5% and an adjacent channel power ratio (ACPR) of -50 dB at an averaged
output power of 34 dBm. By updating the cost function coefficients and pruning the free
parameters, DIDPA exhibited an EVM of 3%, an ACPR of -50 dB, and a drain efficiency of
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maintaining its linearity level. Firstly, an auto-tuning process based on
a hybrid heuristic search control (HHSC) is applied to optimally define
DIDPA configuration by optimizing its free parameters, including peak-
to-average power (PAPR) reduction threshold. The HHSC is driven by a
cost function designed to moderate the inherent trade-off between linearity
and power efficiency. The digital predistortion (DPD) is then integrated to
linearize DIDPA using an optimal reduced-complexity model based on the
segmentation approach. The coefficients of the cost function are updated
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ing process of the free parameters, based on hill-climbing (HC) heuristics,
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DIDPA configuration with the updated cost function. The system ap-
proach has been approved by experimental results, in different scenarios,
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1 INTRODUCTION

Introducing non-constant amplitude modulated signal in radio frequency (RF)
transmission systems enhances power amplifier (PA) efficiency while maintain-
ing an adequate linearity level more challenging. Starting from wideband code
division multiple access (W-CDMA) in 3G, the peak-to-average power ratio
(PAPR) of signals increases with the use of orthogonal frequency division mul-
tiplex (OFDM) in 4G LTE and 5G new radio (NR).

Advanced PA architectures based on dynamic load or supply modulation
have been proposed in the literature to avoid wasting excessive power resources
[1]. Some of the most popular solutions are Doherty [2], envelope tracking
[3], Chireix [4]. and outphasing [5]. These highly efficient topologies require
linearization techniques such as digital predistortion (DPD) to meet the linearity
requirement, especially with the increase of signal bandwidth.

The amplification architectures based on active load modulation are among
the most common PA efficiency enhancement techniques (such as Doherty),
which rely on the nonlinear interaction between the main and auxiliary transis-
tors for modulated signals with a large dynamic. Although these architectures
can be designed with a single RF input to be used in the transmitter, several
studies have been reported in the literature to highlight the benefits of main-
taining separate inputs [6] [7] [8] and the advantages of dual-input PA compared
to single-input has been studied in [9].

The separation of RF inputs provides additional degrees of freedom, so-called
free parameters, that can be set to improve the performance or to enhance the
PA efficiency [10]. These free parameters present a set of crucial circuit and
system-level parameters, including PA bias voltages, power ratio, and phase
shift of the separate input signals.

Focusing on dual-input Doherty PA (DIDPA), searching for optimal free pa-
rameters guaranteeing high performance requires experimental cross-validation
or exhaustive search. These processes are usually costly and computationally
significant, especially when the search space is enormous and not limited. Be-
sides, setting these free parameters to their optimal values within a defined
interval can be considered a global optimization problem. Several techniques
have been proposed in the literature to find the optimal set of free parameters
among large tunable ranges considered as search intervals [11].

Generally speaking, DIDPA should operate at its maximum efficiency, lead-
ing to poor linearity. To overcome this system drawback, it is necessary to
introduce an efficient system approach to ensure the trade-off between linearity
and efficiency. Regarding linearity, digital predistortion (DPD) is a powerful
linearization technique used to compensate for the PA nonlinearities. [12].

DPD consists of applying a pre-correction to the input signal so that the
cascaded system (DPD and PA) behaves like an ideal linear and memoryless
amplification. Designing a DPD model that allows finding the inverse charac-
teristic of DIDPA is challenging, particularly finding a friendly candidate model
for the hardware implementation with good numerical properties and high mod-
eling accuracy.



On the other hand, the efficiency of DIDPA is limited by an output back-
off (OBO) needed to prevent signal peaks from going beyond the saturation
point. Since DPD introduces a back-off that allows the OBO to be equal to the
PAPR of the input signal, efficiency can be further improved by reducing the
PAPR signal with various crest factor reduction (CFR) techniques [13]. In the
literature, several research works have focused on the joint combination of CFR
and DPD [14] - [17].

The motivation of this paper is to provide a rigorous and practical system
approach to DIDPA. This is achieved by placing DIDPA in an iterative system-
based process while focusing on three aspects related to the study of DIDPA:
optimizing the free parameters provided by the separation of the input signal,
reducing the PAPR using CFR, and compensating for the nonlinearities using
DPD linearization.

1.1 State-of-the-Art

In the literature, the design of DIDPA with enhanced efficiency has been re-
ported in numerous research works. Few of them deal with the optimization
of its configuration, and even fewer deal with the joint optimization of DIDPA
parameters and its linearization technique.

Early work investigating the linearization of DIDPA has been reported in
[18], where the authors used vector-switched generalized memory polynomials
[19] to improve the linearity. The separation of the RF inputs has been statically
achieved by performing several combinations in a simulation environment.

In [20], the authors have split the RF inputs for multi-input Doherty PA by
performing an exhaustive search that returns the best configuration regarding
the power ratio. However, the bias voltages of Doherty PA are identically biased,
which may limit the efficiency enhancement.

Another research work in [21] proposed an adaptive signal separation in
terms of the power ratio from the static measured results of DIDPA. The results
in [21] once again confirmed the interest in optimizing the separation of the input
signals to be transmitted to DIDPA, which can significantly improve efficiency.

Another confirmation can be found in [22], where the authors highlight the
need for optimizing the phase shift between the two RF inputs for dual-input
load modulated balanced PA. In [22], the authors have performed an exhaustive
search to find the optimal phase shift by sweeping the phase over a determined
interval. This approach can be costly, especially in terms of its implementation.
Besides, sweeping the phase over a large interval with reduced resolution can be
critical, especially at intervals where there will be no output power, leading to
heat dissipation in the device, which can damage it. Finding the optimal shift
phase can be viewed as an optimization problem with a global minimum that
requires a unidirectional minimization with reduced complexity.

The first work related to the online learning-based optimization of DIDPA
is proposed in [23]. The authors proposed an adaptive technique based on a
simultaneously perturbed stochastic approximation (SPSA) algorithm to tune
the power ratio, the phase shift, and the bias voltages as free parameters. A cost



function is used to control the algorithm convergence and defined in terms of the
output gain G and the power added efficiency (PAE) in the additive criterion.
However, the linearity requirement has not been met since SPSA has focused
only on efficiency enhancement.

An extension of the work in [23] is reported in [24], where the authors update
the cost function by including, in addition to G and PAE, the output power P,,;
and adjacent channel power ratio (ACPR) as metric referring to the linearity.
The optimization process used in [24] is carried out by using a global optimiza-
tion algorithm such as simulated annealing (SA) in the first order. Once the cost
function achieves its optimal value, a fine-tuning process based on an approach
of learning-based control such as on the extremum-seeking control (ESC) is
used. In [24], the free parameters’ global optimization process does not include
any linearization technique or PAPR reducer.

In [25], a novel auto-tuning approach has been proposed to enhance the
power efficiency of the DIDPA while meeting the linearity requirement. It con-
sists of optimizing the free parameters using a proposed hybrid heuristic search
control (HHSC) according to a designed cost function that indicates the trade-off
between power efficiency and linearity. The work presented in [25] is considering
the first part of the research work presented in this paper.

1.2 Main Contribution

In this paper, we propose a new system approach to follow the workflow of the
efficiency enhancement of DIDPA with its linearization. Three major phases
conduct this workflow: optimization of DIDPA configuration based on HHSC,
DPD linearization, and joint optimization or pruning version of HHSC and DPD.
These three phases use an adaptive cost function and change its coeflicients at
each phase according to each specification requirement. The free parameters
optimized in the HHSC process cover the baseband calibration process, such as
the power level and PAPR reduction. Besides, a DPD linearization is jointly
optimized and integrated into our approach to meet the linearity requirements.
The proposed approach brings a set of contributions regarding the optimization
and linearization of DIDPA, which are emphasized by:

e An efficient optimization process based on HHSC by combining a global
optimization problem and adaptive control to ensure the convergence of
the free parameters to their optimum.

e Design a multi-objective optimization cost function to represent the trade-
off between linearity and power efficiency.

e Design an optimal DPD model with a reduced-complexity aspect by hill-
climbing (HC) heuristic. The DPD model involved in this study is based
on the model with a segmentation approach.

e An adaptive tuning of the cost function according to the linearity improve-
ment by the DPD and power efficiency by the optimal configuration.



e An optimal process to prune the free parameters in HHSC to refine the
optimal configuration with the presence of DPD towards reduced compu-
tational complexity.

Unlike conventional solutions reported in the literature for DIDPA that focus
on a single perspective study, the advantage of our proposed system approach
is to drive DIDPA iteratively to an optimal operating point where linearity and
efficiency meet their requirements. This is achieved by thoroughly studying and
optimizing each phase of the system approach and executing the appropriate al-
gorithms with high performance, low complexity, and good numerical properties
for its implementation.

The remainder of this paper is organized as follows. Section II presents the
system-level aspects, including the DIDPA, the proposed architecture, and the
free parameters to be optimized. Section III describes the proposed system ap-
proach by focusing on the cost function design, the auto-tuning process-based
architecture, the DPD linearization technique, and re-optimizing free param-
eters using an optimal pruning process. Section IV describes the test bench.
Section V presents the experimental results of the proposed approach. Finally,
the conclusion is given in Section VI.

2 System-Level Aspects

2.1 Dual-Input Doherty Power Amplifier

The PA based on active load modulation such as Doherty and outphasing with
separate RF inputs can be viewed, by generalization, as the block diagram
depicted in Fig. 1.
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Figure 1: Block diagram of dual-input PA



The DIDPA has two RF inputs, a drain bias Vp¢, and two gate-source
voltages Vigs,1 and Viggo to control the transistor’s terminal independently.
A typical example of PA with independent Vg is Doherty, where the main
(carrier) amplifier is biased in class B and the auxiliary amplifier (typically
named peaking amplifier) in class C.

The instantaneous amplitude and phase of each input in the baseband, as
well as the Vg gate bias voltages, can be controlled and adjusted separately,
allowing a significant degree of freedom for these parameters to improve the
power efficiency. The main amplifier reaches its maximum output voltage at
a given operating back-off and becomes maximally efficient. From this power
level, the auxiliary amplifier turns on and injects current into the common node,
increasing the output power and modulating the load seen by the main ampli-
fier. In this paper, the DIDPA presented in [26] is used as the device under
test (DUT), where the authors have presented a 3.0 - 3.6—GHz wideband GaN
Doherty PA with a frequency dependency compensating circuit.

2.2 On-Line Architecture

To meet the objectives of optimizing DIDPA, which consists of improving effi-
ciency while maintaining a better linearity level, we propose an on-line archi-
tecture described in Fig. 2.
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Figure 2: Block diagram of the on-line architecture

In this paper, the DPD is used to linearize the DUT by compensating for
the nonlinearities of DIDPA. Additionally, CFR is used to reduce the PAPR of
the transmitted signal so that DIDPA can operate with less BO. Both CFR and
DPD are implemented in baseband.

On the other hand, the DIDPA requires two separate input signals. There-
fore, the baseband signal to be sent to the PA should be divided into two input
signals, which are different in amplitude and phase, using a splitting function,
the so-called digital splitter, designed in the baseband.



Each block has parameters to be set or controlled, which requires a design of
a control engine based on an optimization approach that optimally determines
these parameters to ensure an operating point of DUT exhibiting a better trade-
off between efficiency and linearity.

In this architecture, the DPD block will not be controlled by this control
engine since the DPD technique requires linear regression techniques such as
the least square (LS) method to identify the model coefficients.

2.3 Free Parameters

Each block in Fig. 2 has free parameters to be set or controlled, which are
summarized in Table 1.

Table 1: Free parameters of the proposed architecture

Block Free-parameter Symbol | Unit
CFR Threshold of PAPR reduction 1 dB
. . Power ratio e %
Digital splitter Phase shift 1) Degree
Transceiver Attenuation difference Y dB
DUT Main bias voltage Vas,m Volt
Peaking bias voltage Vas.p Volt

2.3.1 Free Parameter of CFR

The CFR technique used to reduce the PAPR is based on peak cancellation [27]
[28], the principle of which is based on the clipping and filtering CFR technique
and carried out through two stages: hard clip and clip-and-filter.

The hard clip is the most basic CFR technique, where the input signal v(n)
is clipped according to a threshold p. The signal generated at the first step is
expressed as:

ooty = 4 V) = o) gt i ()] > p
el { 0 i [u(n)] < p M

At the second stage, vy (n) is filtered using noise shaping. Finally, the
output signal u(n) is given by subtracting a time-aligned weighted version of
the filtered peak cancellation signal from the original input signal v(n).

u(n) =v(n —d) — as x filter{vgc(n)} (2)
where oy is the subtraction parameter.

Therefore, we use the clipping threshold u as a free parameter of the CFR
block to be controlled.



2.3.2 Free Parameters of Digital Splitter

The motivation behind using two separate RF inputs is to eliminate analog
input splitters, such as the Wilkinson divider, and to allow independent power
control to the main and peaking amplifier.

Digital splitter divides the complex signal z = Xe?? into two complex signals
Zm, and z, defined as:

Ty = QT 5 T, = qpe %x (3)

We propose to take the power ratio a and the phase offset ¢ as free param-
eters with

am =vVa; a,=vV1-—a (4)

2.3.3 Free Parameter of Transceiver

In the calibration process, it has been shown that two essential operations are
needed to be established from the baseband: fixing the DAC resolution, which
is integrated into the RF transceiver, and setting the gain attenuation, which
controls the power level of the transmitted signal.

For DAC resolution, it is recommended to scale the IQ data in baseband to
ensure high accuracy and minimize loss of information. The gain attenuation
directly controls the power level of the signal in the Tx branch.

In the transceiver block, we use two parameters A,, and A, defined in the
baseband to control the attenuation in the branch Tx1 occupied by the main
amplifier and in Tx2 occupied by the peaking amplifier.

We have approximately estimated the relationship between A,, (and A,)
and the average power of the main P, 4pm (and peaking P, 4pm) RF signal as:

Pm,dBm(Am) = Am + aPAPR(xm) + b\/a +c

)
Ppapm(Ay) = A, + aPAPR(z,) + bv/T —a + (5)

where a, b, and ¢ are parameters defined empirically from some preliminary
tests and stored in look-up (LUT) and indexed in terms of the center frequency
f¢, and the signal bandwidth. These test results provide a datasets of a, b, and
¢ that will be used subsequently according to the parameters of the scenario at
hands.

If A, and A, are equal, the power P, 4pm and P, g, should be equal.
However, in practice, we have observed that by assigning the same numeri-
cal value to A,, and Ap, Py, apm and P, pm through the power sensors are
different. This difference between P, apm and P, 4pm can be adjusted and
compensated in baseband by using a parameter denoted by v with

Pm,dBm(Am) = Pp,dBm(Ap + T/’) (6)



Finding ¢ that satisfies (6) can be done in the calibration process. However,
we propose to consider it as a free parameter controlled from baseband, which
could be viewed as a hardware parameter since it can adjust the input power
distribution over the main and peaking amplifiers.

2.3.4 Free Parameter of DUT

The main and peaking inputs of DIDPA control the main and peaking amplifiers,
biased with Vgs m and Vs p, respectively. These biased voltages are controlled
from the baseband and defined within a DC voltage range. The DC power
supply used to manage the gate bias voltages is connected to the PC workstation
through an Ethernet connection that enables real-time voltage monitoring from
the baseband. Therefore, Vs . and Vs, are taken as free parameters.

3 System Approach for Linearization and Effi-
ciency Enhancement of DIDPA

The principle of the system approach proposed to optimize the free parameters
and linearize DIDPA is summarized in the flowchart in Fig. 3. The process of
the proposed system approach is mainly composed of five sub-processes:

e Design of the cost function to control the convergence of the free param-
eters optimization process.

Optimization of free parameters based on the proposed auto-tuning pro-
cess.

e DPD linearization based on ILA.

Update the cost function designed in the first sub-process.

Optimal pruning of free parameters in HHSC.

3.1 Design of Cost Function

The cost function is an essential aspect in this research work to ensure a good
trade-off between linearity and efficiency. The linearity requirement is presented
in terms of two figures of merit (FOMs): error vector magnitude (EVM) and
ACPR, while the efficiency requirement is presented by PAE and the output
power P .

The EVM is a metric that measures the in-band distortion level. It is defined
in the constellation domain and evaluates the deviation between the reference
constellation point and the actual constellation point obtained in the presence
of distortions. Analytically, EVM is defined as:

1 N-1 2 2
EVMy, = Wzy‘:os(ffa'”%)

avg

x 100% (7)
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Figure 3: Flowchart of the proposed system approach

Where 41 and §@Q are errors magnitude corresponding to in-phase symbol and
quadrature symbol of received data compared with an ideally reconstructed
constellation respectively, N is the number of symbols, ngg is the average square
magnitude.

The ACPR is used to evaluate the out-band distortions and defined for the
lower (left) and upper (right) adjacent channels as:

10



Jipa? Py(t)df
B Ply(t))df

[ ood s Py(t)df

ACPRU7dB =10 IOglo

ACPRL’dB =10 logm

where B represents the bandwidth of the signal and P(.) is power spectral
density.

The FOMs are weighted according to their importance in the cost func-
tion. Additionally, some FOM penalization thresholds can also be defined when
targeted specifications are not met.

In this paper, we propose to design the cost function J according to the
weighted sum method [29] but with constraints [30] this ref. has not list of
authors, which is defined as

J = wiJevm + w2Jacer + wsJpar + wadp,,, (9)
with
EVM
JevM = W1 | T
J _ | acPr
ACPR =~ |ACPR,
(10)
Joam — | PAE
PAE — PAE,
_ | Pout
Jpout - Pout,,t

where EVM,, ACPR;, PAE;, and P, + are EVM target, ACPR target, Poy:,
target, and efficiency target, respectively, that the user attempts to reach.
The constraints of the cost function designed in (9) are defined as:

{Z?—l w; =1 (11)

max JFOM =1

Since CFR as a nonlinear process deteriorates EVM dramatically, we propose
to use in Jgyar, EVM of CFR denoted by EVM¢c, EVM of DPD and DUT
denoted by EVMpp, and EVM of the whole system including CFR, DPD, and
DUT denoted by EVMcpp.

There is a way to present the three EVMs in one feature, denoted by EVM,4
by using the mean square of EVMcpp, EVM¢, and EVMpp, which can be
defined as:

EVM. \/ EVMZ + EVM};, + EVMZ,,

1 (12)

11



The constraints of the cost function designed in (9) are defined as:

wy = w11 + w2+ W13

4
dimgwi =1 (13)
max JEVM = max JACPR = max JPAE = max Jpout =1

The computation of ACPR is defined in terms of ACPRz; and ACPRy; as:

100 4107 02
2

ACPR = 10log;, < (14)

In (9), each objective function Jrowm is normalized by its target value Jrow,t,
which is defined as a user specification. The cost function design is carried out
such that the optimization process attempts to maximize J to 1, indicating that
the user’s specifications are met.

3.2 Hybrid Heuristic Search Control

Finding the optimal configuration of each free parameter in Table 1 in a defined
search range corresponds to our optimization problem.

The brute-force search can help find the optimal free parameters by explor-
ing all possible combinations in the searching space. However, the brute-force
search is not a practical solution to be implemented in real-time applications.
Consequently, an auto-tuning approach based on an optimization algorithm is
proposed to meet this need.

The proposed auto-tuning approach to optimize the free parameters is based
on an efficient hybrid heuristic search control (HHSC) based on two types of
model-free optimization methods: simulated annealing (SA) as a global opti-
mization search and extremum-seeking control (ESC) as an adaptive control to
fine-tune the optimized results.

The choice of combining SA and ESC stems from the main two properties
of these optimization methods. Indeed, SA is well known to guarantee the
convergence to a neighborhood of the global optimum in a compact search set
[31]. Furthermore, ESC is proven in [32] to converge to a local optimum. Based
on these two convergence properties, we choose to combine the SA, which will
guide the free parameters to a neighborhood of the global optimum, and then
switch to ESC, which will finite-tune the search for the optimal parameters in
the local neighborhood of the optimum.

The vector of free parameters to be optimized is denoted by ©. The cost
function corresponding to © is denoted by J(©) or J for simplicity. The free
parameters to be optimized are defined as:

O=[uaodt Vasm Vasyl (15)

The boundaries ©,,;, and ©,,,, are defined as well. The interval [©,in O maz)
presents the searching range of each free parameter. Some preliminary tests, or
information about the system, especially DUT from previous works, are neces-
sary to determine the proper optimization interval range.

12



3.2.1 Simulated Annealing

One of the best-known heuristic search methods for addressing the complex
black-box global optimization problems is the SA algorithm proposed in [33].

Physical annealing in the metallurgy domain inspires the principle of the
SA algorithm. Physical annealing is the process of heating a material until
it reaches an annealing temperature. Then it will be cooled down slowly to
increase the size of its crystals and reduce their defects. When the material is
hot, the molecular structure is weaker and is more likely to change. When the
material cools down, the molecular structure is more rigid and is less responsive
to change.

Following the analogy with metallurgy, the slow cooling in simulated an-
nealing depends on the slight decrease in the probability of accepting a worse
solution as the solution space is explored. The algorithm should perform an ex-
tensive search to find the global optimum solution, so accepting worse solutions
is fundamental.

SA algorithm is an almost straightforward stochastic search based on the
Metropolis Monte Carlo method [34], the concept of which is to accepts not
only the solutions that improve J, but also some solutions that worsen it with
a probability p known as the Metropolis criterion and defined as:

p(AE)=e" FoottT (16)

where AFE is the change in cost function, kp.; is Boltzmann’s constant, and 7T
is the control parameter analogous to the temperature of the annealing process.
During the search, the temperature is gradually decreased until reaching
zero value in the perfect case.
The free parameters optimized using SA are denoted by ©gpt sa. The cost
function corresponding to ©gpt sa is denoted by Jopt sa. The algorithm of SA
is described in Algorithm (1).

3.2.2 Extremum Seeking Control

Once SA algorithm has reached a neighborhood of J,p g4, the optimization
procedure switches to ESC to fine-tune Ogp¢ sa-

ESC is a control method that regulates the output of a dynamic map to its
optimal value. Recently, it has been used extensively for real-time auto-tuning
of physical systems, e.g. [35]. We propose here to use ESC in this context of
real-time auto-tuning.

Indeed, ESC can be seen as a model-free optimization method, which does
not need the gradient information explicitly, but estimates the gradient value
of the cost function over time, via properly designed feedback loops, i.e., filters.
ESC is proven to converge to a local optima of the cost function.

One of the most popular and simple ESC methods is the perturbation-based
ESC, which is proposed in [32], in which the concept is fundamentally depicted
by the block diagram in Fig. 4, where it consists of a target system, the output

13



Algorithm 1: Algorithm of SA

Initialization: 7o, T, C, kport, iter =0
Define number of SA iterations SA,,qz
Random initial solution Oq

© =0
@opmSA =0
Evaluate J(O)
T="To

while 7 > 7; do

while iter < SA,,4. do

iter = iter + 1

Select a random neighbor ©’ € ¥(©)
AE =J(©) - J(O©)

if AE > 0 then

0 =0
if J(©’) is better than J(Oupt,s4) then
@opt,SA =0
Jopt,SA = J(G/)
end
else

Generate uniformly distributed random r € [0 1]
—AE
if r < eFot” then
=60
end

end
end
T=CxT
iter =0
end

Return Ogp¢ sa

14




of which is the cost function J, a perturbation signal asin(wt), a gain K, and an
integrator.

S)

Objective function

asin(wt) + )

6 K £
S

Figure 4: ESC scheme

According to Fig. 4, the controller % injects a perturbation signal asin(wt)
into the system, resulting in an output of the cost function J(©). This output
is subsequently multiplied by asin(wt), passed through the integrator %, leading
to cost’s gradient estimate O, and added to the perturbation signal asin(wt).

The loop of ESC can be written as the following dynamical system

& =J(0) x asin(wt)

de

O = O + asin(wt)

It is worth noting that this ESC method only needs the numerical values
of the cost J, and do not need any closed-from or numerical computations
of the gradient of J. Its implementation is also rather straightforward, and
corresponds to a simple forward Euler discretization of the dynamics given by
equations (17). This simplicity of implementation makes ESC a good choice for
online tuning of physical systems, when real-time computations capacities are
limited or expensive, e.g., [35].

In our application, the perturbation-based ESC is used as an on-line process,
which is placed downstream of SA to fine-tune ©,p¢,54, around the neighborhood
of Ogpt,sa. The optimized configuration by ESC is denoted by Oopt nusc. The
cost function corresponding to ©gpt nusc is denoted by Jopt,HuSC-

3.2.3 Algorithm of HHSC

Starting from an initial solution

@O = [/J,o Q) (bO wO VGSq,mO VGS,pO]

SA optimizes the free parameters according to a designed cost function J. The
optimized solution O,p¢,ga returned by SA will be the initial solution for the
ESC process. The algorithm of HHSC is described in Algorithm (2).
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Algorithm 2: Algorithm of HHSC
Initialization: 7o, Ty, iter =0, K, a, w
Run Algorithm of SA described in (1)
O0,EsC = Oopt,sA

O = O rsc
Jold = Jopt,SA
while 7 do
Evaluate J(O)
if J(@) > Joq then
Jora = J(O)
&= J(©) x asin(wt)
O=Kx [¢
O = O + asin(wt)
else
Oopt,HHSC = O
Jopt,HHSC = J (Oopt,HHSC)
end while loop
end
end

Return Ogp¢ masc

The optimized configuration by HHSC is denoted by Ogpt mrsc, and its
corresponding cost function is denoted by Jopt musc-

3.3 DPD Linearization

Once HHSC is done, it will be decided whether to include DPD in the system
approach or not. If not included, the cost function will be re-designed only
based only on the efficiency requirement. However, the linearity specifications
is more challenging to meet for the wideband signal scenarios. Hence, DPD
linearization is part of system approach.

The decomposed vector rotation (DVR) model, proposed in [36], has been
chosen to serve as a DPD model as it demonstrates its ability to linearize strong
nonlinear behavior with memory [37].

The DVR model can be expressed by:

y(n) = Z a;z(n —1) + Z Ty (18)
i=0 T,€5

where x(n) and y(n) are the input and output of the model, M,;,, is the memory
depth for the linear term, a; are the complex coefficients of the linear term,
and S is the set of the terms T; which are used in the model with S C T
and T = [Tl’[o,m’p],TQ,T37T4,T5,T6,T7] where Tl,[O,..‘,P] is the set TLO’ ""TLP
whose elements are defined hereafter along with T, ..., T7.
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k=1 1i=0

T7 = ZZ%;H%(”— i) — Bk| - z*(n) ~x2(n—i)

k=1 1i=0

|[z(n)] = Be| - w(n —1) (19)

|2(n — )| = Br| - 2*(n) - 2™ (n — )

where K is the number of segments, 5, the bounds of the segments, p is the
nonlinearity order, M the memory depth, and cg; are the complex coefficients
of the model for each segment.

The DVR model has been sized to find its optimal structure using the HC
algorithm proposed in [38].

The indirect learning architecture (ILA), presented in Fig. 5, is used to
identify the DPD coeflicients, which are iteratively estimated by using LS ap-
proach in order to minimize the LS criterion built on the difference between the
PA input z(n) and z,(n), the model output, so-called the postdistorter, that
is computed using the estimated model coefficient ¢ and z(n), the PA output
divided by the amplification gain G.

Only the input-output signals from DIDPA are required in ILA to estimate
the model coefficients. The principle is based on Post-Distortion and illustrated
in Fig. 6.

The instantaneous error is defined as:

e(n) =z(n) — z(n) (20)
The postdistorter input and output can be rewritten for IV samples as
zp = Zc (21)

where z,=[2,(1),...,2,(N)]", z=[2(1),...,2(N)]", ¢ is a C x 1 vector con-

taining the set of estimated model coefficients, Z is IV x C' matrix of regressors
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Figure 6: Principle of Post-Distortion architecture

containing basis functions of z. The LS solution will be the solution for the
following equation for c:
[ZHZ)c = 72"z (22)

or equivalently using the pseudo-inverse:
¢=[2"7)7'2" 2 (23)
where (22) minimizes the LS criterion:

¢ = min(J) (24)

c

with:
N

T =Y ke = Y laln) — ()

=1
Fig. 7 shows the integration of DPD using ILA to linearize the DIDPA into
the on-line architecture.
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Figure 7: Integration of DPD using ILA to the entire system

3.4 Update of Weighting Coefficient

The DPD may apply a back-off to the operating point of DIDPA, which dramat-
ically reduces the efficiency requirement. Therefore, the cost function J with
DPD, which is denoted by Juyusc+ppp, with updated FOMs and the same initial
weighting coefficients will probably have deteriorated, and some free parameters
in Ogps,usc Will no longer be optimal.

To maximize the cost function again, we propose to rely on the design of
the cost function J by adapting its weighting coefficients w = [w; we w3 wy)
according to the change effected by the DPD. An intuitive approach can be used
by attribute an equal weight to each FOM according to the following equation:

w; = E (25)

where i = 1,2,...,n and n is the number of objective functions that present
FOMs. In our context, the cost function is designed by combining efficiency
and linearity, as is shown in (9). On the other hand, DPD with an efficient
optimal DPD model can significantly improve linearity, which leads to reducing
the weight of linearity FOMs in (9). Hence, we propose to design an adaptive
cost function, in which the weight coefficients w are adaptive according to the
improvement of linearity and efficiency over each block from the flowchart in
3. The weighting coefficients w are updated with respect to how much DPD
improves linearity FOMs, e.g., EVM and ACPR, compared to before applying
it.

Starting from initial weighting coefficients w, we apply HHSC to optimize
the free-parameters © with Jope masc, then DPD to linearize the DUT under
the optimized free-parameters.

It is required to re-compute the cost function Jgpscippp once the DPD
is performed, and compare it to Jopt,uusc. if Juusc+ppp < Jopt,HHSC, We
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propose to update the weighting coefficients w1 2, w3, w2, w3, and wy. w1 is
not concerned since it depends on the CFR operation.

In this process, we are only focusing on wj 2, w; 3, and wy that refers to
linearity FOMs improved by DPD. We calculate the ratio n; of the difference
before and after DPD improvement for each linearity FOM. The ratio n; is
expressed as:

e — EVMunsc,pp — EVMaunsc+ppPD,DD
! EVM,
EVMunsc,cop — EVMunsctppp,cpp
= : : 26
12 EVM, (26)
e ACPRunsc — ACPRunsc+ppPD
3 ACPR,
Next, we update the weighting coefficients of FOM linearity as:
10
Wi,2 = W1,2 X (1 — 7)
ni
10
= 1 —_—
w3 = w3 X ( n2) (27)

w)p = w11 + W2+ w3

’LUQZU)QX(l*ng)

Once wy 2, w13, and wy are updated, we propose to assign an equal weight
between w3 and w, according to:
w3 +wg=1—wi1 —wi2— w3 — w2 (28)
Wy = W3
The algorithm for updating the weighting coefficients w is described in Al-
gorithm (3).

3.5 Optimal Pruning of Free Parameters in HHSC

Once w is updated to the DPD contribution, the cost function’s design J is
changed.

According to the flowchart in Fig. 3, we run the HHSC again, but only
on reduced free parameters in ©. The HHSC will only be performed on one
free parameter that is the most sensitive one in © and has the most significant
impact on the behavior of J. The pruning process is an off-line procedure, which
aims to reduce the complexity of the HHSC when the weighting coefficients are
updated.

Pruning the free parameters in HHSC is optimally achieved using the HC
algorithm [39]. The motivation behind using the HC algorithm is that it is
not a black-box optimization process. The neighborhood property in the HC
algorithm makes it possible to follow the algorithm’s evolution at each iteration.
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Algorithm 3: The update of weighting coefficient w

Initialize weighting coefficients w = [wy 1 w12 w13 W2 W3 Wy

Apply HHSC

Get Jopt,HHSC

Measure EVM¢, EVMcp, EVMcepp, ACPR 1, and ACPRy; before
DPD

Compute ACPR=f(ACPR1,ACPRy) as in (14)

EVMunsc,pp=EVMpp

EVMunsc,cop=EVMcpp

ACPRypsc=ACPR

Apply DPD using ILA

Measure EVMC, EVMCD, EVMCDD7 ACPRLl, and ACPRUl with DPD

Compute ACPR=f(ACPR1,ACPRy1)

EVMunsc+prp,pp=EVMpD

EVMunsc+ppp,cop=EVMcpp

ACPRunsc+ppp=ACPR

Compute Junsc+ppp

if Jursc+ppp < Jopt,musc then

n. — EVMuusc,op —EVMuusc+DPD,DD
1= EVM,
no — EVMuusc,cop —EVMunsc+pprp,cbb
2= EVM,
Na — ACPRunsc—ACPRunsc+pPD

3= ACPR;

W12 = W12 X (1 — 717?)
w3 =wiz % (1 - 7172)

wyp =wi 1+ w2 +wis

We = Wo X (1777,3)
177,017’[1)2

ws = 2
w4 = W3
else
| Finish
end
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Here, the cost function is used for the joint optimization of CFR and DUT
in the second block from the flowchart.

The HC algorithm starts from a given initial element ©4 (0y,HC at the first
iteration and continually moves in the direction of the element with the best
cost function value among its neighbors.

In the following, we denote O, nc by Og,,, and Jy, nc by Jg,,-

At the ¢'" iteration, the search procedure starts from Oq(, and test its
neighbors Oy,,,04,, -, Oq(,,, where M is the number of neighbors of O, .

In this study, the neighborhood definition is inspired by the proposed one for
the DVR model in [38]. The vector © consists of 6 free parameters: [ o ¢ ¥ Vas,m Vaspl-
As these free parameters can have their values changed independently, they com-
pose a 6-dimension space. The neighbor of element © is defined as an 6-tuple

{nx (1+6u) 5 ax (140a) 5 ¢x (1+0y) ;
P x (1 —|—5¢) ; Vasm X (1+ 6VGS.m) )
VGS,p X (1+6V(;s,p)}

where dg(;) € [—1,1] x 1((; with i =1, ..,6.
The main property of this nelghborhood definition is to apply the operation
of dg(;) to each free parameter ©(i) individually.

According to this definition, the element

Oy = [0 a &Y Vasm Vas,p

at the ¢'" iteration has 12 neighbors, which are:

x (1+45) ad v Vasm Vas,yp

Oqu, = 1 ]
Oqpsy =[x (1 - *) ¢ Y Vas,m Vas,p)
Oy = W ax (1+ {5) ¢ ¥ Vasm Vas,y]
@q(4) [/1' a X (1 *) ¢ 1/) VGSm VGS;D]
GQ(J) [N a ¢ X (1 + 10) ¥ Vas,m VGSp]
GQ(ﬁ) [:U a ¢ X (1 - ﬁ) v Vasm VGSp]
6(1(7) [:ua(bd}x (1+ 10) VGSm VGSp]
@(I(S) wadpx(1l— E) Vas,m VGSp]
GQ(Q) [/1' a @Y Vagm X (1 + VGS m) VGS,p]
GQ(IO) = [/’L agy VGS,m X (1 - Vcsm) VGS,p]
Oy = 1 @ & ¥ Vasm Vasp x (1+ 5552)]
6(1(12) [.u a ¢ VGSm VGSp (1 - Vcigp)]

The element O, with the maximized cost function Jy, is the solution
denoted by O, ,,. With the neighborhood definition, the best solution O
can be compared with the initial solution ®q(0) since only one free parameter is
changed. An efficient way to do the comparison is to subtract O, from O,

which make it easy to locate the position of the nonzero element in the vector
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V =0y, — Oy, The index of the nonzero element, denoted by idz, will then
be stored in LUT, and the HC algorithm moves to the next iteration as long as
Jy(., 1s better than Jy_; . Otherwise, the HC algorithm stops.

The size of LUT is 6 x 2, where 6 refers to the number of free parameters
in © (6 inputs). The cell corresponding to each free parameter, noted by pos,
is incremented when the HC algorithm finds idz. Once the HC algorithm is
finished, the free parameter to be used in HHSC, noted by ©’, is determined by
the maximum incremented variable in the second column of LUT. If many free
parameters have the same number of occurrences in LUT, the algorithm will
take them as ©'.

The optimal pruning of free parameters in HHSC is described in Algorithm
4.

Algorithm 4: Optimal pruning of free parameters

Define cost function J
Choose the initial element ©g = Ogpt, HHSC
Set ¢ =1
Oy HC = Op HC
Ja0y = JoHe
while (1) do
Define number of neighbors M of ©
for i < M do
Determine the neighbor 0,

Evaluate Jg,,

q(0)

end

Oy = argmin@q(i> (qu)

if Jq—1<s) < qu then

= Yq) — @(1(0)

Find index idz of nonzero element in V'
LUT(q) = idx
g=q+1
O, = @q_l(s)

else

| end while loop
end

4(0)

end

pos = Most frequent values in LUT

©’ = ©(max(pos))

Apply HHSC to optimize J(©’) using J with updated w

The cost function that corresponds to the optimized free parameter @(’jpt,

denoted by Jopt,upd, Will be compared to Junsc+ppp. If Jopt,upd is better than
Juusc+ppp, HHSC has improved FOMs compared to those from the previous
optimal configuration, and a DPD is required to linearize the DUT. Otherwise,
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the user must check whether the linearity-efficiency specifications are met or
not.

4 Test Bench

In order to validate the effectiveness of the proposed system approach, exper-
iments have been carried out using a test bench. The block diagram and the
photo of the test bench are shown in 8 and Fig. 9, respectively.

LPF  Driver  Coupler Tsolator D.U.T

Baseband process
- - - a} Coupler  Coupler  60dB
Spllt!;er E
function
ok
D.

10dB

Figure 8: Block diagram of test bench

g VA

Figure 9: Photo of test bench

The DIDPA is controlled and evaluated using a MATLAB-based lineariza-
tion and efficiency enhancement technique. The baseband IQ data are generated
and split into two different I1Q data inputs sent to the DUT through the AD9371
dual-channel RF transceiver, which is connected to Xilinx FPGA ZC700 through
FMC connectors. The transceiver AD9371 up-converts the baseband signals to
the carrier frequency f. at 3 GHz. A Keysight N9010A MXA spectrum ana-
lyzer is used to characterize the signals spectrum at the output of DUT. For the
observation path, The RF output signal is down-converted to the baseband by
AD9371, which provides the baseband signal to the PC workstation. Around
100000 IQ samples were recorded for the baseband process with a sampling rate
of 245.76 MHz.
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The proposed system approach for DIDPA is tested using a 64-QAM mod-
ulated 20 MHz bandwidth LTE signal with a roll-off factor of 0.6 at f.=3 GHz
with 8 dB of PAPR.

5 Experimental Results

5.1 Initial Conditions of Free Parameters

Following the flowchart in Fig. 3, we define the search range of the free param-
eters in Table 1 by setting the upper and lower bounds for each free parameter.

The search range is determined empirically according to some preliminary
tests.

e Threshold of PAPR reduction u: The CFR applies a nonlinear process by
clipping the input signal v(n) according to a clipping threshold u, which
causes an EVM¢ degradation. Fig. 10 shows the behavior of EVM¢ and
PAPR of the output u(n) of the CFR block according to the variation of
1. PAPR of v(n) decreases with respect to . The EVM of v(n) degrades
exponentially with increasing p. As we target an EVM,; around 3%, we
define the search interval [0 pimqae] = [0 1.2], for which when p = 1.2, the
degradation of the EVM by CFR is almost 3%.

7 T T T T T
6 r
5 L
S 1 g
— 16 /~
2 =
= 3r ] =
15.5
2 - -
15
1t ——PAPR of v(n) |4 45
PAPR of u(n)||
—%—EVM of u(n)
G 1 1 1 | | 1 1 1 | 4
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

p [dB]

Figure 10: Behavior of EVM¢ and PAPR of v(n) versus p
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Power ratio a: Since « presents the power distribution between the main
and peaking branches, we set its search range to [0 1].

Phase shift ¢: The search range [-180° 180°] is the standard interval to be
set. However, based on some preliminary tests, it was shown that there
is some critical search range to be avoided. Therefore, [-10° 200°] is taken
as a search range for the free parameter ¢.

Attenuation difference ¢: As 1) is categorized as a hardware free parameter
that refers to the physical power difference between the main and peaking
amplifier, we set its search range to [Yumin Ymaz] = [—2 2] dB.

Bias voltage Vgs: We set the bias voltage search range for both Vg, and
Vasp to [Vasmin Vasmas) = [—4 — 1] V in order to provide a flexible
variation between deep-class C condition that should enhance efficiency
and a near-class B bias where linearity should be improved. The drain
bias Vpc is 28 V.

5.2 Initialization of Cost Function

At this point, it is necessary to determine the initial weighting coefficients w
and the target FOMs.

We initialize the weighting coefficients

w = [wy we wy wy]

1. _ 01, _ 0.1
Wi,1 =73 ;3 W12 = "3 ; W13 = 735
(%) =0.1
w3 =04
W4 =04

We attribute more weights to the efficiency since DPD will be included to

linearize the DUT. This refers to the fact that the linearity requirements are
more relaxed, as it is easier to meet with DPD, unlike efficiency.

Regarding target FOMs, they are defined as:

EVM, =3%
ACPR; = —50dB
PAE, =60%
Pout =40 dBm

5.3 Joint Optimization of CFR and DUT
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The initial solution for HHSC is defined as:

©0 = [po a0 o Yo Vasme Vas,po)
—[00.540°0 — 1.5 — 2.5]

In this step, HHSC is performed according to Algorithm (2). For the SA
algorithm, we set To = 1, Ty = 0.01, C = 0.96, kpoir = 1, and S A4, = 60.
The convergence of J is shown in Fig. 11.

1 T T T T T T
—— Cost function .J of HC
09+ ——=—Cost function J of ESC|A

08 .

071 1

0.6-[‘ i

05} .

Cost function .J

04 i

0.3 i

02r 1

0 | | | | |
10 20 30 40 50 60 70 80 90 100 110

HHSC iteration
Figure 11: Evolution of cost function J over HHSC iterations

In HHSC, we set empirically 100 iterations for SA to converge, while ESC
requires 20 iterations. As SA is defined as a stochastic optimization method,
we can see from Fig. 11 that the stochastic behavior has been exhibited in the
first 60 iterations where J evolves randomly.

After 61 iterations, the SA algorithm returns the optimal solution. After
120 iterations in total, HHSC returns the optimal configuration ©,p Husc sum-
marized in Table 2.

The evolution of free parameters over HHSC is illustrated in Fig. 12, in
which the free parameters have similar behavior to J according to the HHSC
iterations.

The FOMs corresponding to Jopt mrsc are shown in Table 3.
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Table 2: Optimal free parameters

Lo [ o] ¢ | ¢ |Vosm|Vasp| J |

O 0 0.5 40° 0 -1.5 -2.5 0.57
@opt,SA 0.62 | 0.14 | 164° | 1.54 -1.37 -1.95 0.65
Oopt,uusc || 0.65 | 0.15 | 164° | 1.53 | -1.39 | -1.95 || 0.66

pl]

o [dB]

10 20 30 40 50 60 70 80 90 100 110
HHSC iteration
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Figure 12: Evolution of free parameters over HHSC iterations

It should be noted that HHSC shown in Fig. 12 was performed on the linear
region of DIDPA. Indeed, since SA generates random solutions, it was decided
to reduce the operating point of DUT while HHSC is running in order to set up
a security measure of the DUT.

Once the free parameters are optimized, we raise the back-off by increasing
the input power from 11.36 dBm to 21.16 dBm so that the system performs
nearly at Poy:,:. The FOMs after increasing the input power are summarized in
Table 4.

According to the results from Table 12, the efficiency FOMs are enhanced by
sacrificing the linearity FOMs. This confirms the choice of the initial weighting
coefficients where w3 and w, have more influence than w; and ws.
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Table 3: FOMs according to the optimal free parameters Oop¢ nusc with
P;,=11.36 dBm

EVMc [%] 1.48
EVMpp [%] | 2.34
EVMcpp (%] | 2.72
ACPRy; [dB] | -42.32
ACPRy; [dB] | -42.39

PAE [%] 16.21
Pou: [ABm] | 32.92
’ Jopt,HHSC ‘ 0.66

Table 4: FOMs according to the optimal free parameters ©gp¢ nusc with
P;,=21.16 dBm

EVMc [%] | 1.48
EVMpp [%] | 7.26
EVMcop (%) | 8
ACPRy; [dB] | -27.44
ACPRy, [dB] | -27.15

PAE (%] | 46.58
Pou: [ABm] | 35.63
| Joptumsc | 0.81 |

By assigning the free parameters to their optimal configuration ©qp¢ Hrsc in
Table 2, the DUT, including the digital splitter and transceiver, can eventually
be seen as a single-input single-output system where the input is z(n) and the

output is denoted y(n).

The AM-AM and AM-PM characteristics of DIDPA are shown in Fig. 13,
where we can see a saturation at high power, which leads to strong nonlinearities.
Besides, the memory effects are exhibited as well.

5.4 DPD Linearization
The DPD is carried out in two steps:

e Determination of the optimal DVR model.
e Convergence of linearity FOMs (ACPR and EVM) using ILA.

5.4.1 Determination of Optimal DVR Model

According to the HC algorithm presented in [38], the structure of the DVR

model is optimally sized.
In this study, the cost function, denoted by Y, is defined as a search criterion
to ensure a good trade-off between three features: modeling accuracy presented
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Figure 13: AM-AM and AM-PM curves

by normalized mean square error (NMSE), denoted by N and computed between
z(n) and zp(n), model complexity presented by the number of coefficients C,
and computational complexity, which is given by the condition number of the
regressor matrix ZHZ in (22), denoted by Cond.

The cost function Y is used to control the convergence of the HC algorithm
in order to return an optimal DVR model with a considerable ability to be
implemented in hardware. We define the cost function as:

Y = 0.5N 4 0.25C + 0.25log,o(Cond) (29)

The hardware implementation relies on the numerical properties of the DPD
model, which in this case, is presented by C and C'ond. The design of the cost
function in (29) may deteriorate C, and N since the objective function of Cond
is sized in such a way to override the influence of C' and N slightly.

However, the deterioration of N can be overcome by the DPD convergence
towards the solution that presents a better trade-off between linearization per-
formance, complexity, and numerical properties.

Fig. 14 illustrates the HC algorithm’s evolution in terms of C, Cond, and
N, where there are a total of 1659 DVR model structures tested through 9 HC
iterations. The blue dots present the neighbors tested by the HC algorithm.
The red dots indicate the search path taken by the HC algorithm. The green
diamond highlights the best solution.
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Figure 14: Evolution of the HC algorithm in 3D in terms of N, C' and C'ond for
sizing the DVR model

The parameters of the optimal DVR model structure are:

K=4
8 = [0.25 0.5 0.75]
My =1; M =3
Ts = [T T1,2 Th 4]
with C' = 50 coefficients, 10¢°"¢ = 108, and N = —29.45 dB.

Replacing the parameters of the optimal structure in (18), the optimal DVR
model used in DPD is expressed by:

31



1

x(n) = Z a;u(n — 1)

4 3
+ 30 crinlluln = i) = Byl
k=11=0
+ Z Z Cri,2|[u(n — )| — 3k|€]9(n_z) “Ju(n)]
k=1 1i=0
+ 30 crslluln =) = Byl - Ju(n)|*
k=11=0

5.4.2 DPD using ILA

As NMSE being considered as a strong indicator of the ILA convergence, Fig.
15 presents the evolution of the NMSE according to the DPD iterations. As
can be seen, the convergence of NMSE is rapid, in which NMSE is improved
significantly from the first DPD iteration.

At the first DPD iteration, the coefficients of the DPD model are initialized
by ¢ =[1,0,...,0,0], which make it a transparent block, by which z(n) = u(n),
and z,(n) = z(n).

EVMcpp is improved from 8% to 2.97%, which is confirmed in Fig. 16
where the red dots present the IQ constellation of y(n), and the blue dots are
the reference I1Q constellation of v(n).

ACPR has significantly been improved by over 20 dB, which can be con-
firmed in Fig. 17, where the output signal of DIDPA without DPD is shown in
the red plot and with DPD in the green plot.

Since the DVR model is optimally sized to ensure a good trade-off between
performance linearization, model complexity, and numerical stability of the iden-
tification process. The numerical properties of the optimal DVR model at the
final DPD iteration are:

C =50
Cond = 108
e=4

where € is the dynamic range of the model coefficients estimated by DPD.
Linearity FOMs are greatly improved by DPD, which closely meets the tar-
geted linearity FOMs under the optimal configuration ©gpt HHSC-
However, DPD applies a BO to DIDPA, which may deteriorate the efficiency.
At the final DPD iteration, the efficiency FOMs are:

PAE =30.75%
P,y = 34.09 dBm
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Figure 15: Evolution of NMSE according to DPD iterations
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Figure 16: 1Q constellation before and after DPD

which does not meet the target FOMs (P, and PAE,) set in the user speci-

fications.

Table 5 summarizes the FOMs before and after DPD. The cost function is
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Figure 17: Spectra of the output signal of DUT without and with DPD
computed using FOMs before and after DPD.

Table 5: FOMs according to the optimal free parameters

Before DPD | After DPD

EVMc [%] 1.48 1.48

EVMpp [%] 7.26 2.22
EVMcpp (%) 8 2.97
ACPRy; [dB] -27.44 4871
ACPRy; [dB] -27.15 -47.86
PAE (%] 46.58 30.75

P oy [dBm] 35.63 34.09

| Joptmmsc | 081 | 078 |

From Table 5, the cost function is decreased after the DPD application. As
DPD partially modifies the system conditions, the configuration ©qpt Hrsc may
not always be the optimal solution, which stimulus the motivation to update
the weighting coefficients and re-launch a new HHSC.
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5.5 Update Weighting Coefficients

Following the flowchart in Fig. 3, the weighting coefficients w should be updated
to take into account the linearity improvement by DPD to the DUT in which
the efficiency is influenced.

According to Algorithm (3), the weighting coefficients w are updated as
follows:

w1 = 0.05 ; W12 = 0.01 ; W13 = 0.01

we = 0.05
w3 =0.44
wy =044

Being the weighting coefficients w reflect each FOM’s impact in the value of
the cost function J, Fig. 18 presents the weighting contribution of each FOM,
of which it illustrates the contribution with the initial and updated weighting
coefficients.

EVM EVMpp, EVMc
EVMpp ' | CPP EVMepn %
EVMc —)

Figure 18: Impact distribution of FOMs in the design of J with initial and
updated w

5.6 HHSC Optimal Pruning
5.6.1 HC Algorithm

Optimal pruning of free parameters in HHSC is performed with the presence of
the DPD block where the predistorter is filled by the model coefficients identified
at the final DPD iteration and presented.
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Starting from the initial solution
©o,uc = [0.65 0.15 164° 1.53 —1.39 — 1.95]

the evolution of the HC algorithm to prune the free parameters for HHSC is
illustrated in Fig. 19. The red dots present the solution at the HC iteration.
The blue dots present the neighbors.
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Figure 19: Optimal pruning of free parameters based on HC algorithm

In order to investigate the behavior of the HC algorithm, Fig. 20 presents
which free parameter has been stored in the dictionary through the HC itera-
tions.

As can be seen, the free parameter ¢ has often been repeated, which means
that the optimization behavior of HHSC is seen as most sensitive to ¢.

On the other hand, the free parameter p has been stored three times, where
the configuration

[px(1+ 1%)) o ¢ P Vasm VGS,p]

has the best cost function J at the 6t*, 13*" and 17" HC iteration.
After the 21*" HC iteration, no configuration was found with a better J,
which triggers the HC algorithm to stop.
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5.6.2 HHSC with Pruned Free Parameters

As discussed before, the goal of the HC algorithm here is to prune optimally the
free parameters of HHSC, which aims to find the most sensitive free parameter
to CFR and DUT with DPD.

Hence, © = [¢] is the most sensitive free parameter, which will be used in
HHSC according to the cost function J designed with the updated weighting
coefficients w.

Starting from the initial solution ©f = [164°], which presents the optimal ¢
from the previous HHSC, Fig. 21 present the evolution of the cost function J
and the free parameter ¢ according to the HHSC iterations.

According to Fig. 21, the free parameter ¢ has been re-optimized, where
its optimal value becomes O, = 175.9° that corresponds to the optimal cost
function Joptupa = 0.81. By comparing Jopt,upd and Juusc+ppp, the DPD
coeflicients are required to be updated using ILA since the optimal configuration
of DUT is changed.

Table 6 summarizes the results, where FOMSs are presented before and after
applying DPD. At this level, the application of DPD consists only of updating
the existing DPD coefficients in the predistorter since the optimal pruning of
free parameters HHSC was performed with DPD.

With the new optimal configuration, DPD has improved the linearity FOMs.
On the other hand, the efficiency FOMs are improved. This can be confirmed
in Table 6, where the PAE is improved by almost 5.5%. By comparing the
cost function, it can be seen that Jypscippp = 0.85 becomes better than
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Table 6: FOMs according to the optimal free parameters after the optimal
pruning of free parameters in HHSC

Before DPD | After After DPD
DPD DPD | with optimal pruning
of free parameters

EVMc¢ [%] 1.48 1.48 1.48
EVMpp [%] 7.26 2.22 2.04
EVMcpp [%] 8 2.97 2.46
ACPRy; [dB] -27.44 -48.71 -49.21
ACPR, [dB] -27.15 -47.86 -50.10
PAE [%] 46.58 30.75 36.11
P,y [dBm] 35.63 34.09 39.11

| Joptumsc | 0.81 | 0.78 | 0.85

Jopt,uusc = 0.82, which leads to finishing the auto-tuning approach.
Fig. 22 illustrates the final architecture of DIDPA with CFR and DPD.
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The final optimal configuration is also highlighted. The AM-AM and AM-PM
characteristics of the whole system (CFR+DPD+DUT) are shown in Fig. 22,
along with the spectra of the input-output signals and the IQ constellation of
u(n) plotted in blue and y(n) plotted in red.

[ DPD Adaptation ] Vesm =—-139V
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Power supply

a=015 ¢=175.9° ¥ =1.53 dBm
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Figure 22: Final optimal configuration with DPD

6 Conclusion

In this paper, we proposed an auto-tuning approach to exploit at best dual-
input Doherty PA to maximize power efficiency while being compliant with the
linearity specifications. The proposed auto-tuning approach relies on conduct-
ing a global optimization combined with a control process to find the optimal
configuration of a set of the crucial circuit and system-level parameters that are
appropriately merged with the DPD linearization and the CFR technique. This
proposed approach has been performed according to an adaptive designed cost
function, representing the trade-off between efficiency and linearity. In order
to sharpen the optimal configuration, we propose a new approach based on the
HC algorithm to prune the free parameters optimally when DPD linearization
is applied. The proposed approach has been validated through experimental re-
sults, in which we use a 20 MHz LTE signal scenario. The proposed approach to
optimizing the dual-input Doherty PA has been well validated by presenting a
good trade-off between linearity, computational complexity, and efficiency. Be-
sides, the DPD model used, which is optimally sized, has very good numerical
properties, making it a perfect candidate for its implementation on hardware
such as FPGA.
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