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ODE Discretization Schemes as Optimization Algorithms

Orlando Romero1,⋆, Mouhacine Benosman2, and George J. Pappas1

Abstract— Motivated by the recent trend in works that study
optimization algorithms from the point of view of dynamical
systems and control, we seek to understand how to best
systematically discretize a given generic continuous-time ana-
logue of a gradient-based optimization algorithm, represented
by ordinary differential equations (ODEs). To this end, we
show how a suboptimality bound for such continuous-time
algorithms can be combined with an ODE solver’s accuracy
bound in order to provide non-asymptotic suboptimality bounds
upon discretization. In particular, we show that subexponential,
exponential, and finite-time convergence rates in continuous
time can be nearly matched upon discretization by merely
using off-the-shelf ODE solvers of modestly high order. We then
illustrate our findings on a modified version of the celebrated
second-order ODE that models Nesterov’s accelerated gradient.
Lastly, we apply our approach on the rescaled gradient flow.

I. INTRODUCTION

Nonlinear optimization plays a major role in many scien-
tific, engineering, and otherwise applied areas, such as eco-
nomics, machine learning, and control. While it is typically
preferable to design optimization algorithms that are finely
tuned to the problem at hand, there are areas, such as in
deep learning, where cost functions may be too unwieldy or
unstructured for overly specialized optimization algorithms
to be applied. For this and other reasons, there is still sig-
nificant value in continuing to purse the design and analysis
of general-purpose optimization algorithms.

As it turns out, many gradient-based optimization algo-
rithms can be seen directly or well-approximated by dis-
cretizations of continuous-time dynamical systems modeled
by ODEs, e.g. [1], [2], [3], [4]. Designing and analyzing
optimization algorithms in continuous time via ODEs is
attractive to many researchers due to their often easier geo-
metric interpretation, analytical handling, and overall amount
of prior literature that exists on stability properties of ODEs,
e.g., [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15].
In particular, asymptotic Lyapunov stability of state-space
dynamical systems, while most commonly associated with
the control theory community (e.g., [16]), offers a vast array
of tools to study how the trajectories of ODEs converge to
certain points or regions in the state space.

Interestingly, the majority of the aforementioned refer-
ences appear to use continuous-time representations of opti-
mization algorithms almost exclusively to aid in the design
and analysis, but ultimately the only thing that is explicitly
carried over upon discretization is the intuition gained in

1Department of Electrical and Systems Engineering, University of Penn-
sylvania, Philadelphia, PA, USA.

2Mitsubishi Electric Research Laboratories, Cambridge, MA, USA.
⋆Corresponding author. E-mail: oromero@seas.upenn.edu.

continuous time, with everything else manually redone. For
instance, Lyapunov functions that worked in continuous time
can often be used as the basis for a similar Lyapunov function
in discrete time, with only minor adjustments. However,
some properties in continuous time are not guaranteed to
be preserved upon discretization unless some care is taken.

In this work, we address the aforementioned gap by
building upon the ideas in [1], [17]. Scieur et al [1] studied
the potential of the linear multistep method of discretization,
when applied to the gradient flow ODE. On the other hand,
Zhang et al [17] studied explicit Runge-Kutta discretizations
of a modified version of the second-order ODE that models
Nesterov’s accelerated gradient [8], first studied in [9].
We follow up on [1], [17] by considering generic ODEs
that represent gradient-based dynamical systems and study
the optimization performance for off-the-shelf ODE solvers
applied to such systems.

Our main contributions are as follow. First, we propose
a formalism that captures the following problems: (i) how
to discretize a continuous-time optimization algorithm to
satisfy an arbitrary suboptimality tolerance? (ii) given a con-
vergence rate for the continuous-time algorithm, what kind
of corresponding rates can we ensure upon discretization?
In particular, what are the fundamental limits and can we
ensure matching rates?

More concretely, we prove the following novel near-
matching rates: 1. if ε-optimality can be achieved in con-
tinuous time at a subexponential rate O(ε−

1
δ ) (length of

interval of integration), then ε-optimality can be achieved
upon discretization at a rate O(ε−(

1
δ+

1
ν (1+

1
δ ))) (number of

time steps), when employing an ODE solver of accuracy
order O(hν); 2. If the continuous-time algorithm converges
at an exponential rate O

(
log

(
1
ε

))
, then we can ensure a

corresponding rate O
(
log

(
1
ε

)
ε−

1
ν

)
upon discretization; 3.

if the continuous-time algorithm converges with a finite-time
rate O(1), then we can ensure a corresponding rate O(ε−

1
ν )

upon discretization. In all 3 cases, taking ν → ∞ (i.e.
using high-order schemes) leads heuristically to matching
the continuous-time rates.

As particular case study, we first consider the modified
version of Nesterov’s ODE [8] proposed by [9], which
depends on a parameter p > 2 related to time dilation. Since
the continuous-time algorithm in question can be proved to
converge at a rate O(1/ε

1
p ), we can then establish a novel

discretized rate O(1/ε
1
p+

1
ν (1+

1
p )) = O(1/ε

1
p

p+ν+1
ν ). When

contrasted to the rate O(1/ε
1

pmax

ν+1
ν ) derived in [17], where

pmax denotes the largest p that will allow for a certain flatness
condition to hold (required in [17] but not in this work), we
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can see that we are able to outperform it by tuning p and ν
appropriately (e.g., max(p, ν) ≥ pmax suffices).

As a second case study, we consider the rescaled gradient
flow, which was also proposed first in [9]. In particular,
we note that it has a continuous-time rate O(1/ε

1
q−1 ), with

q > 1 a parameter also related to time dilation. Therefore,
we can guarantee a nearly matching rate O(1/ε

1
q−1

q+ν
ν ) ≈

O(1/ε
1

q−1 ). As pointed out in [9], the rate O(1/ε
1

q−1 )
can be matched exactly upon discretization for integer q.
However, unlike our purely gradient-based approach, the
exact matching rate described in [9] requires exact oracle
access to the first q derivatives of the cost function.

For the aforementioned case studies (dropping the gradient
dominance of order p = q assumption), taking p, q → ∞
leads to the heuristic rate O(1/ε

1
ν ), which is remarkably

close to the known upper bound O(1/ε
1

ν−1 ) and lower
bound Ω(1/ε

2
3ν+1 ) attainable with oracle access to the first ν

derivatives of the cost function
In the paper [18] that followed-up [9], [17], it was proved

that the rate O(1/ε
1

q−1 ) can be matched exactly for convex
functions without requiring high-order derivatives of the cost
function, provided that a strong smoothness condition holds.
Further, that same paper showed that, for uniformly convex
functions of order p = q (which implies gradient dominance
of order p), a linear convergence rate is attained. We recover
this result without requiring strong smoothness nor uniform
convexity, instead merely gradient dominance of order p = q.
More precisely, under such conditions we show a nearly
matching rate O

(
log

(
1
ε

)
1

ε
1
ν

)
≈ O

(
log

(
1
ε

))
.

Structure of the paper

In Section II, we formalize the problem statement. In
Section III, we first review some key concepts from the
numerical ODE literature and then present our proposed
solution to the problem statement. In Section IV, we il-
lustrate our findings by applying them to a parameterized
family of continuous-time optimization algorithms, namely
the rescaled gradient flow. In Section V, we summarize our
findings and future work directions.

II. PROBLEM FORMULATION

Let f : Rn → R be a function that we seek to minimize
and let us assume throughout that f is continuously differ-
entiable and has non-empty solution set X ⋆ = argmin f .
Suppose that we have designed a dynamical system

Ẋ(t) = F (t,X(t)) (1a)
x(t) = G(X(t)) (1b)

that serves as a continuous-time analogue of a gradient-based
algorithm to minimize f . More precisely, X(t) serves as the
state of the system and x(t) as the output, which ought to
converge towards a minimizer.

Example 1 (Gradient flow). The gradient flow ẋ = −∇f(x)
can be proved to converge towards a (possibly local) mini-
mizer under mild conditions. For instance, if f is convex in
an open convex neighborhood of a strict local minimizer x⋆,

then indeed x(t) → x⋆ will hold, provided that the initial
condition x(t0) = x0 is sufficiently near x⋆. In particular,
f(x(t))−f(x⋆) ≤ ∥x0−x⋆∥2

(f(x0)−f(x⋆))−1+t = O(1/t). To quantify
the convergence rate of x(t) → x⋆, more regularity is
required, as we will see in Section IV.

Example 2 (Nesterov’s ODE, [8]). The gradient-based sys-
tem described by the second-order ODE

ẍ+
3

t
ẋ+∇f(x) = 0 (2)

with initial conditions x(0) = x0 and ẋ(0) = 0 was proposed
in [8] as a natural continuous-time interpretation of Nes-
terov’s accelerated gradient (NAG) algorithm. Naturally, (2)
can be rewritten in a state-space form (1), for instance, by
taking X =

[
x ẋ

]⊤
. The original authors in [8] proved

that (2) achieves a convergence rate f(x(t)) − f(x⋆) =
O(1/t2), but the convergence rate for ∥x(t)− x⋆∥ was only
recently established in [12] for a generalization of (2).

Before we proceed, let us be more precise about what is
permissible as a gradient-based continuous-time optimization
algorithm. In what follows, Og will denote a generic oracle
for a function g, i.e. a black box algorithm that evaluates g
at any desired input in its domain.

Assumption 1 (Gradient-based systems). The functions
F : R× Rm → Rm and G : R×Rm → Rn may only depend
on f via oracles Of and O∇f that may only be queried
finitely many times per evaluation of F and G. Further, the
output x(t) of (1) converges to a (possibly local) minimizer
of f as t → ∞.

In order to implement a continuous-time algorithm in
practice, some form of discretization is a necessity due to
the digital nature of modern computers. To this end, let
us assume that some finite-memory iterative ODE solver
is applied to (1) on a time interval [t0, T ] partitioned as
t0 < . . . < tN = T . More precisely, setting hk := tk+1 − tk
(known as the step sizes), we seek to construct approxima-
tions Xk of X(tk) via a recursive scheme that may require
solving a system of (possibly nonlinear) auxiliary equations.
Inspired by the general linear method of J.C. Butcher [19],
we consider general multistep-multistage schemes that can
be written as

Xk+1 = Φhk
(tk,Xk,Yk) (3a)

Yk ∈ Ψhk
(tk,Xk, ·)−1(0) (3b)

where tk = (tk, . . . , tk−r+1), Xk = (Xk, . . . , Xk−r+1),
and Yk = (Yk,1, . . . , Yk,s), with Xk, Yk,i ∈ Rm. The com-
ponents Yk,1, . . . , Yk,s of the the auxiliary variable Yk are
called the stages of the scheme and depict intermediate steps
given by solving the auxiliary equation Ψhk

(tk,Xk,Y) =
0 in Y. The values X0, . . . , Xp−1 correspond to ini-
tial approximations for X(t0), . . . , X(tp−1). Since Yk =
Yk(hk, tk,Xk), we may omit it from Φhk

(tk,Xk,Yk),
whenever the auxiliary equation does not require emphasis.

Definition 1. The scheme (3) is said to be explicit (w.r.t.
to a given oracle O) if the equation Ψh(t,X,Y) = 0



can be solved in Y exactly and in finitely many arithmetic
operations and queries to O. Otherwise, the scheme is said
to be implicit (w.r.t. O).

In almost all practical situations, O will simply be an
oracle for F , but in principle we could consider related
observables or even multiderivative methods, which query
derivatives of F (e.g. Taylor and Obreshkov methods). In the
context of this work, relevant additional observables could
be queries to the cost function to guide the construction of
stepsizes in a similar fashion to backtracking inexact line
search.

Example 3 (Euler’s method). Perhaps the simplest dis-
cretization scheme is the Euler method, based on a first-order
Taylor approximation of X(t). In particular, approximating
X(tk+1) around t = tk with ansatz Xk ≈ X(tk), we end
up with the scheme

Xk+1 = Xk + hkF (tk, Xk), (4)

whereas approximating X(tk) around t = tk+1, we end up
with the scheme (after reorganizing terms)

Xk+1 = Xk + hkF (tk+1, Xk+1), (5)

and these are, respectively, referred to as the forward (or
explicit) and backward (or implicit) Euler methods.

Example 4 (Taylor series method). The natural improvement
and generalization over the Euler method is to take higher-
order Taylor approximations. For instance, for the forward
approximation of order p, we end up with the scheme

Xk+1 = Xk +

p∑
j=1

hj
k

j!
F (j−1)(tk, Xk), (6)

where F (j−1) denotes the (j − 1)-th Lie derivative of F

w.r.t. Ẋ = F (t,X), i.e. F (j)(t,X) = ∂F (j−1)

∂t (t,X) +
∂F (j−1)

∂X (t,X)F (t,X), with F (0)(t,X) = F (t,X), where
∂

∂X denotes the usual Jacobian matrix operator.

While high-order Taylor series methods offer attractive
properties at the theory level, their main downside is that they
require exact access to high-order derivatives of F (t,X),
which is often impractical. In the following two examples,
we describe two widely popular methods that attempt to
circumvent the issue highlighted for Taylor series methods
by linear approximation. Both of the following schemes
are particular cases of the general linear method, originally
proposed by J.C. Butcher in 1966 [20].

Example 5 (Linear multistep method). The linear multi-
step method (LMM) stores (finitely many) past iterates and
queries of F and linearly combines them as an approximation
of the net sum of high-order Taylor terms:

Xk+r +

r−1∑
j=0

ajXk+j = hk+r

r∑
j=0

bjF (tk+j , Xk+j), (7)

where ai, bi are tunable parameters. Note that the scheme is
explicit if and only if br = 0. Further, it is a 1-stage method.

Example 6 (Runge-Kutta method). The Runge-Kutta (RK)
method opts to trade-off the memory overhead of LMM by
instead performing more computations per time step and
querying F multiple times. More precisely, F is queried
multiple times per time step in order to find intermediate
iterates that are then linearly combined into a single update:

Xk+1 = Xk + hk

s∑
i=1

biF (tk + cihk, Yk,i) (8a)

Yk,i = Xk + hk

s∑
j=1

aijF (tk + cjhk, Yk,j), (8b)

where aij , bi, cj are tunable parameters. Since these parame-
ters fully characterize a Runge-Kutta method, we may iden-
tify the scheme as simply (A, b, c), though it is customary
to express them in the so-called Butcher tableau form.

Note that the scheme is explicit if and only if A =
(aij) is strictly lower triangular. In that case, the scheme
requires at most 1

2s(s + 1) = O(s2) queries of F . For
implicit schemes, however, infinitely many queries would be
theoretically required, but in practice the auxiliary nonlinear
equations would be solved in finitely many steps and queries,
up to a given error tolerance. Regardless, a major advantage
of performing more expensive steps and querying F multiple
times per step is that Runge-Kutta schemes have the potential
of taking significantly larger step sizes, and thus fewer step
sizes overall, without compromising accuracy.

In this work, we are primarily interested in gradient-
based optimization algorithms seen as discretizations of
ODEs that serve as continuous-time analogues of gradient-
based optimization algorithms. For this reason, we make the
following assumption:

Assumption 2 (Gradient-based discretization). The func-
tions Φh(·),Ψh(·) (with arbitrary h > 0) and the construction
of the step sizes {hk} may only depend on f and F via
oracles Of ,O∇f ,OF . Further, the stepsizes {hk} must be
constructed recursively.

Before we formalize our problem statement, let us make
a regularity assumption that allows us to provide global
convergence guarantees without requiring convexity:

Assumption 3 (Invexity). There exists some vector-valued
function ξ : Rn × Rn → Rn such that f(y) − f(x) ≥
⟨ξ(x, y),∇f(x)⟩ for all x, y ∈ Rn.

It is not difficult to see that invex functions (i.e. those
satisfying Assumption 3) are exactly those whose stationary
points are all global minimizers.

With this, we can now formulate our problem statement.
But first, recall that α : [0, r) → R with 0 < r ≤ ∞ is
said to be of class K if it is continuous, strictly increasing,
and satisfies α(0) = 0. Further, α : [0, r) × [0,∞) → R is
said to be of class KL if α(·, t) is of class K and α(s, ·)
is continuous, non-negative, non-decreasing, and such that
α(s, t) → as t → ∞.



Problem 1. Consider a class F of continuously differ-
entiable differentiable cost functions f : Rn → R of
interest satisfying Assumption 3, as well as a continuous-
time gradient-based algorithm (1) satisfying Assumption 1
for every f ∈ F . Consider some performance metric V (x)
that is positive semidefinite w.r.t. x = x⋆, such as f(x) −
f(x⋆), ∥∇f(x)∥2, or ∥x−x⋆∥2. Given some optimality error
tolerance ε > 0, we seek to design a partition {t0 <
. . . < tN = T} and a discretization scheme (3) satisfying
Assumption 2, such that xk := G(Xk) satisfies V (xN ) ≤ ε.
In particular, given a non-asymptotic convergence rate in
continuous time that holds for all f ∈ F , of the form
V (x(T )) ≤ α(V (x(t0)), T−t0) with α a class KL function,
we seek the tightest corresponding rate upon discretization
V (xN ) ≤ β(V (x0), N), with β a class KL function.

III. COMBINING CONTINUOUS-TIME CONVERGENCE
AND ODE SOLVER ACCURACY

Conceptually, ODE solvers are designed to approximate
the overall solution curves X(t) of an ODE Ẋ = F (t,X).
Therefore, as we increasingly partition the time interval
[t0, T ], we expect Xk ≈ X(tk), with convergence in the
limit h := ∥(hk)∥∞ → 0. In this section, we first (Sec. III-
A) make this notion more precise by borrowing some use-
ful definitions from the numerical ODE literature, slightly
adapted for our purposes. Then (Sec. III-B), we propose a
method to combine the accuracy order of an ODE solver
with the convergence rate of the given continuous-time
gradient-based algorithm. This way, we can provide iteration
complexity guarantees for the discretization now viewed as
an optimization algorithm.

A. ODE Discretization Preliminaries: Truncation Error,
Consistency, Convergence

The following two definitions capture the notion of
Xk ≈ X(tk) for a scheme (3) as the time interval [t0, T ]
is progressively more finely partitioned.

Definition 2 (Local error). The local truncation error
of scheme (3) is the error accrued in a single step
when starting from a perfect approximation, i.e. τk :=
Φhk

(tk, X(tk), . . . , X(tk−r+1))−X(tk+1). We say that the
scheme is consistent if the ∥τk∥/hk → 0 as hk → 0, for
all smooth F . In particular, if ∥τk∥ ≤ hkω(hk) holds for all
small enough hk > 0, for some function ω(h) of class K,
we call ω(h) a (local) accuracy order function.

Definition 3 (Global error). The global truncation error
of scheme (3) is the accumulated error accrued over the
discretization process, i.e. Tk := Xk − X(tk). We say that
the scheme is convergent if there exists a starting procedure
X0 = X0(h0, . . . , hr+1) such that maxk ∥Tk∥ → 0 as
h := maxk hk → 0, for all smooth F . In particular, if
maxk ∥Tk∥ ≤ K(T − t0)ω(h) holds for all small enough
h > 0, for some functions K(·), ω(·) of class K, we call
ω(h) a (global) accuracy order function.

Next, we exemplify the notions above and briefly summa-
rize how they can be (partially) characterized for the forward

Euler method and the Runge-Kutta method. For the linear
multistep method, [1] summarizes well the convergence and
stability properties.

1) Forward Euler’s method: Consider the forward Euler
method (4). Suppose that F (t,X) is continuous in t, twice
continuously differentiable in X , and has first and second-
order partial derivatives in X bounded by L > 0 and M > 0,
respectively. Then, if the stepsizes are bounded by hk ≤ h,
it follows that ∥τk∥ ≤ M

2 h2
k and ∥Tk∥ ≤ M

2L (e
L(T−t0)− 1)h

(see [21, §2.1]).
2) Runge-Kutta’s method: Consider the s-stage Runge-

Kutta method (8). It is not difficult to see that the scheme
is consistent if and only if

∑s
i=1 bi = 1. Common ap-

proaches to construct high-order Runge-Kutta schemes are
based, for instance, on the so-called simplifying conditions
B(ρ), C(η), D(ξ), as well quadrature-based methods and
collocation methods [22, p. 237-238]. Unsurprisingly, the
local accuracy order carries over to the global error. More
precisely, if F (t, ·) is L-Lipschitz and the Runge-Kutta
scheme (A, b, c) satisfies ∥τk∥ ≤ Chν+1, then ∥Tk∥ ≤
C
L (e

L(T−t0) − 1)hν [22, Thm. 3.4.7]. While the exponential
growth eL(T−t0) is initially worrisome, and was specifically
addressed for the gradient flow in [23] by exploiting hy-
perbolicity, it turns out that tamer bounds for K(·) can be
attained under Lyapunov stability. More precisely, for non-
expansive and contractive systems, respectively, K(·) can
be proved to be bounded and exponentially decaying [24].
For asymptotically and exponentially stable systems, respec-
tively, K(·) can be proved to grow linearly at most and be
bounded [25]. Explicit Runge-Kutta schemes of order O(hν)
can be constructed with s = ν stages, for ν ≤ 4, but for
ν > 4, a fundamental limit of s > ν is attained. While the
smallest number of stages required to attain order O(hν)
with general ν > 4 is unknown, we can construct schemes
of such order using at most s = ⌈ 3ν2

8 ⌉ stages [21, §3.2.4].

B. Main results

Let us now see how we can provide a partial answer
to Problem 1. But first, recall that a class K function
ϕ : [0,∞] → [0,∞] is a modulus of continuity of a
continuous function g : X → Y between normed spaces
if ∥g(x) − g(x′)∥ ≤ ϕ(∥x − x′∥) for every x, x′ ∈ X .
The modulus of continuity generalizes Lipschitz and Hölder
continuity and will ultimately allow us to combine bounds on
the truncation error and continuous-time optimization error
(suboptimality gap) into a discrete-time suboptimality gap.
With this, we assume the following ingredients in addition
to the general setup of Problem 1:

1) The scheme (3) is convergent and has a known accu-
racy upper bound maxk ∥Tk∥ ≤ K(T − t0)ω(h), for
some functions K(·), α(·) of class K.

2) V ◦G is continuous with modulus of continuity ϕ.
With the ingredients above, we have:

V (xN ) =
(
V (xN )− V (x(T ))

)
+ V (x(T )) (9a)

≤ ϕ(∥XN −X(T )∥) + V (x(T )) (9b)
≤ ϕ (K(T − t0)ω(h)) + α(V (x0), T − t0) (9c)



for all h > 0 and ∆ := T − t0. Therefore, we can
guarantee ε-optimality, i.e. V (xN ) ≤ ε, in N ≤ ⌈∆

h ⌉
iterations, with ∆, h chosen such that ϕ (K(∆)ω(h)) +
α(V (x0),∆) ≤ ε. In particular, we can choose ∆ = ∆(ε)
such that α(V (x0),∆) = ε

2 and h = h(ε) such that
ϕ (K(∆(ε))ω(h)) = ε

2 , thus giving us an explicit iteration
complexity rate N = O

(
∆(ε)
h(ε)

)
.

To more explicitly illustrate the approach above, let us
focus on V (x) = f(x)−f⋆ and let us Taylor-based accuracy
bounds, of the form O(hν). Further, assuming that ∇f
is bounded and F and G are sufficiently regular, we can
guarantee a modulus of continuity ϕ(h) = Ch.

Assumption 4 (ODE regularity). The function F (t,X) is
piecewise continuous in t and uniformly Lipschitz continu-
ous, as well as ν ≥ 2 times continuously differentiable, in
X . Further, G is Lipschitz continuous.

Theorem 1. Suppose that Assumptions 3,4 hold. Further,
suppose that f has a bounded gradient. Consider the sys-
tem (1) and suppose that its equilibria set is contained in
G−1(X ⋆). Consider a convergent 1-step scheme(3) (r = 1)
of order O(hν) that is applied to (3). Let xk := G(Xk)
and consider the smallest number N of steps required for
f(xN )− f⋆ ≤ ε to hold. The following assertions hold:

• If (1) is globally asymptotically stable and such
that f(x(t)) − f⋆ = O((t − t0)

−δ), then N =

O(ε−(
1
δ+

1
ν (1+

1
δ )));

• If (1) is globally exponentially stable, then N =

O
(
log

(
1
ε

)
ε−

1
ν

)
;

• If (1) is globally finite-time stable, then N = O(ε−
1
ν ),

where the hidden constants in O(·) depend only on
∥∇f∥∞, f(x0)− f⋆,ν, and the scheme (3)..

Proof. Without loss of generality, we can assume t0 = 0.
We proceed as described earlier in the current subsection,
with V (x) = f(x) − f⋆. Let LG denote the Lipschitz
constant of G. Then, V ◦ G has modulus of continuity
ϕ(h) = ∥∇f∥∞LGh. Indeed, |(V ◦G)(X)−(V ◦G)(X ′)| =
| (f(G(X))− f⋆) − (f(G(X ′))− f⋆) | = |f(G(X)) −
f(G(X ′))| ≤ ∥∇f∥∞∥G(X)−G(X ′)∥ ≤ ∥∇f∥∞LG∥X−
X ′∥ = ϕ(∥X − X ′∥). Therefore, V (xN ) ≤ ϕ(∥xN −
x(T )∥)+V (x(T )). Let us consider the 3 cases in the theorem
statement in their original order:

• Invoking [25, Thm. 2.1, 4.3], we know that V (xN ) ≤
C1Th

ν + C2T
−δ for some C1, C2 > 0 that do not

depend on h or T . Let T = T (ε) such that C2T
−δ =

ε, i.e. T = C
1
δ
2 ε

− 1
δ . Now let h = h(ε) such that

C1Th
v = ε, i.e. h = (C1C

1
δ
2 )

1
ν ε(1+

1
δ )

1
ν . Combining

T, h into N ≤ ⌈T/h⌉ thus leads to N ≤ 1 +

C
1
δ
2 C

1
δ (1+

1
ν )

2 ε−[
1
δ (1+

1
ν )+

1
ν ].

• Invoking [25, Thm. 2.1, 4.2], we know that V (xN ) ≤
C1h

ν + C2e
−C3T for some C1, C2, C3 > 0. Solving

C2e
−C3T = ε and C1h

v = ε, we find N ≤ 1 +
C

1
ν
1

C3
log

(
C2

ε

)
ε−

1
ν .

• Due to finite-time stability, there exists some T (x0) >
0 large enough such that x(T (x0)) = x⋆, indepen-
dent of ε. Therefore, choosing T = T (x0), we have
V (xN ) ≤ C∥xN − x(T )∥ ≤ Chν for some C > 0.
Choosing h = C− 1

ν ε
1
ν therefore leads to N ≤ 1 +

C− 1
ν T (x0)ε

− 1
ν . ■

Let us briefly discuss the oracle complexity implications
of the previous result. To do this, suppose that the system (1)
and scheme (3) satisfy Assumptions 1,2. With this, we first
note that, for implicit schemes, the number of queries to the
gradient ∇f heavily depends on the nature of the implicit
equation to be solved. This will be the subject of future
research, but for now let us specifically discuss the case
of explicit Runge-Kutta schemes. Indeed, as discussed in
Sec. III-A, we can construct explicit Runge-Kutta schemes
of any desired order O(hν), using at most s = ⌈(3/8)ν2⌉
stages. Since each iteration of an explicit s-stage Runge-
Kutta scheme requires up to s(s+1)

2 ≤ ⌈ 9
128ν

4⌉N gradient
evaluations, we can conclude that the total number of gradi-
ent evaluation required to reach ε-optimality is proportional
to the number N of iterations (time steps) in the Runge-Kutta
scheme. Therefore, a subexponential rate in continuous time
of the form T − t0 = O(ε−

1
δ ) can be nearly preserved for

large ν, since ε−(
1
δ+

1
ν (1+

1
δ )) ≈ ε−

1
δ . That said, the ratio

between the number of gradient evaluations and N grows
at a rate O(ν4), and thus using schemes of excessively high
order is unlikely to be justified in practice. Instead, relatively
low-order schemes (typically ν ≤ 4 and occasionally up to
ν = 8) tend to perform just as well, if not better, particularly
when paired with a sensible stepsize adaptation strategy.

Example 7. Consider Nesterov’s ODE (2) for convex f ,
so as to ensure f(x(t)) − f⋆ = O(1/t2). This way, as-
suming that f is ν times continuously differentiable and
has bounded Lipschitz continuous gradient, it follows that
we can discretize it using suitable scheme of order O(hν),
leading to the rate O(ε−

1
2

ν+3
ν ), which is slightly worse than

the corresponding rate O(ε−
1
2

ν+1
ν ) derived by [17]. However,

if we discretize the modified ODE

ẍ+
p+ 1

t
ẋ+ p2tp−2∇f(x) = 0, (10)

which satisfies f(x(t))− f⋆ = O(1/tp) for p > 2 (see [9]),
then we obtain the rate O(ε−(

1
p+

1
ν (1+

1
p ))) = O(ε−

1
p

p+ν+1
ν ).

While the corresponding rate O(ε−
1
p

ν+1
ν ) derived by [17]

(with the term p+1
t changed to 2p+1

t ) is strictly better for
each p > 2, it should be noted that taking ν → ∞ leads
to O(ε−

1
p ) in both cases (with slight abuse of notation).

However, and most importantly, p in our rate is entirely free,
unlike in [17] where it relates to a flatness condition that
scales with p and is rather restrictive for large p. With this
in mind, using our approach, we can freely take p → ∞
to obtain the rate O(ε−

1
ν ) (with slight abuse of notation),

nearly matching the best possible rate of Õ(ε−
2

3ν+1 ) [26]
when we allow to query the first ν derivatives of f .



IV. THE RESCALED GRADIENT FLOW

To further illustrate the findings of Sec. III-B, we now
consider the following candidate continuous-time optimiza-
tion algorithm, known as the q-rescaled gradient flow (RGF):

ẋ = − ∇f(x)

∥∇f(x)∥
q−2
q−1

, (11)

where 1 < q < ∞. Note that ∥ẋ(t)∥ = ∥∇f(x(t))∥
1

q−1 .
Therefore, as x(t) → x⋆, the role of q can be seen as leading
to acceleration (compared to the gradient flow) for q > 2
and deceleration for 1 < q < 2. For q = 2, the system
simplifies to the usual gradient flow ẋ = −∇f(x), whereas
for q = ∞ it simplifies to ẋ = − ∇f(x)

∥∇f(x)∥ (interpreted
as a Filippov differential inclusion; see [27]), which was
introduced in [28], [29] as the normalized gradient flow. The
q-RGF was proposed in its current form in [9] and has also
been studied in [14] and [30].

In order to establish accelerated convergence, additional
regularity is required:

Assumption 5 (Gradient dominance). The function f is
µ-gradient dominated of order p, i.e.

p− 1

p
∥∇f(x)∥

p
p−1 ≥ µ

1
p−1 (f(x)− f⋆) (12)

for all x ∈ Rn, where f⋆ = infx f(x), µ > 0, and p > 1.

This terminology is borrowed and adapted from [9], [18].
We also utilized the notion of gradient dominance of order p
in earlier work [14] and it has also been leveraged as a partic-
ular case of interest of the more general Kurdyka-Łojasiewicz
(KL) inequality. In particular, gradient dominance is nothing
more than the Łojasiewicz gradient inequality, with the
particular case p = 2 known as the Polyak-Łojasiewicz (PL)
inequality (or simply gradient dominance) because it was
independently studied by Łojasiewicz [31] and Polyak [32]
in 1963. Note that gradient dominance guarantees invexity.

Before we summarize the convergence guarantees that
gradient dominance give up on the RGF, let us briefly
describe when it would hold.

Proposition 1. If f is µ-uniformly convex of order p, i.e.

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

p
∥x− y∥p, (13)

for all x, y ∈ Rn, then it is µ-gradient dominated of order p.

Proof. Let us minimize the RHS of (13). Differentiating,
we find that the minimum is attained at y⋆ such that
µ∥x − y⋆∥p−2(x − y⋆) = ∇f(x). Therefore, ∥x − y⋆∥ =

µ− 1
p−1 ∥∇f(x)∥

1
p−1 and x−y⋆

∥x−y⋆∥ = ∇f(x)
∥∇f(x)∥ . Subsequently,

x − y⋆ = µ− 1
p−1∇f(x)/∥∇f(x)∥

p−2
p−1 . Plugging y =

argminx f(x) on the LHS of (13) and y = y⋆ on the RHS,
we find (12) after simplifying. ■

More generally, the inequality was first established to hold
locally for analytic functions [31], [33]. Later, analyticity was
relaxed to (possibly non-differentiable) subanalytic functions
and it was proved that the inequality holds globally under

convexity [34, Thm. 3.1 & 3.3]. More generally, we can
characterize gradient dominance as follows:

Proposition 2. If f is µ-gradient dominated of order p, then
it satisfies the Hölderian error bound (HEB)

f(x)− f⋆ ≥ Cp,µ · ∥x− x⋆∥p, (14)

for all x ∈ Rn, where Cp,µ = µ
p(p−1)p−1 . Reciprocally, if f is

convex and (14) holds, then f is (µ/pp)-gradient dominated
of order p.

Remark 1. The HEB (14) is equivalent to (13) with x = x⋆

fixed in (13) (i.e. uniform convexity at x⋆ only [?]) and
µ replaced by µ/(p − 1)p−1. Therefore, HEBs are closely
closely related to but weaker than uniform convexity. The
particular relationship between the case p = 2 of (14) (known
as quadratic growth in the literature), the PL inequality,
and strong (or weakly strong) convexity was highlighted
in [35], among related conditions. It is also worth noting
that convexity in the above proposition could be replaced by
invexity (Assumption 3), provided that (14) is replaced by
f(x)−f⋆ ≥ Cp,µ∥ξ(x, x⋆)∥p, where the case ξ(x, y) = y−x
corresponds to convexity.

We conclude this subsection by summarizing the conver-
gence rate of q-RGF in terms under gradient dominance order
p by pooling and slightly generalizing some of the results
proved in [9], [18] and [14], [30].

Proposition 3. Suppose that f satisfies Assumption 5 and
let x(t) be a maximal solution to (11) with initial condition
x(0) = x0. Then, the following convergence rates are
attained for V (x) := f(x)− f⋆:

• (sublinear/subexponential) If q < p, then

V (x(t)) ≤ [V (x0)
−δ + βt]−δ = O(t−δ), (15)

where δ = 1/
(

p−1
p · q

q−1 − 1
)

∈ (0,∞) and β =(
p

p−1

)δ+1

µ
q

p(q−1) δ ∈ (0,∞);
• (linear/exponential) If q = p, then

V (x(t)) ≤ V (x0) e
− p

p−1µ
1

p−1 t = O(ρt), (16)

with ρ = exp
(
− p

p−1µ
1

p−1

)
∈ (0, 1);

• (finite time) If q > p, then V (x(t)) = 0 for every

t ≥ t⋆, with t⋆ ≤ ∥∇f(x0)∥
1
θ
− 1

θ′

C
1
θ (1− θ

θ′ )
< ∞, where C =(

p
p−1

) p−1
p

µ
1
p , θ = p−1

p , and θ′ = q−1
q .

Proof (sketch). Let E(t) = f(x(t))− f⋆. In all three cases,
we will have Ė(t) ≤ −c E(t)α with c, α > 0. Indeed,

Ė(t) = ⟨∇f(x(t)), ẋ(t)⟩ (17a)

= −∥∇f(x(t))∥
q

q−1 (17b)

≤ −C
1
θ′ E(t) θ

θ′ , (17c)

where the last inequality follows by invoking gradient dom-
inance. Clearly, depending on whether q is below, equal, or



above p, we will have that α is above, equal, or below 1.
Thus, integrating the differential inequality Ė(t) ≤ −c E(t)α,
we find the rates described. ■

Remark 2. Rates for V (x) = ∥x − x⋆∥ can be directly
obtained from the previous result by exploiting the HEB from
Proposition 2. Likewise, rates for V (x) = ∥∇f(x)∥ can be
determined under the additional assumption of L-smoothness
or Hölder continuous gradient, for instance.

We conclude this section by applying the result from
Sec. III-B to the rescaled gradient flow.

Theorem 2. Suppose that f has bounded gradient and
satisfies satisfies Assumption 5. Further, suppose that the
RHS of (11) is Lipschitz continuous and ν times continuously
differentiable. Consider a convergent 1-step scheme (3) of
order O(hν). Then, applying the scheme to (11) on [t0, T ],
we have f(xN )− f⋆ ≤ ε, with

N =


O
(
ε−[(

p−1
p · q

q−1−1)(1+ 1
ν )+

1
ν ]
)
, if q < p

O
(
log

(
1
ε

)
ε−

1
ν

)
, if q = p

O(ε−
1
ν ), if q > p,

(18)

where the multiplicative constants hidden in O(·) depend
only on ∥∇f∥∞, f(x0)− f⋆, µ, p, q, ν, and the scheme (3).

V. CONCLUSION AND FUTURE WORK

Traditionally, optimization algorithms are designed as iter-
ative schemes. Such schemes have a natural temporal inter-
pretation: consecutive iterates may be interpreted as evolving
over discrete time time steps. This simple realization has
motivated researchers to borrow tools from the fields of
dynamical systems and control theory. While this approach
has been gaining traction in the last few years, the modeling
tools used in systems and control are largely based around
continuous-time representations of a system’s evolution over
time, typically via ordinary differential equations.

Nonetheless, there has been great success recently in
studying continuous-time analogues of optimization algo-
rithms, enabling new theoretical analysis and design ap-
proaches. However, there is also clearly a contrast between
continuous time being ubiquitous in systems and control, but
discrete time being practically a necessity for optimization
algorithms in practice on account of the digital nature of
modern computers. For these reasons, we believe that it is
worthwhile to search for a systematic theory of discretization
fine-tuned for the purpose of optimization.

To this end, in this paper we focus on the fundamen-
tal question of how to discretize such a continuous-time
analogue of an optimization algorithm (with a focus on
gradient-based ones) in such a way so as preserve some of
its optimality properties that were originally present in con-
tinuous time. In particular, by considering off-the-shelf ODE
solvers, we can combine their built-in accuracy bounds with
the suboptimality bounds known for the continuous-time
optimization algorithm to therefore bound the discretization’s
suboptimality gap.

With this approach, we show that for sufficiently sta-
ble systems with convergence rates of three major types
(subexponential, exponential, and finite-time convergent),
we can nearly match their original rates upon discretiza-
tion by merely using ODE solvers of modestly high or-
der. In particular, we show that an ε-optimality rates
of the form O(1/ε1/δ),O(log(1/ε)),O(1) in continu-
ous time can be readily converted into corresponding
rates O(1/ε

1
δ+

1
ν (1+

1
δ )),O(log(1/ε)/ε1/ν),O(1/ε1/ν), re-

spectively, upon discretization with a solver of accuracy
order O(hν). Therefore, for modestly large ν, the rates will
approximately match.

As a particular case study, we first considered the mod-
ified version (10) of Nesterov’s ODE 2 and found a
novel rate O(1/ε

1
p

p+ν+1
ν ). When contrasted with the rate

O(1/ε
1

pmax

ν+1
ν ) derived in [17], where pmax originates from

a flatness condition, we can see that our rate can outper-
forms it for certain combinations of p and ν. Further, we
can see that, when taking p → ∞, our rate approaches
O(1/ε

1
ν ), which is remarkably close to the known upper

bound O(1/ε
1

ν−1 ) and lower bound Ω(1/ε
2

3ν+1 ) attainable
with oracle access to the first ν derivatives of the cost
function. As a second case study, we consider the rescaled
gradient flow (11) and provide novel rates summarized in
Theorem 2. In particular, for the cases where the assumed
gradient dominance is of order p = ∞ and p = q, we recover
the corresponding rates in [9], [18] under weaker conditions,
when using high-order solvers.

The novel rates that we obtained in the two case studies
proved to be competitive with the existing rates in the
literature, even though these required stronger assumptions
and a highly tailored analysis. While this is encouraging,
we find that accuracy orders of the form O(hν) act as a
bottleneck to establish true linear convergence (i.e., without
ν → ∞, which is impractical). In future work, we aim to fill
this gap by considering a more sophisticated approach based
around nonlinear absolute stability of ODE solvers. Further,
we will explore multiderivative schemes. Lastly, we seek to
extended our methodology for stochastic, online, robust, and
distributed optimization.
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APPENDIX

A. Proof of Proposition 2

First, note that (12) can be restated in the Łojasiewicz
gradient inequality form

∥∇f(x)∥ ≥ C(f(x)− f⋆)θ, (19)

with C =
(

p
p−1

) p−1
p

µ
1
p > 0 and θ = p−1

p ∈ (0, 1). Let
g(x) = (f(x) − f⋆)1−θ and let x(t) denote the maximal
solution of ẋ = −∇g(x) such that x(t) ̸= x⋆, with initial
state x(0) = x0 ̸= x⋆. We have ∇g(x) = (1− θ) ∇f(x)

(f(x)−f⋆)θ
,

and thus ∥∇g(x)∥ ≥ C(1− θ). Therefore,

d

dt
g(x(t)) = ⟨∇g(x(t)), ẋ(t)⟩ (20a)

= −∥∇g(x(t))∥2 (20b)

≤ −C2(1− θ)2, (20c)

and thus, integrating and noting that g(x0) > 0, we find that
g(x(t)) → 0 as t → T for some finite-valued T = T (x0) >
0. Therefore, x(T ) := limt→∞ x(t) is actually x(T ) = x⋆.
Further, we have

g(x0) = g(x0)− g(x(T )) (21a)

= −
∫ T

0

d

dt
g(x(t))dt (21b)

=

∫ T

0

∥∇g(x(t))∥2dt (21c)

≥ C(1− θ)

∫ T

0

∥∇g(x(t))∥dt (21d)

= C(1− θ)

∫ T

0

∥ẋ(t)∥dt (21e)

≥ C(1− θ)∥x(T )− x0∥ (21f)
= C(1− θ)∥x0 − x⋆∥. (21g)

Rearranging terms, we find f(x)−f⋆ ≥ C
1

1−θ (1−θ)
1

1−θ ∥x−
x⋆∥

1
1−θ . Substituting C and θ in terms of µ and p and

simplifying, the proof is complete. ■
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