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Abstract—Advances in modeling and computation have re-
sulted in high-fidelity digital twins capable of simulating the
dynamics of a wide range of industrial systems. These simulation
models often require calibration, or the estimation of an optimal
set of parameters in some goodness-of-fit sense, to reflect a
system’s observed behavior. While searching over the parameter
space is an inevitable part of the calibration process, simulation
models are rarely designed to be valid for arbitrarily large
parameter spaces. Application of existing calibration methods,
therefore, often results in repeated model evaluations using
parameters that can cause the simulations to be impractically
slow or even result in catastrophic failure. In general, the shape of
subregions in the parameter space that could result in simulation
failure is unknown. In this paper, we propose a novel failure-
robust Bayesian optimization (FR-BO) algorithm that learns
these failure regions from online simulations and informs a
Bayesian optimization algorithm to avoid failure regions while
optimizing model parameters. This results in acceleration of the
optimizer’s convergence and prevents wastage of time trying
to simulate parameters with high failure probabilities. The
effectiveness of the proposed failure-robust Bayesian optimization
algorithm is demonstrated via a well-known benchmark example
where we compare against state-of-the-art gradient matching
techniques, and a practical example related to parameter es-
timation for digital twins of buildings.

Index Terms—Digital twin; machine learning; Bayesian opti-
mization; simulation; dynamical systems; system identification;
numerical methods; Gaussian processes.

I. INTRODUCTION

Current trends towards model-based system development
and the application of digital twins place an increasing em-
phasis on the use of modeling and simulation for large-scale
systems [1], [2]. One essential step in the development of these
technologies involves model calibration, which ensures that
the simulation models accurately represent observed system
behavior [3]. Simulation models and digital twins are ubiq-
uitous in modern engineering applications, including building
energy systems [4], [5], biomedical systems [6], spacecraft [7],
battery charging [8], vehicles [9], and networked systems such
as power [10] or water [11] distribution networks.

It is rare for a closed-form solution to high-fidelity simula-
tion models to exist, so iterative methods that leverage simu-
lation data are widely used to compute parameters that result
in the model exhibiting good predictive performance [12].
Usually, data-driven model calibration requires simulating a
model forward for a prescribed timespan using a candidate
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TABLE I
LIST OF MATHEMATICAL SYMBOLS.

SYMBOL MEANING

Preliminaries
R Set of real numbers
N Set of natural numbers
log Natural logarithm operator
T Total simulation time
N (µ, σ) Gaussian density with mean µ and variance σ2

θ Parameters to be calibrated
θ⋆ Optimal parameter vector
Θ Search space of admissible parameters
nθ Number of calibrated parameters
ny Number of measurable outputs
y0:T Simulated output vector on time interval [0, T ]
y⋆0:T True measured outputs on time interval [0, T ]
MT (θ) Forward model for simulation parameterized by θ
MT (θ⋆) Optimally parameterized forward model for simulation
J Calibration cost function

Classical Bayesian Optimization
GP Gaussian process regression
Dj Parameter-cost paired data at j-th BO iteration
Ĵj GP’s estimated cost with dataset Dj

K Kernel function used in GP regression
µ Mean function used in GP
σ Standard deviation function used in GP
EI Expected improvement acquisition function
γ, Γ PDF and CDF of N (0, 1) Gaussian distribution

Failure-Robust Bayesian Optimization
ΘF, Θ̂F Failure region (estimate)
ℓ Failure label
Dj Parameter-label-cost tuple data at j-th FRBO iteration
ϕ Prior distribution of VGPC
B Bernoulli distribution
p Posterior distribution of VGPC
q Variational approximation used in VGPC
PF Failure probability assigned by VGPC
K̃ Kernel matrix for VGPC
E Expectation operator
KL Kullback–Leibler divergence
L Cholesky decomposition
β regularization coefficient in VGPC loss
Var Variance operator
FREI Failure-robust expected improvement acquisition function

set of parameter values and comparing this solution with the
observational data [13]. The candidate set is then updated in
a way that tends to produce a better solution and the process
is repeated until some terminating criterion is met [14]. A
common goodness-of-fit metric used to obtain parameters is
the sum of squared error. Assuming a prior distribution for
the data generation process, one can use maximum likelihood
estimators to obtain parameter estimates and quantify the un-
certainty associated with these estimates [15]–[17]. However,
these methods rarely result in globally optimal parameter sets
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and often get stuck in local optima [18]. Bayesian methods
allow for a richer characterization of uncertainty and incor-
porate prior information about model parameters, enabling
parameter estimation over wide ranges of parameters [5], [19],
[20]. However, these methods often require a large number of
model simulations, which is often impractical, as each model
simulation is time-consuming and computationally expensive.
An alternative model-free approach that exists in the literature
is gradient matching [21]. Gradient matching interpolates the
right-hand-side of the model ODEs directly from the data
using Gaussian process models [22]–[25]. This interpolant,
or meta-model, is fast to execute, but typically does not
scale beyond tens of states, which limits their utility in many
applications modeled by high-dimensional simulation models.

Due to the black-box nature of modern high-fidelity
software-based simulation models, it is not uncommon for
simulations to fail at some combination of parameter val-
ues. For instance, many existing simulation-oriented models
exhibit multi-scale dynamics, significant nonlinearities, and
numerically stiff behavior that can result in simulations that
take a significant amount of time to run or fail entirely due
to the complex and non-intuitive shape of the admissible
parameter set [26]. These challenges are particularly common
in building energy models that seek to describe the temporal
behavior of occupied buildings with their associated closed-
loop space conditioning systems [27], due to their widely
separate timescales, hybrid continuous/discrete behavior, and
nonlinear interactions between physical subsystems. Rather
than expend significant effort to identify parameter sets that
result in valid simulations, it is common practice to ignore
the information conveyed by a failed simulation for a given
parameter set and simply re-run the simulation with a different
set of parameters.

Practical calibration methods are often designed to esti-
mate near-optimal parameters without extensive simulations
to avoid this expenditure of significant time and resources
without a corresponding increase in simulation performance.
Recently, Bayesian optimization (BO) [28] has emerged as an
effective method for learning parameters based on limited data
in a few-shot manner [4], [29]: that is, with markedly fewer
evaluations of the cost function (equivalently, model simula-
tions) than population-based methods. Furthermore, Bayesian
optimization inherently balances exploration and exploitation
and can incorporate non-convex constraints via modified ac-
quisition functions [30], making it a powerful and easy-to-use
learner for model calibration.

In this paper, we use the information that results from
a failed simulation during the model calibration process to
accelerate the convergence of these methods and improve the
quality of parameter estimates. We thus propose a novel variant
of BO called failure-robust Bayesian optimization (FR-BO),
which comprises modules that use simulated data to ascertain
regions in the parameter space where the system is likely to
fail. Subsequently, we design a novel acquisition function,
inspired by constrained BO acquisition functions [30], that
allows searching for optimizer candidates that not only fit
the data well, but also are unlikely to result in simulation
failures. Specific contributions of this work include: (i) identi-

fication of the phenomenon of simulation failure during model
calibration tasks, as predominant approaches in the extant
literature either use heuristics to ignore simulation failure
or simplify the simulation models to avoid failures in the
search-space; (ii) innovation of a generalizable method that can
reduce computational time and resources pursuing simulations
that are likely to result in failure; (iii) proposal of a novel
acquisition function in the Bayesian optimization algorithm
to automatically avoid regions likely to result in simulation
failure during the calibration process; and, (iv) demonstration
of the potential of the proposed FRBO approach by comparing
performance against other state-of-the-art algorithms.

The rest of the paper is organized as follows. In Section II,
we formally present the problem of data-driven parameter
estimation. The proposed FR-BO algorithm is presented in
greater detail in Section III. In Section IV, we demonstrate
the potential of our proposed FR-BO method on a benchmark
example on which we show that FR-BO can outperform
cutting-edge gradient matching methods, and a real-world
building envelope model in Modelica software which has no
simple closed-loop representation and whose parameters can-
not be obtained from first-principles knowledge. Based on our
simulation experiments, we report that: (i) our proposed FR-
BO algorithm converges significantly faster than classical BO
or MCMC methods on a benchmark example; (ii) the quality
of model calibration using FR-BO can outperform competitive
gradient-matching algorithms and their fast variants; (iii) the
method can scale to simulation models with many parameters;
(iv) the total amount of wasted time during simulations can
be curtailed using FR-BO; and, (v) our algorithm is easy to
implement using open-source machine learning toolkits such
as PyTorch.

II. PRELIMINARIES

A. Background

We denote by
y0:T = MT (θ) (1)

a general model of a dynamical system, where the constant
parameters of the model are described by θ ∈ Θ ⊂ Rnθ , where
nθ is the number of model parameters. The admissible set of
parameters Θ is assumed to be known. For instance, Θ could
denote a set of upper and lower bounds on parameters obtained
from archived data or domain knowledge. Since the model is
black-box, it is not uncommon for such a range to be purely a
guess, and therefore, not tight around the true parameter set.
The output vector y0:T ∈ Rny×T contains all measured outputs
from the dynamical system obtained over a time period [0, T ];
note that ny denotes the number of measured outputs, that is,
yt ∈ Rny . We do not make any assumptions on the underlying
structure of the model MT (θ), where simulating MT (θ)
forward with a fixed (and admissible) set of parameters θ
yields a vector of outputs

y0:T :=
[
y0 y1 · · · yt · · · yT

]
,

with each output measurement yt ∈ Rny .
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Fig. 1. Overall schematic of the proposed parameter estimation scheme using FR-BO.

Example 2.1: Consider a state-space representation of a
nonlinear dynamical system

ẋ = fODE(x, u, θ1), y = hODE(x, u, θ2),

with state x, initial condition x0, control input u, and param-
eters θ1 and θ2. Given a set of parameters θ := {θ1} ∪ {θ2},
one can numerically integrate (i.e., simulate) the system of
ordinary differential equations forward for t ∈ [0, T ], and
subsequently obtain the sequence of outputs y0:T . Thus, these
system dynamics can be represented by a parameter-to-output
map as in (1). ⋄

Example 2.2: Following the same rationale as in Exam-
ple 2.1, the class of dynamical systems represented by differ-
ential algebraic equations

0 = fDAE(ẋ, x, u, θ1), y = hDAE(x, u, θ2)

can also be modeled by (1). ⋄
We aim to estimate parameters θ⋆ that minimize (in some

sense) the modeling error

ε ≜ y⋆0:T −MT (θ
⋆), (2)

where y⋆0:T denotes the measured outputs collected from a
real system, and MT (θ

⋆) denotes the estimated outputs from
the model MT (θ) using the estimated parameters θ⋆. To
this end, we propose optimizing a calibration cost function
J(y⋆0:T ,MT (θ)) to yield the optimal parameters

θ⋆ = argmin
θ∈Θ

J(y⋆0:T ,MT (θ)). (3)

Recent work has shown that Bayesian optimization (BO) is
effective at finding global optima of functions whose gradients
are not available and are expensive to evaluate, as is the case
in black-box model calibration [4].

B. Classical Bayesian optimization

Classical BO methods assume the presence of one global
optimum, and smoothness of the θ to J map. Since J is
typically assumed to be continuous, one can leverage the data

at the j-th iteration to construct a surrogate GP model of the
reward, given by

Ĵj := GP (µ(θ;Dj), σ(θ, θ
′;Dj)) , (4)

where µ(·) is the predictive mean function, and σ(·, ·) is the
predictive variance function, and Dj containing {θ[0:j], J[0:j]}
is the dataset collected thus far. Typically, the variance is
expressed through the use of kernel functions [28].

At the j-th learning iteration, for a new query sample θ ∈ Θ,
the GP model predicts the mean and variance of the reward
to be

µ(θ) = kj(θ)
⊤K−1

j J0:j

and
σ(θ) = K(θ, θ)− kj(θ)K

−1
j kj(θ)

⊤,

where

kj(θ) =
[
K(θ0, θ) K(θ1, θ) · · · K(θj , θ)

]
,

and Kj is defined in (6).
The accuracy of predicted mean and variance is strongly

linked to the selection of the kernel and the best (in some
sense) set of hyperparameters such as length scales and
variance parameters of the kernels and estimated noise. We
obtain these hyperparameters by maximizing the log marginal
likelihood function (MLL)

−1

2
log |Kj | −

1

2
J(θ)⊤K−1

j J(θ)− nθ

2
log 2π.

This optimization problem constitutes training the GP with a
fixed kernel. Although the problem is non-convex, it can be
solved efficiently to local optima using quasi-Newton methods
or adaptive gradient methods. A full derivation of the MLL
function can be found in [31, Chapter 2]. Note that the MLL
function is maximized at every BO iteration, in an online
manner, since the variance, length-scale, and noise parameters
need to be re-learned every time the dataset is updated.

In Bayesian optimization, we use the mean and variance
of the surrogate model Ĵj in (4) to construct an acquisition
function to inform the selection of a θj that increases the
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likelihood of minimizing the current best cost. To this end,
we compute the incumbent Ĵ⋆

j := minθ∈Θ µ(θ;Dj) and use it
to define an expected improvement (EI) acquisition function
that has the form

EI(θ, j) =

{
σ(θ)γ(z) + (Ĵ⋆

j − µ(θ))Γ(z), if σ(θ) > 0,

0 if σ(θ) = 0.

where z =
Ĵ⋆
j −µ(θ)

σ(θ) , and γ(·), Γ(·) are the PDF and the CDF of
the zero-mean unit-variance normal distribution, respectively.

In the j-th iteration of learning, we use the data Dj to
construct the EI acquisition function using the surrogate Ĵj .
Subsequently, we compute the optimizer candidate

θj+1 = argmax
θ∈Θ

EI(θ, j), (5)

which serves as the parameter estimate θ in (1) in the next
BO iteration. In practice, other acquisition functions such as
the lower confidence bound or entropy search could also be
used instead of EI [28].

C. Problem Statement and Proposed Solution

While various methods have been proposed for solving (3),
most (if not all) these solutions assume that MT (θ) exists for
every θ ∈ Θ, which implies that the model MT (θ) can be sim-
ulated from the time-span of interest [0, T ] for any parameter
in the admissible parameter space Θ. Unfortunately, this is not
always the case and model simulations can fail to complete in a
timespan of interest. By failure, we include scenarios such as:
(i) a numerical integration scheme terminates prematurely due
to parameter-dependent stiffness in the underlying dynamics;
(ii) the underlying dynamics do not have a solution due to
parameters not adhering to basic validity assumptions, for
instance, if the underlying system has log(1 − θ2) terms
and {|θ| > 1} ⊂ Θ; (iii) a subset of the Θ renders the
underlying dynamics unstable (e.g., ẋ = θx2 for θ > 0)
or a controller/estimator designed using an approximation of
the model (such as a linearization) makes the closed-loop
dynamics unstable; and, (iv) the simulation takes exorbitantly
long for some parameters so the code is terminated based
on heuristics after a prefixed termination time; to name a
few. Models that exhibit simulation failures typically do so
in some failure region ΘF ⊂ Θ and the failure does not
always occur instantaneously. For instance, in the case (iv)
of the previous paragraph, the failure will be flagged after a
designated termination time that could be large. Consequently,
data-driven algorithms that have been designed agnostic to
simulation failure could potentially continue to compute opti-
mizer candidates that reside in the failure region ΘF. In such
cases, the algorithm could deteriorate in performance and lead
to large amounts of computational resources and CPU time
being wasted.

Under the critical assumption that θ⋆ ̸∈ ΘF, our objective
is to design a data-driven parameter estimation framework
that can learn from simulation failures and incorporate this
information to increase the probability of selecting sets of pa-
rameters that lead to successful simulations, thereby enabling
us to optimize (3) without wasting computational resources

and time. To fulfill this objective, we propose a failure-robust
Bayesian optimization (FR-BO) approach wherein we first
design a probabilistic classifier that can estimate the failure
region ΘF from simulation data obtained by sampling within
Θ. Since function evaluations are assumed to be expensive,
we employ an entropy-based active learning method to reduce
the sample complexity of this step [32]. Once an estimate
Θ̂F of ΘF is obtained, the classifier provides probabilities of
simulation failure over the entire parameter space of interest
Θ. Failure probabilities can be embedded into a Bayesian
optimization framework through a failure-classifier informed
acquisition function, ensuring that optimizer candidates are
biased to reside outside Θ̂F. We posit that if the classifier
is well designed, it will suggest optimizer candidates that lie
within the set difference Θ \ΘF with high probability.

We reiterate the workflow of the FR-BO algorithm more
concretely in Fig. 1. We begin from the bottom right, where
the inputs to the algorithm are a simulation model MT (θ)
parameterized by θj in the j-th iteration of FR-BO, and the
true system output data used for calibration. The simulation
model is simulated forward for the time T of interest, and the
model and true outputs contribute to a calibration cost value
Jj if the simulation is completed successfully. Additionally,
based on the success/failure of the simulation, a label is
assigned. The label and prior θ values inform a binary classifier
that estimates the failure region of the calibration problem,
and embeds this information into a customized failure-robust
acquisition function computed using (θj , Jj) pairs in order
to compute the next most promising candidate θj+1 to use
for simulations. By iterating through these steps, the FR-BO
attains an optimizer

θ⋆ = arg min
θ∈Θ\ΘF

J(y⋆0:T ,MT (θ))

while avoiding parameters likely to result in failed simulations.
To summarize, the main components of the FR-BO framework
include:

(i) a failure classifier for estimating likelihoods of simula-
tion success and failure on Θ by learning the set ΘF;

(ii) a parameter-to-cost regressor for approximating the cal-
ibration cost function J from any parameter θ ∈ Θ; and

(iii) a failure-robust acquisition function that incorporates
probability of simulation failure into the optimization
framework.

III. FAILURE ROBUST BAYESIAN OPTIMIZATION

In this section, we describe a way to learn the failure
region from data obtained during simulations via a scalable
variational Gaussian process classifier (VGPC) [33]. The prob-
abilities can be used via active learning to accelerate the
Bayesian optimization step, but also to guide where best to
simulate the dynamical model MT (θ) to get better estimates
of the failure region boundaries. We also describe the steps
involved in classical Bayesian optimization, and explain how
to incorporate information from the VGPC via a constraint-
weighted acquisition function to ensure that parameters are
chosen avoiding failure regions.
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A. Learning Failure Regions
1) Data collection: Since the admissible parameter search

domain Θ is known, one can sample on this space to obtain
a training set for learning the failure region subset ΘF. In
the sequel, we will discuss how to select θ ∈ Θ that are
most informative (in an information-theoretic sense), but we
will assume that such a training dataset is initially available,
for instance, obtained by random sampling on Θ. At the j-th
iteration of training the failure classifier, the training dataset

Dj = θ[0:j] × ℓ[0:j] × J[0:j]

comprises a sequence of parameters θ[0:j], a sequence of
corresponding simulation failure labels ℓ[0:j], and cost function
values J[0:j]. Each failure label is denoted +1 if there is
simulation failure and −1 if not. For failed simulations, we set
the corresponding cost function value to some nonsense value,
e.g., NaN. If the simulation is successful, the cost function
yields a real-valued scalar.

2) Scalable variational Gaussian process classifiers: At the
j-th iteration of learning the failure region, one can utilize the
θ and labels ℓ of the dataset Dj to set a Gaussian process
prior at the observed parameter sets. This can be written as
ϕ ∼ N (0,Kj), where ϕj is the prior function using Dj and

Kj =

K(θ0, θ0) · · · K(θ0, θj)
...

. . .
...

K(θj , θ0) · · · K(θj , θj)

 , (6)

with a user-specified kernel function K(·, ·) such as a squared
exponential kernel or a Matern kernel; see [31] for more details
about kernel functions.

To perform classification with this prior, one needs to
transform the function ϕ through a squashing function such
as the cumulative density function of a zero-mean unit-
variance normal distribution γ(·) := N (·|0, 1), given by
Γ(z) =

∫ z

−∞ γ(α) dα. Consequently, a Bernoulli distribution
can be used to represent a likelihood function conditioned on
the transformed data as follows:

B(ℓj |Γ(ϕj)) = Γ(ϕj)
ℓj · (1− Γ(ϕj)

1−ℓj ).

The joint distribution of ℓ and ϕ thus becomes

p(ℓ, ϕ) =

j∏
r=1

B (ℓj |Γ(ϕj)) N (0,Kj). (7)

Two more distributions are required to optimize hyperparam-
eters and perform inference: the marginal likelihood PF(ℓ, j)
and the posterior p(ϕ|ℓ, j). Both of these distributions require
the inversion of the j×j kernel matrix (6), which incurs cubic
complexity and does not scale well to the large values of j
that may be required for FR-BO to compute good solutions.
We therefore resort to the use of approximation methods that
leverage pseudo-inputs, which are more commonly known as
inducing points [34].

Inducing points θ̃ ∈ Θ are design variables that are
augmented with the latent variables ϕj that also respect the
Gaussian prior and therefore yield a joint distribution

(ϕ, ϕ̃) ∼ N
(
0,

[
Kj K̃jm

K̃⊤
jm K̃m

])
.

K̃jm denotes the covariance matrix computed by evaluating
the kernel across j data points and m inducing inputs, while
K̃m denotes the covariance matrix computed by evaluating
the kernel on all pairs of the inducing inputs. Exploiting
the properties of the Gaussian distribution, one can rewrite
the joint distribution of the latent variables and the inducing
variables as

p(ℓ, ϕ, ϕ̃) = p(ℓ|ϕ)p(ϕ|ϕ̃)p(ϕ̃).

To get a variational approximation of the likelihood, the
following inequality is used from [33]:

log p(ℓ|ϕ̃) ≥ Ep(ϕ|ϕ̃)[log p(ℓ|ϕ)].

Defining a variational distribution q, we get the well-known
variational lower bound

log p(ℓ) ≥ Eq(ϕ)[log p(ℓ|ϕ)]− KL[q(ϕ̃)∥p(ϕ̃)]. (8)

The optimal hyperparameters for the VGPC can be obtained
by minimizing the loss function formed by the negative of the
right hand side of this inequality using quadrature methods. If
we assume q ∼ N (ϕ̃|µ̃, Σ̃), then

q(ϕ) = N (Lµ̃,Kj + L(Σ̃− K̃m)L⊤), (9)

with L = K̃jmK̃−1
m , which is an m×m matrix, and eventually

m ≪ j, so this matrix is cheaper to invert, which makes this
method scalable.

Note that one could additionally introduce a regularization
parameter β ∈ (0, 1) in the training loss function to trade-off
the effect of the KL-divergence term, as suggested in [35]. In
such a case, the variational lower bound (8) would become

log p(ℓ) ≥ Eq(ϕ)[log p(ℓ|ϕ)]− βKL[q(ϕ̃)∥p(ϕ̃)].

3) Active learning: For inference at a set of test points
{θ∗}, we transform those into {ϕ∗}, and the approximate
posterior is then given by

p(ϕ∗|ℓ) =
∫

p(ϕ∗|ϕ̃)q(ϕ̃) dϕ̃,

which can be computed in a manner similar to (9). Initially,
when the failure region is not estimated well, it is necessary
to select informative elements of {θ∗} that can yield good
estimates of ΘF without exhaustive sampling. To this end,
we propose an active learning strategy wherein the most
informative θ⋆j ∈ θ∗ is selected based on the maximum entropy
of the posterior distribution. Since the mean and variance of
the posterior p(ϕ∗|ℓ) is computed for each parameter in θ∗,
one can compute the entropy (assuming q is Gaussian) and
fix

θ⋆j = arg max
θ′∈θ∗

1

2
log (2π Var(θ′)) . (10)

We then evaluate θ⋆j by simulating MT (θ
⋆
j ) to ascertain ℓj+1

and Jj+1, which yields the updated dataset Dj+1 and the
process iterates till a termination criterion such as a maximum
number of iterations is achieved.

While any probabilistic classifier could be used in place
of VGPC, there are some caveats to classifier selection that
motivate our selection of VGPC as an exemplar. First, the
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boundary of the failure region is not always regular in ge-
ometry. Therefore, a nonlinear classifier capable of generating
complex geometries with few data points is necessary. Second,
the classifier should be re-trainable and small increments to
the dataset should be reflected in the classifier’s decision
boundary. This requirement of frequent retraining is a major
reason why we do not use deep neural networks. Empirically,
we have found kernel-based nonparameteric classifiers such
as SVMs and GPCs perform the best in these scenarios, and
GPCs offer a probabilistic output without further modification
(unlike SVMs where one has to perform additional operations
to obtain probabilistic outputs). Finally, the entropy function
used for active learning has a simple form for the VGPC
that leverages the variance, which is a component of the
VGPC output. We reiterate that other probabilistic nonlinear
classifiers such as probabilistic versions of SVMs and deep
neural networks could be used in place of VGPC.

B. Incorporating failure probabilities
Recall the notation presented in Section II-B for classical

BO. Note that for construction of the GP regressor that
approximates the calibration cost, as described in (4), the cost
values corresponding to failed simulations are ignored, and
only the calibration cost incurred during successful simulations
are utilized. Once this GP regressor is constructed, we can
compute an acquisition function value such as the expected
improvement and combine that with the outputs of the VGPC
to ensure robustness to simulation failures.

Since the VGPC generates a probabilistic output, we can di-
rectly incorporate it into the acquisition function, as proposed
in [30]. This yields the failure-robust EI acquisition function

FREI(θ, j) = EI(θ, j) · (1− PF(θ, j)), (11)

where PF(θ, j) is the likelihood of failure calculated by
training the VGPC using data up to the j-th iteration, and
then evaluating the likelihood of the VGPC at θ, and EI is
described in (5).

If the VGPC algorithm does not find any θ such that
PF(θ, j) > 0, then the acquisition function (11) is zero for
every θ ∈ Θ and future candidates are selected randomly
until at least one θ is found which allows for a successful
simulation. This scenario is rarely seen in practice. A more
plausible scenario is that both successful simulations and
failure simulations have been observed, and the VGPC has
been trained on a non-trivial classification problem. In such a
case, the higher the value of P(θ, j), the higher the probability
that a particular candidate will be selected, so long as its
expected improvement is high as well. The multiplicative
nature of the components in (11) seeks to ensure that neither
one component can outweigh the other, and candidates will be
selected only if they are both a candidate for optimization and
feasibility (i.e., is expected to yield a successful simulation).
Along the same lines as (5), FR-BO selects the next optimizer
candidate as follows:

θj+1 = argmax
θ∈Θ

FREI(θ, j). (12)

A key difference with FREI and the constrained expected-
improvement acquisition function proposed in [30] is that the

PF component is a probability induced by a probabilistic
classifier trained on binary labels ℓ, whereas constrained BO
estimates probabilities based on continuous slack variables
obtained from the constraints. Both methods are similar in that
they use Gaussian process proxies for constraint-modeling,
although in our case it is a classifier rather than the regressor
proposed in [30].

It is important to note that from an implementation per-
spective, it may be expensive to retrain a VGPC after the
collection of each new data sample. Empirically, we have
observed that this is not always necessary: in fact, as long as
the VGPC has been trained initially with some data, it can be
retrained infrequently. Of course, how frequently the retraining
has to occur is problem dependent, although heuristics such
as retraining the VGPC when the FR-BO is ‘stuck’ at a local
optimum for a pre-decided number of iterations can be useful.

C. Intuition via illustrative example

Rather than solely rely upon the previous exposition of
this general method, we have found that an illustrative 2-
dimensional example can provide some intuition as to why
we expect the FR-BO algorithm will converge to a feasible
optimal solution. The underlying cost function is shown in
Figure III-B using grayscale, and while there are four global
optimizers for this function on the defined search space, only
one of these at the location of the the five-pointed star coor-
dinate is feasible. The true failure region is shown using red
shading. The FR-BO algorithm operates in 3 main stages: (i)
the early stage in which there are few samples on Θ, resulting
in a poor estimate of the failure region; (ii) the active learning
stage where the FR-BO selects feasible and infeasible samples
that result in improvement of the feasible region estimates;
and, (iii) the late stage after the failure region is estimated to a
satisfactory degree of accuracy, wherein the FR-BO algorithm
behaves similar to constrained BO due to our proposed FREI
acquisition function. We show exemplar iterations from all
three stages in Fig. III-B(a–c). In all subplots, the parameters
that resulted in successful simulations are shown with green
circles and the parameters that failed are shown using red
crosses. A representative contour corresponding to a given
probability of the probabilistic classifier is shown using a
dashed yellow line, and a yellow four-pointed star denotes
the optimal value found up to the current iteration using the
FR-BO algorithm.

In Fig. III-B(a), we indicate that in early iterations, FR-
BO typically has few data samples on Θ. The classifier
consequently generates a poor estimate of the failure region.
Since only a few feasible (green circle) samples are available
to construct the parameter-to-cost regressor, the approximation
of the calibration cost is poor, and the best parameter candidate
based on this limited set of feasible data is far removed from
the true optimum. The FREI acquisition function, based on this
inaccurate failure classifier, will lead to the selection of param-
eter candidates that are unlikely to improve the estimate of the
failure region in the early iterations. We thus demonstrate the
effect of active learning in subplot (b) to this end. We observe
that the actively learned samples are concentrated around the
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boundary of the failure region estimate, and thus the collec-
tion of labels (by simulation) for those parameters greatly
improves our understanding of the feasible region. However,
the increased amount of feasible samples do not necessarily
imply that a better approximation of the underlying cost has
been obtained. The best parameter candidate found by active
learning may thus remain far from the true optimizer. Once
the failure region is estimated to a satisfactory accuracy (which
happens naturally by selecting actively learned samples), the
FREI acquisition function used in FR-BO quickly searches
over promising areas in the parameter space while avoiding
the failure region to obtain feasible and near-optimal samples.
The behavior of the FREI acquisition function is similar to
the constrained EI acquisition function proposed in [30] in
late-stage iterations, and is therefore expected to converge to
a feasible optimizer. A key difference between the approaches
is that our ‘constraint’ function is actually not continuous-
valued like those considered in [30], because the FR is akin to
a set induced by an indicator function. The probabilistic failure
region classifier provides a continuous approximation of this
indicator function, thereby allowing the use of constrained-
BO-like acquisition functions.

IV. RESULTS AND DISCUSSION

We provide two examples that demonstrate the effectiveness
of FR-BO. The first involves parameter estimation for a well-
studied stiff nonlinear system of chemical kinetics, and the
second is a real-world building model calibration problem. All
code was implemented in GPyTorch [36], PyTorch [37],
and Python 3.9.

Example 1: Comparative study on Lotka-Volterra dynamics

To compare with existing parameter estimation algorithms,
we use the well-studied Lotka-Volterra system

ẋ1 = θ1x1 − θ2x1x2, ẋ2 = −θ3x2 + θ4x1x2,

most recently explored in [25] for data-driven parameter
estimation. The measurements from the system are obtained
in the time span T = [0, 2] at 20 evenly spaced observa-
tion times. The true parameters of the system are given by

θ⋆ = [2, 1, 4, 1], and the system has initial state x0 = [5, 3]⊤

for simulation. The measurements are corrupted by zero-mean
0.25-variance Gaussian noise, as in the more difficult test sce-
nario studied in [25]. We assume that the range of admissible
parameters Θ = [0.5, 3]× [−0.5, 1.5]× [2.5, 5.0]× [−0.5, 1.5],
which is a non-trivial uncertainty range on the parameters.

TABLE II
FR-BO IMPLEMENTATION FOR EXAMPLE 1.

VGPC GP
Model Approximate GP Exact GP
Kernel Squared Exponential Matern-3/2
Inducing Points Yes Yes
Likelihood Bernoulli Gaussian
Loss Function Variational ELBO MLL
Optimizer Adam Adam
Learning Rate 0.01 0.05
Training Iters 2000 500

For each θ, we can then compute MT (θ) and a parameter
estimation cost function

J(y⋆0:T ,MT (θ)) = log

(
T∑

t=0

(y⋆t − yt)
⊤W (y⋆t − yt)

)
, (13)

where yt is the output vector obtained from MT (θ) at the
t-th time instant. The matrix W is a scaling matrix to ensure
that the three output components are of similar magnitudes.
For this particular example, W is the identity matrix. Table II
describes the hyperparameters used for both the VGPC and
the GPR learners needed for FR-BO. For FR-BO, we run
100 random initial iterations, 300 active learning iterations to
learn the classifier, and 400 iterations for FR-BO exploitation.
Note that we need a total of 800 iterations to obtain a good
set of parameters, whereas the algorithms proposed in [25,
Supplementary §7.5] report requiring over 100,000 iterations
for some algorithms and over 33,000 iterations for their
proposed faster variant. At termination, the FR-BO algorithm
yields the parameters θ̂1 = 1.865, θ̂2 = 0.925, θ̂3 = 4.445,
and θ̂4 = 1.118.

Over 800 iterations, we note from Fig. 3 that not only does
the FR-BO provide a better solution than classical BO or latin-

Fig. 2. Explanation of stages of FR-BO. The white8 represents the global optimum and the yellow5 represents the optimal value estimated by the
parameter-to-cost regressor. The contours of an exemplar cost function is shown using grayscale, and the true failure region (FR) with red shading. The
0.5-probability of failure contour estimated by an exemplar probabilistic classifier is shown using dashed yellow lines.
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Fig. 3. Comparison of cost convergence for FR-BO, classical BO, and MCMC sampling on Example 1.

Fig. 4. Comparison of trajectories generated by simulations using parameter
estimation with FR-BO against other fast parameter estimation approaches.

hypercube sampling (LHS), the number of simulation failures
with FR-BO after the initial 400 iterations (random and GPC
training) reduce to zero; i.e., there are no wasted simulations
during BO exploitation. This is not the case for classical BO,
which has a large number of failed simulations throughout
the parameter estimation procedure because the acquisition
function repeatedly drives the sampling to a failure region.
Sampling using space-filling LHS methods ensures that the
same regions is not sampled repeatedly and results in more
uniform simulation failure events during the search, but does
not effectively exploit learned information, resulting in a poor
final cost compared to the BO methods. Therefore, the FR-BO
shows clear benefits in parameter estimation quality.

Fig. 4 illustrates the effectiveness of the proposed ap-
proach compared against fast GP gradient matching (FGPGM)
method proposed in [25] and the other parameter estimation al-
gorithms considered in that paper, such as the adaptive gradient
matching (AGM) method [23], and the maximum likelihood
variational gradient matching (MVGM) algorithm [38]. These
are all variants of gradient matching algorithms, which are

designed to estimate the state update map of an unknown
dynamical system, typically approximated using GP models.
These GP models have hyperparameters that need to be tuned
for this learning task, and each variant listed above performs
this hyperparameter search differently. The AGM method uses
MCMC sampling to find optimal hyperparameters, which is
usually slow and requires inversion or determinant computa-
tion of large matrices. The MVGM algorithm improves upon
this by adopting a mean field variational inference approach
and maximizing a negative log likelihood; this improves com-
putational efficacy and is reported to find better solutions than
its predecessors. The FPGPM algorithm constructs a different
probabilistic graphical model involved in gradient matching,
and with the use of new auxiliary random variable, greatly
improves the convergence speed, while providing theoretical
justifications to their proposed graphical model. Fig. 4 shows
that the FR-BO algorithm provides better estimates of the
predicted states compared to its competitors with the same
dataset provided to each method and fewer iterations than
its competitors. The improved quality of the final parameter
estimate is corroborated by the RMSE values computed over
both states, which is 0.053 for FR-BO; significantly less than
0.654 for AGM, 0.210 for MVGM and 0.117 for FGPGM.

Example 2: Calibration of a real-world building digital twin
Simulation models of building energy behavior for digital

twin applications are generally designed to predict multi-
scale nonlinear dynamics that result from the temporal in-
teractions between the many different building subsystems.
These subsystems can include the building envelope, space-
conditioning systems such as heat pumps or ventilation sys-
tems, lighting systems, and building occupants, among others.
These different subsystems often act over a wide range of
interacting timescales; whereas the building thermal dynamics
and ambient weather may vary over minutes to months,
the behavior of vapor-compression systems and airflow will
vary over much smaller timescales of milliseconds to hours.
These coupled timescales present significant challenges in
constructing simulations of the overall system due to the
accompanying numerical stiffness. Furthermore, large portions
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Fig. 5. Integrated building system: Estimated and true outputs of the HVAC equipment and building envelope. Green circles are true noisy data points and
continuous lines are model estimates using the FR-BO optimized model parameters.

of these models are often embedded in software binaries
or computed using input-output maps, so that no gradients
with respect to parameters can be computed. The simplest
representation for the coupled building dynamics in many
circumstances is thus the proposed model (1).

We evaluate the performance of these calibration methods
on a dynamical model, built in the Modelica language,
of a building envelope coupled to a heat pump. The heat
pump model consists of a vapor compression system that uses

dynamic models of the heat exchangers and algebraic (static)
models of the compressor and expansion valve. The structure
of this cycle models is described in more detail in [39].
The building envelope is based on a one-story residence
with nominal 2009 IECC-based construction, and is based
on the model used in [27]. The convective, radiative, and
latent heat flows resulting from the influence of occupants and
weather variations on the building envelope are described by
the Modelica Buildings library [40]. This model was exported
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from Modelica using the Functional Mockup Interface1, and
the resulting functional mockup unit (FMU) was imported into
Python using the FMPy package2 to enable integration of the
model with PyTorch modules. The inputs and outputs of
this model were chosen to be similar to those which may
be observed in a realistic experimental setting. The inputs
of the HVAC system include the room temperature set-point,
the evaporator superheat set-point, and the fan speeds. The
inputs for the building envelope model include the convective,
radiative, and latent heat loads as well as the weather variables
provided in the TMY3 standard weather file for the Hartsfield-
Jackson airport in Atlanta, GA, USA.

We collect ground-truth data for calibration by simulating
the Modelica model from July 1-14 with 17 parameters of the
model set to their true values. These parameters were chosen
to be representative of the HVAC system and the building and
are provided in Table III. The search space of the parameters
are ±15% of the true parameters with ±5% random translation
of the upper and lower bounds for each parameter. The eight
measured output sequences y⋆0:T of the model are collected
at 5 minute intervals, and the FR-BO components have the
same hyperparameters as in Table II, with two differences:
the training iterations are kept at 2000 for the GP, and the
kernels are Matern-5/2 for the VGPC.

TABLE III
DESCRIPTION OF PARAMETERS FOR INTEGRATED BUILDING. (HTC =

HEAT TRANSFER COEFFICIENT, HEX = HEAT EXCHANGER)

PARAMETER TRUE FR-BO
Building Parameters

Airflow infiltration rate 3.368 × 10−2 3.319 × 10−2

Thickness of the floor 1.016 × 10−1 9.593 × 10−2

Infrared emissivity of roof (outer) 9.000 × 10−1 8.646 × 10−1

Solar emissivity of roof (outer) 9.000 × 10−1 8.435 × 10−1

Infrared emissivity of roof (inner) 7.000 × 10−1 6.456 × 10−1

Solar emissivity of roof (inner) 7.000 × 10−1 7.592 × 10−1

Interior room air HTC 3.000 3.093
Exterior air HTC 1.000 × 101 0.990 × 101

HVAC Parameters
Outdoor HEX HTC adjustment factor 1.000 1.032
Indoor HEX HTC adjustment factor 1.000 0.904

Indoor HEX Lewis number 8.540 × 10−1 8.650 × 10−1

Outdoor HEX vapor HTC 5.000 × 102 5.152 × 102

Outdoor HEX 2-phase HTC 3.000 × 103 3.215 × 103

Outdoor HEX liquid HTC 7.000 × 102 7.122 × 102

Indoor HEX vapor HTC 5.000 × 102 5.240 × 102

Indoor HEX 2-phase HTC 2.000 × 103 1.995 × 103

Indoor HEX liquid 7.000 × 102 7.258 × 102

A comparison of the measured and estimated simulation
outputs of the building and HVAC is shown in Fig. 5. Note
that the simulation outputs are generated by using the optimal
parameters found by our FR-BO algorithm. The green circles
are true data points and the continuous lines are the estimated
outputs from model simulation. It is clear from the figure
that the output error is small, and this is further evident
from Table III, where we see that most parameters have been
estimated with high accuracy.

It is also interesting to note the effectiveness of FR-BO
in reducing the amount of time wasted on failed simulations

1Modelica, Functional Mockup Interface for Model Exchange and Co-
Simulation, Version 2.0.1.

2https://github.com/CATIA-Systems/FMPy

Fig. 6. Integrated building system: Regret and number of simulation failures.

during optimization. We compare FR-BO with Hi-BO, and
allow the VGPC to first collect data via active learning for 450
iterations before it begins the optimization process. As seen
from the top row of Fig. 6, the incorporation of the failure-
robust EI acquisition function drastically reduces the number
of simulation failures. This improves the convergence of the
Bayesian optimization step, so that the FR-BO converges to
its best solution within approximately 700 iterations, which
results in a cost that is less than half of Hi-BO’s final cost.
From the lower row of subplots, we see that the total time
that is used for Bayesian optimization is higher for FR-BO
(15 hr vs. 9 hr) and the total time wasted simulating failures
is significantly less (15 hr vs. 23 hr), which equates to saving
8 hours of wall time.

V. CONCLUSIONS

Simulation software is usually designed and validated over a
limited region of the available parameter space. Thus, regions
of validity for model parameters, or regions over which the
simulation will fail, are rarely known during downstream
design. Calibrating the model for different datasets requires
exploring the parameter space and could involve trying param-
eters that will result in simulation failures. In this paper, we
provided a methodology for model calibration using failure-
robust Bayesian optimization that involves learning the failure
region and embedding that information into the exploitation
step via a failure-robust acquisition function, and demonstrated
the efficacy of this method on both a simple example problem
and a large-scale simulation model of the coupled behavior
of a building and its accompanying HVAC system. This
method thus has good potential for application to parameter
estimation and calibration problems that contain numerically
stiff, nonlinear dynamical sets of differential equations.

Specific advantages of the proposed FR-BO algorithm com-
pared against the state-of-the-art calibration methodologies
include: (1) FR-BO takes advantage of the sample efficiency
inherent to Bayesian optimization methods and therefore re-
quires fewer simulations than, for example, MCMC calibration
methods, to converge to a good set of parameters; (2) FR-BO
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explicitly provides an estimate of regions in the parameter
space where the model is likely to waste time computing
forward simulations or fail altogether: the reduction of this
time wastage and computational resource expenditure can
improve workflows by enable faster calibration; and, (3) the
method is model-agnostic and therefore can be applied to any
simulation model that has the requisite input-output structure
and known parameter search space bounds. Of course, the
method requires some more iterations than classical BO due to
additional iterations required for the failure classifier learning
problem. Even though we have proposed an active learning
framework to reduce the number of iterations required to that
end, in future work, we plan to investigate a data-efficient
architecture and loss function that trades-off failure region
classification and model optimization.
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